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Observe that directed graphs and undirected graphs are different (but similar) objects mathematically.
Certain notions (such as path) are defined for both, but other notions (such as connectivity) are only
defined for one.

In a digraph, the number of edges coming out of a vertex is called theout-degreeof that vertex, and
the number of edges coming in is called thein-degree. In an undirected graph we just talk about the
degreeof a vertex, as the number of edges which areincidenton this vertex. By thedegreeof a graph,
we usually mean the maximum degree of its vertices.

In a directed graph, each edge contributes 1 to the in-degree of a vertex and contributes one to the
out-degree of each vertex, and thus we have

Observation: For a digraphG = (V,E),∑
v∈V

in-deg(v) =
∑
v∈V

out-deg(v) = |E|.

(|E| means the cardinality of the setE, i.e. the number of edges).

In an undirected graph each edge contributes once to the outdegree of two different edges and thus we
have

Observation: For an undirected graphG = (V,E),∑
v∈V

deg(v) = 2|E|.

Lecture 21: More on Graphs

(Tuesday, April 14, 1998)
Read: Sections 5.4, 5.5.

Graphs: Last time we introduced the notion of a graph (undirected) and a digraph (directed). We defined
vertices, edges, and the notion of degrees of vertices. Today we continue this discussion. Recall that
graphs and digraphs both consist of two objects, a set of vertices and a set of edges. For graphs edges
are undirected and for graphs they are directed.

Paths and Cycles:Let’s concentrate on directed graphs for the moment. Apath in a directed graph is a
sequence of vertices〈v0, v1, . . . , vk〉 such that(vi−1, vi) is an edge fori = 1, 2, . . . , k. The lengthof
the path is the number of edges,k. We say thatw is reachablefrom u if there is a path fromu to w.
Note that every vertex is reachable from itself by a path that uses zero edges. A path issimpleif all
vertices (except possibly the first and last) are distinct.

A cyclein a digraph is a path containing at least one edge and for whichv0 = vk. A cycle issimpleif,
in addition,v1, . . . , vk are distinct. (Note: A self-loop counts as a simple cycle of length 1).

In undirected graphs we define path and cycle exactly the same, but for asimple cyclewe add the
requirement that the cycle visit at least three distinct vertices. This is to rule out the degenerate cycle
〈u,w, u〉, which simply jumps back and forth along a single edge.

There are two interesting classes cycles. AHamiltonian cycleis a cycle that visits every vertex in a
graph exactly once. AEulerian cycleis a cycle (not necessarily simple) that visits every edge of a
graph exactly once. (By the way, this is pronounced “Oiler-ian” and not “Yooler-ian”.) There are also
“path” versions in which you need not return to the starting vertex.
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One of the early problems which motivated interest in graph theory was theKönigsberg Bridge Prob-
lem. This city sits on the Pregel River as is joined by 7 bridges. The question is whether it is possible
to cross all 7 bridges without visiting any bridge twice. Leonard Euler showed that it is not possible, by
showing that this question could be posed as a problem of whether the multi-graph shown below has
an Eulerian path, and then proving necessary and sufficient conditions for a graph to have such a path.

 4

 1

 3

 2

 2

 4 3

 1

Figure 19: Bridge’s at K̈onigsberg Problem.

Euler proved that for a graph to have an Eulerian path, all but at most two of the vertices must have
even degree. In this graph, all 4 of the vertices have odd degree.

Connectivity and acyclic graphs: A graph is said to beacyclic if it contains no simple cycles. A graph is
connectedif every vertex can reach every other vertex. An acyclic connected graph is called afree tree
or simply tree for short. The term “free” is intended to emphasize the fact that the tree has no root, in
contrast to arooted tree, as is usually seen in data structures.

Observe that a free tree is a minimally connected graph in the sense that the removal of any causes the
resulting graph to be disconnected. Furthermore, there is a unique path between any two vertices in a
free tree. The addition of any edge to a free tree results in the creation of a single cycle.

The “reachability” relation is an equivalence relation on vertices, that is, it is reflexive (a vertex is
reachable from itself), symmetric (ifu is reachable fromv, thenv is reachable fromu), and transitive
(if u is reachable fromv andv is reachable fromw, thenu is reachable fromw). This implies that
the reachability relation partitions the vertices of the graph in equivalence classes. These are called
connected components.

A connected graph has a single connected component. An acyclic graph (which is not necessarily
connected) consists of many free trees, and is called (what else?) aforest.

A digraph isstrongly connectedif for any two verticesu andv, u can reachv andv can reachu. (There
is another type of connectivity in digraphs calledweak connectivity, but we will not consider it.) As
with connected components in graphs, strongly connectivity defines an equivalence partition on the
vertices. These are called thestrongly connected componentsof the digraph.

A directed graph that is acyclic is called aDAG, for directed acyclic graph. Note that it is different
from a directed tree.

Isomorphism: Two graphsG = (V,E) andG′ = (V ′, E′) are said to beisomorphicif there is a bijection
(that is, a 1–1 and onto) functionf : V → V ′, such that(u, v) ∈ E if and only if (f(u), f(v)) ∈ E′.
Isomorphic graphs are essentially “equal” except that their vertices have been given different names.

Determining whether graphs are isomorphic is not as easy as it might seem at first. For example,
consider the graphs in the figure. Clearly (a) and (b) seem to appear more similar to each other than to
(c), but in fact looks are deceiving. Observe that in all three cases all the vertices have degree 3, so that
is not much of a help. Observe there are simple cycles of length 4 in (a), but the smallest simple cycles
in (b) and (c) are of length 5. This implies that (a) cannot be isomorphic to either (b) or (c). It turns

62



Lecture Notes CMSC 251

 5

 4

 3

 2

 8

 1
10

 9

(a)

 6 7

 8

 9

10

(b) (c)

 2
 6

 1

 3 4

 5
 7

 8 9

10

 1

 2

 3 4

 5
 6

 7

Figure 20: Graph isomorphism.

out that (b) and (c) are isomorphic. One possible isomorphism mapping is given below. The notation
(u → v) means that vertexu from graph (b) is mapped to vertexv in graph (c). Check that each edge
from (b) is mapped to an edge of (c).

{(1→ 1), (2→ 2), (3→ 3), (4→ 7), (5→ 8), (6→ 5), (7→ 10), (8→ 4), (9→ 6), (10→ 9)}.

Subgraphs and special graphs:A graphG′ = (V ′, E′) is a subgraphof G = (V,E) if V ′ ⊆ V and
E′ ⊆ E. Given a subsetV ′ ⊆ V , the subgraphinducedby V ′ is the graphG′ = (V ′, E′) where

E′ = {(u, v) ∈ E | u, v ∈ V ′}.
In other words, take all the edges ofG that join pairs of vertices inV ′.

An undirected graph that has the maximum possible number of edges is called acomplete graph.
Complete graphs are often denoted with the letterK. For example,K5 is the complete graph on 5
vertices. Given a graphG, a subset of verticesV ′ ⊆ V is said to form aclique if the subgraph induced
by V ′ is complete. In other words, all the vertices ofV ′ are adjacent to one another. A subset of
verticesV ′ forms anindependent setif the subgraph induced byV ′ has no edges. For example, in the
figure below (a), the subset{1, 2, 4, 6} is a clique, and{3, 4, 7, 8} is an independent set.
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Figure 21: Cliques, Independent set, Bipartite graphs.

A bipartite graphis an undirected graph in which the vertices can be partitioned into two setsV1 andV2

such that all the edges go between a vertex inV1 andV2 (never within the same group). For example,
the graph shown in the figure (b), is bipartite.
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The complementof a graphG = (V,E), often denoted̄G is a graph on the same vertex set, but in
which the edge set has been complemented. Thereversalof a directed graph, often denotedGR is a
graph on the same vertex set in which all the edge directions have been reversed. This may also be
called thetransposeand denotedGT .

A graph isplanar if it can be drawn on the plane such that no two edges cross over one another. Planar
graphs are important special cases of graphs, since they arise in applications of geographic information
systems (as subdivisions of region into smaller subregions), circuits (where wires cannot cross), solid
modeling (for modeling complex surfaces as collections of small triangles). In general there may
be many different ways to draw a planar graph in the plane. For example, the figure below shows
two essentially different drawings of the same graph. Such a drawing is called aplanar embedding.
The neighborsof a vertex are the vertices that it is adjacent to. An embedding is determined by the
counterclockwise cyclic ordering of the neighbors about all the vertices. For example, in the embedding
on the left, the neighbors of vertex 1 in counterclockwise order are〈2, 3, 4, 5〉, but on the right the order
is 〈2, 5, 4, 3〉. Thus the two embeddings are different.
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Figure 22: Planar Embeddings.

An important fact about planar embeddings of graphs is that they naturally subdivide the plane into
regions, calledfaces. For example, in the figure on the left, the triangular region bounded by vertices
〈1, 2, 5〉 is a face. There is always one face, called theunbounded facethat surrounds the whole graph.
This embedding has 6 faces (including the unbounded face). Notice that the other embedding also has
6 faces. Is it possible that two different embeddings have different numbers of faces? The answer is
no. The reason stems from an important observation calledEuler’s formula, which relates the numbers
of vertices, edges, and faces in a planar graph.

Euler’s Formula: A connected planar embedding of a graph withV vertices,E edges, andF faces,
satisfies:

V − E + F = 2.

In the examples above, both graphs have 5 vertices, and 9 edges, and so by Euler’s formula they have
F = 2− V + E = 2− 5 + 9 = 6 faces.

Size Issues:When referring to graphs and digraphs we will always letn = |V | ande = |E|. (Our textbook
usually uses the abuse of notationV = |V | andE = |E|. Beware, the sometimesV is a set, and
sometimes it is a number. Some authors usem = |E|.)
Because the running time of an algorithm will depend on the size of the graph, it is important to know
hown ande relate to one another.
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