
Lecture Notes CMSC 251

Observation: For a digraphe ≤ n2 = O(n2). For an undirected graphe ≤ (n2) = n(n − 1)/2 =
O(n2).

A graph or digraph is allowed to have no edges at all. One interesting question is what the minimum
number of edges that a connected graph must have.

We say that a graph issparseif e is much less thann2.

For example, the important class ofplanar graphs(graphs which can be drawn on the plane so that no
two edges cross over one another)e = O(n). In most application areas, very large graphs tend to be
sparse. This is important to keep in mind when designing graph algorithms, because whenn is really
large andO(n2) running time is often unacceptably large for real-time response.

Lecture 22: Graphs Representations and BFS

(Thursday, April 16, 1998)
Read: Sections 23.1 through 23.3 in CLR.

Representations of Graphs and Digraphs:We will describe two ways of representing graphs and digraphs.
First we show how to represent digraphs. LetG = (V,E) be a digraph withn = |V | and lete = |E|.
We will assume that the vertices ofG are indexed{1, 2, . . . , n}.

Adjacency Matrix: An n× n matrix defined for1 ≤ v, w ≤ n.

A[v, w] =
{

1 if (v, w) ∈ E
0 otherwise.

If the digraph has weights we can store the weights in the matrix. For example if(v, w) ∈ E then
A[v, w] = W (v, w) (the weight on edge(v, w)). If (v, w) /∈ E then generallyW (v, w) need
not be defined, but often we set it to some “special” value, e.g.A(v, w) = −1, or∞. (By∞
we mean (in practice) some number which is larger than any allowable weight. In practice, this
might be some machine dependent constant likeMAXINT.)

Adjacency List: An arrayAdj[1 . . . n] of pointers where for1 ≤ v ≤ n, Adj[v] points to a linked list
containing the vertices which are adjacent tov (i.e. the vertices that can be reached fromv by a
single edge). If the edges have weights then these weights may also be stored in the linked list
elements.

3

1

1

01

0

11

0

0
2 3

1

2

3

2

1

Adjacency matrix

Adj

Adjacency list

32

2

3

1

3

2

1
1

Figure 23: Adjacency matrix and adjacency list for digraphs.

We can represent undirected graphs using exactly the same representation, but we will store each edge
twice. In particular, we representing the undirected edge{v, w} by the two oppositely directed edges
(v, w) and(w, v). Notice that even though we represent undirected graphs in the same way that we

65

Lecture Notes CMSC 251

represent digraphs, it is important to remember that these two classes of objects are mathematically
distinct from one another.

This can cause some complications. For example, suppose you write an algorithm that operates by
marking edges of a graph. You need to be careful when you mark edge(v, w) in the representation
that you also mark(w, v), since they are both the same edge in reality. When dealing with adjacency
lists, it may not be convenient to walk down the entire linked list, so it is common to includecross links
between corresponding edges.

2

1

1 2 3

1

1

01

0

1

3

Adjacency list (with crosslinks)Adjacency matrix

Adj

4

1

1 2 4

42

31

3

4

1

1

1

0

0

0

1

1

1 04

3

2

1

3

1

32

4

Figure 24: Adjacency matrix and adjacency list for graphs.

An adjacency matrix requiresΘ(n2) storage and an adjacency list requiresΘ(n+e) storage (one entry
for each vertex inAdj and each list hasoutdeg(v) entries, which when summed isΘ(e). For sparse
graphs the adjacency list representation is more cost effective.

Shortest Paths: To motivate our first algorithm on graphs, consider the following problem. You are given
an undirected graphG = (V,E) (by the way, everything we will be saying can be extended to directed
graphs, with only a few small changes) and asource vertexs ∈ V . The lengthof a path in a graph
(without edge weights) is the number of edges on the path. We would like to find the shortest path from
s to each other vertex inG. If there are ties (two shortest paths of the same length) then either path
may be chosen arbitrarily.

The final result will be represented in the following way. For each vertexv ∈ V , we will stored[v]
which is thedistance(length of the shortest path) froms to v. Note thatd[s] = 0. We will also store a
predecessor (or parent) pointerπ[v], which indicates the first vertex along the shortest path if we walk
from v backwards tos. We will let π[s] = NIL.

It may not be obvious at first, but these single predecessor pointers are sufficient to reconstruct the
shortest path to any vertex. Why? We make use of a simple fact which is an example of a more general
principal of many optimization problems, called theprincipal of optimality. For a path to be a shortest
path, every subpath of the path must be a shortest path. (If not, then the subpath could be replaced with
a shorter subpath, implying that the original path was not shortest after all.)

Using this observation, we know that the last edge on the shortest path froms to v is the edge(u, v),
then the first part of the pathmustconsist of a shortest path froms to u. Thus by following the
predecessor pointers we will construct thereverseof the shortest path froms to v.

Obviously, there is simple brute-force strategy for computing shortest paths. We could simply start
enumerating all simple paths starting ats, and keep track of the shortest path arriving at each vertex.
However, since there can be as many asn! simple paths in a graph (consider a complete graph), then
this strategy is clearly impractical.

Here is a simple strategy that is more efficient. Start with the source vertexs. Clearly, the distance to
each ofs’s neighbors is exactly 1. Label all of them with this distance. Now consider the unvisited

66

Lecture Notes CMSC 251

2

2
2

2

2

2

33

3
3

3s
1

1
1

ss

: Finished: Discovered: Undiscovered

Figure 25: Breadth-first search for shortest paths.

neighbors of these neighbors. They will be at distance 2 froms. Next consider the unvisited neighbors
of the neighbors of the neighbors, and so on. Repeat this until there are no more unvisited neighbors left
to visit. This algorithm can bevisualizedas simulating a wave propagating outwards froms, visiting
the vertices in bands at ever increasing distances froms.

Breadth-first search: Given an graphG = (V,E), breadth-first search starts at some source vertexs and
“discovers” which vertices are reachable froms. Define thedistancebetween a vertexv ands to be the
minimum number of edges on a path froms to v. Breadth-first search discovers vertices in increasing
order of distance, and hence can be used as an algorithm for computing shortest paths. At any given
time there is a “frontier” of vertices that have been discovered, but not yet processed. Breadth-first
search is named because it visits vertices across the entire “breadth” of this frontier.

Initially all vertices (except the source) are colored white, meaning that they have not been seen. When
a vertex has first been discovered, it is colored gray (and is part of the frontier). When a gray vertex is
processed, then it becomes black.

Breadth-First Search

BFS(graph G=(V,E), vertex s) {
int d[1..size(V)] // vertex distances
int color[1..size(V)] // vertex colors
vertex pred[1..size(V)] // predecessor pointers
queue Q = empty // FIFO queue

for each u in V { // initialization
color[u] = white
d[u] = INFINITY
pred[u] = NULL

}
color[s] = gray // initialize source s
d[s] = 0
enqueue(Q, s) // put source in the queue
while (Q is nonempty) {

u = dequeue(Q) // u is the next vertex to visit
for each v in Adj[u] {

if (color[v] == white) { // if neighbor v undiscovered
color[v] = gray // ...mark it discovered
d[v] = d[u]+1 // ...set its distance
pred[v] = u // ...and its predecessor

67

Lecture Notes CMSC 251

enqueue(Q, v) // ...put it in the queue
}

}
color[u] = black // we are done with u

}
}

The search makes use of aqueue, a first-in first-out list, where elements are removed in the same order
they are inserted. The first item in the queue (the next to be removed) is called theheadof the queue.
We will also maintain arrayscolor [u] which holds the color of vertexu (either white, gray or black),
pred[u] which points to the predecessor ofu (i.e. the vertex who first discoveredu, andd[u], the
distance froms to u. Only the color is really needed for the search, but the others are useful depending
on the application.

st

u v

Q: x, u, w

st

u v w

x

Q: w, t

st

u v w

x

Q: u, w

Q: v, x

w

xst

u v w

x st

u v w

x

Q: s

t

u v w

xs

Q: t

??

?

1

0 1

?

22

1

10

2 21

0

1

13

2

?

???

? 0

0

1

13

2 2

2

? 0 1

Figure 26: Breadth-first search: Example.

Observe that the predecessor pointers of the BFS search define an inverted tree. If we reverse these
edges we get a rooted unordered tree called aBFS treefor G. (Note that there are many potential BFS
trees for a given graph, depending on where the search starts, and in what order vertices are placed on
the queue.) These edges ofG are calledtree edgesand the remaining edges ofG are calledcross edges.
It is not hard to prove that ifG is an undirected graph, then cross edges always go between two nodes
that are at most one level apart in the BFS tree. The reason is that if any cross edge spanned two or
more levels, then when the vertex at the higher level (closer to the root) was being processed, it would
have discovered the other vertex, implying that the other vertex would appear on the very next level of
the tree, a contradiction. (In a directed graph cross edges will generally go down at most 1 level, but
they may come up an arbitrary number of levels.)

Analysis: The running time analysis of BFS is similar to the running time analysis of many graph traversal
algorithms. Letn = |V | ande = |E|. Observe that the initialization portion requiresΘ(n) time.
The real meat is in the traversal loop. Since we never visit a vertex twice, the number of times we go
through the while loop is at mostn (exactlyn assuming each vertex is reachable from the source). The
number of iterations through the inner for loop is proportional todeg(u) + 1. (The+1 is because even
if deg(u) = 0, we need to spend a constant amount of time to set up the loop.) Summing up over all
vertices we have the running time

T (n) = n +
∑
u∈V

(deg(u) + 1) = n +
∑
u∈V

deg(u) + n = 2n + 2e ∈ Θ(n + e).

68

Lecture Notes CMSC 251

0

1

22

3

1

t

u w

xv

s

Figure 27: BFS tree.

For an directed graph the analysis is essentially the same.

Lecture 23: All-Pairs Shortest Paths

(Tuesday, April 21, 1998)
Read: Chapt 26 (up to Section 26.2) in CLR.

All-Pairs Shortest Paths: Last time we showed how to compute shortest paths starting at a designated
source vertex, and assuming that there are no weights on the edges. Today we talk about a consid-
erable generalization of this problem. First, we compute shortest paths not from a single vertex, but
from every vertex in the graph. Second, we allow edges in the graph to have numericweights.

Let G = (V,E) be a directed graph with edge weights. If(u, v) E, is an edge ofG, then the weight of
this edge is denotedW (u, v). Intuitively, this weight denotes the distance of the road fromu to v, or
more generally the cost of traveling fromu to v. For now, let us think of the weights as being positive
values, but we will see that the algorithm that we are about to present can handle negative weights as
well, in special cases. Intuitively a negative weight means that you get paid for traveling fromu to v.
Given a pathπ = 〈u0, u1, . . . , uk〉, thecostof this path is the sum of the edge weights:

cost(π) = W (u0, u1) + W (u1, u2) + · · ·W (uk−1, uk) =
k∑

i=1

W (ui−1, ui).

(We will avoid using the termlength, since it can be confused with the number of edges on the path.)
Thedistancebetween two vertices is the cost of the minimum cost path between them.

We consider the problem of determining the cost of the shortest path between all pairs of vertices
in a weighted directed graph. We will present two algorithms for this problem. The first is a rather
naiveΘ(n4) algorithm, and the second is aΘ(n3) algorithm. The latter is called theFloyd-Warshall
algorithm. Both algorithms is based on a completely different algorithm design technique, called
dynamic programming.

For these algorithms, we will assume that the digraph is represented as an adjacency matrix, rather than
the more common adjacency list. Recall that adjacency lists are generally more efficient for sparse
graphs (and large graphs tend to be sparse). However, storing all the distance information between
each pair of vertices, will quickly yield a dense digraph (since typically almost every vertex can reach
almost every other vertex). Therefore, since the output will be dense, there is no real harm in using the
adjacency matrix.

Because both algorithms are matrix-based, we will employ common matrix notation, usingi, j andk
to denote vertices rather thanu, v, andw as we usually do. LetG = (V,E,w) denote the input digraph
and its edge weight function. The edge weights may be positive, zero, or negative, but we assume that

69

