
Lecture Notes CMSC 251

0

1

22

3

1

t

u w

xv

s

Figure 27: BFS tree.

For an directed graph the analysis is essentially the same.

Lecture 23: All-Pairs Shortest Paths

(Tuesday, April 21, 1998)
Read: Chapt 26 (up to Section 26.2) in CLR.

All-Pairs Shortest Paths: Last time we showed how to compute shortest paths starting at a designated
source vertex, and assuming that there are no weights on the edges. Today we talk about a consid-
erable generalization of this problem. First, we compute shortest paths not from a single vertex, but
from every vertex in the graph. Second, we allow edges in the graph to have numericweights.

Let G = (V,E) be a directed graph with edge weights. If(u, v) E, is an edge ofG, then the weight of
this edge is denotedW (u, v). Intuitively, this weight denotes the distance of the road fromu to v, or
more generally the cost of traveling fromu to v. For now, let us think of the weights as being positive
values, but we will see that the algorithm that we are about to present can handle negative weights as
well, in special cases. Intuitively a negative weight means that you get paid for traveling fromu to v.
Given a pathπ = 〈u0, u1, . . . , uk〉, thecostof this path is the sum of the edge weights:

cost(π) = W (u0, u1) + W (u1, u2) + · · ·W (uk−1, uk) =
k∑

i=1

W (ui−1, ui).

(We will avoid using the termlength, since it can be confused with the number of edges on the path.)
Thedistancebetween two vertices is the cost of the minimum cost path between them.

We consider the problem of determining the cost of the shortest path between all pairs of vertices
in a weighted directed graph. We will present two algorithms for this problem. The first is a rather
naiveΘ(n4) algorithm, and the second is aΘ(n3) algorithm. The latter is called theFloyd-Warshall
algorithm. Both algorithms is based on a completely different algorithm design technique, called
dynamic programming.

For these algorithms, we will assume that the digraph is represented as an adjacency matrix, rather than
the more common adjacency list. Recall that adjacency lists are generally more efficient for sparse
graphs (and large graphs tend to be sparse). However, storing all the distance information between
each pair of vertices, will quickly yield a dense digraph (since typically almost every vertex can reach
almost every other vertex). Therefore, since the output will be dense, there is no real harm in using the
adjacency matrix.

Because both algorithms are matrix-based, we will employ common matrix notation, usingi, j andk
to denote vertices rather thanu, v, andw as we usually do. LetG = (V,E,w) denote the input digraph
and its edge weight function. The edge weights may be positive, zero, or negative, but we assume that

69

Lecture Notes CMSC 251

there are no cycles whose total weight is negative. It is easy to see why this causes problems. If the
shortest path ever enters such a cycle, it would never exit. Why? Because by going round the cycle
over and over, the cost will become smaller and smaller. Thus, the shortest path would have a weight
of−∞, and would consist of an infinite number of edges. Disallowing negative weight cycles will rule
out the possibility this absurd situation.

Input Format: The input is ann×n matrixW of edge weights, which are based on the edge weights in the
digraph. We letwij denote the entry in rowi and columnj of W .

wij =




0 if i = j,
W (i, j) if i 6= j and(i, j) ∈ E,
+∞ if i 6= j and(i, j) /∈ E.

Settingwij = ∞ if there is no edge, intuitively means that there is no direct link between these two
nodes, and hence the direct cost is infinite. The reason for settingwii = 0 is that intuitively the cost
of getting from any vertex to should be 0, since we have no distance to travel. Note that in digraphs
it is possible to have self-loop edges, and soW (i, j) may generally be nonzero. Notice that it cannot
be negative (otherwise we would have a negative cost cycle consisting of this single edge). If it is
positive, then it never does us any good to follow this edge (since it increases our cost and doesn’t take
us anywhere new).

The output will be ann × n distance matrixD = dij wheredij = δ(i, j), the shortest path cost from
vertex i to j. Recovering the shortest paths will also be an issue. To help us do this, we will also
compute an auxiliary matrixpred [i, j]. The value ofpred [i, j] will be a vertex that is somewhere along
the shortest path fromi to j. If the shortest path travels directly fromi to j without passing through
any other vertices, thenpred [i, j] will be set tonull. We will see later than using these values it will be
possible to reconstruct any shortest path inΘ(n) time.

Dynamic Programming for Shortest Paths: The algorithm is based on a technique calleddynamic pro-
gramming. Dynamic programming problems are typically optimization problems (find the smallest or
largest solution, subject to various constraints). The technique is related to divide-and-conquer, in the
sense that it breaks problems down into smaller problems that it solves recursively. However, because
of the somewhat different nature of dynamic programming problems, standard divide-and-conquer
solutions are not usually efficient. The basic elements that characterize a dynamic programming algo-
rithm are:

Substructure: Decompose the problem into smaller subproblems.

Optimal substructure: Each of the subproblems should be solved optimally.

Bottom-up computation: Combine solutions on small subproblems to solve larger subproblems, and
eventually to arrive at a solution to the complete problem.

The question is how to decompose the shortest path problem into subproblems in a meaningful way.
There is one very natural way to do this. What is remarkable, is that this doesnot lead to the best solu-
tion. First we will introduce the natural decomposition, and later present the Floyd-Warshall algorithm
makes use of a different, but more efficient dynamic programming formulation.

Path Length Formulation: We will concentrate just on computing thecostof the shortest path, not the path
itself. Let us first sketch the natural way to break the problem into subproblems. We want to find some
parameter, which constrains the estimates to the shortest path costs. At first the estimates will be crude.
As this parameter grows, the shortest paths cost estimates should converge to their correct values. A
natural way to do this is to restrict the number of edges that are allowed to be in the shortest path.

For 0 ≤ m ≤ n − 1, defined
(m)
ij to be the cost of the shortest path from vertexi to vertexj that

contains at mostm edges. LetD(m) denote the matrix whose entries are these values. The idea is to

70

Lecture Notes CMSC 251

computeD(0) thenD(1), and so on, up toD(n−1). Since we know that no shortest path can use more
thann − 1 edges (for otherwise it would have to repeat a vertex), we know thatD(n−1) is the final
distance matrix. This is illustrated in the figure (a) below.

d = 9
(2)

1,3d = 4
(3)

4

9

2

1

1

4

d = INF

1,3

(1)
1,3 (no path)

(using: 1,2,3)

(unsing: 1,4,2,3)

(a) (b)

2
8

 i

 j

k

(m−1)

(m−1)

kjw

d

d

ik

ij

1

3

Figure 28: Dynamic Programming Formulation.

The question is, how do we compute these distance matrices? As a basis, we could start with paths of
containing 0 edges,D(0) (as our text does). However, observe thatD(1) = W , since the edges of the
digraph are just paths of length 1. It is just as easy to start withD(1), since we are givenW as input.
So as our basis case we have

d
(1)
ij = wij .

Now, to make the induction go, we claim that it is possible to computeD(m) from D(m−1), for m ≥ 2.
Consider how to compute the quantityd

(m)
ij . This is the length of the shortest path fromi to j using at

mostm edges. There are two cases:

Case 1: If the shortest path uses strictly fewer thanm edges, then its cost is justd
(m−1)
ij .

Case 2: If the shortest path uses exactlym edges, then the path usesm − 1 edges to go fromi to
some vertexk, and then follows a single edge(k, j) of weightwkj to get toj. The path from
i to k should be shortest (by the principle of optimality) so the length of the resulting path is
d
(m−1)
ik + wij . But we do not know whatk is. So we minimize over all possible choices.

This is illustrated in the figure (b) above.

This suggests the following rule:

d
(m)
ij = min

{
d
(m−1)
ij

min1≤k≤n

(
d
(m−1)
ik + wkj

) } .

Notice that the two terms of the main min correspond to the two cases. In the second case, we consider
all verticesk, and consider the length of the shortest path fromi to k, usingm− 1 edges, and then the
single edge length cost fromk to j.

We can simplify this formula a bit by observing that sincewjj = 0, we haved(m−1)
ij = d

(m−1)
ij + wjj .

This term occurs in the second case (whenk = j). Thus, the first term is redundant. This gives

d
(m)
ij = min

1≤k≤n

(
d
(m−1)
ik + wkj

)
,

The next question is how shall we implement this rule. One way would be to write a recursive procedure
to do it. Here is a possible implementation. To compute the shortest path fromi to j, the initial call
would beDist(n− 1, i, j). The array of weights

71

Lecture Notes CMSC 251

Recursive Shortest Paths

Dist(int m, int i, int j) {
if (m == 1) return W[i,j] // single edge case
best = INF
for k = 1 to n do

best = min(best, Dist(m-1, i, k) + w[k,j]) // apply the update rule
return best

}

Unfortunately this will bevery slow. LetT (m,n) be the running time of this algorithm on a graph with
n vertices, where the first argument ism. The algorithm makesn calls to itself with the first argument
of m− 1. Whenm = 1, the recursion bottoms out, and we haveT (1, n) = 1. Otherwise, we maken
recursive calls toT (m− 1, n). This gives the recurrence:

T (m,n) =
{

1 if m = 1,
nT (m− 1, n) + 1 otherwise.

The total running time isT (n− 1, n). It is a straightforward to solve this by expansion. The result will
beO(nn), a huge value. It is not hard to see why. If you unravel the recursion, you will see that this
algorithm is just blindly trying all possible paths fromi to j. There are exponentially many such paths.

So how do we make this faster? The answer is to usetable-lookup. This is the key to dynamic
programming. Observe that there are onlyO(n3) different possible numbersd(m)

ij that we have to
compute. Once we compute one of these values, we will store it in a table. Then if we want this value
again, rather than recompute it, we will simply look its value up in the table.

The figure below gives an implementation of this idea. The main procedureShortestPath(n,w) is
given the number of verticesn and the matrix of edge weightsW . The matrixD(m) is stored asD[m],
for 1 ≤ m ≤ n− 1. For eachm, D[m] is a 2-dimensional matrix, implying thatD is a 3-dimensional
matrix. We initializeD(1) by copyingW . Then each call toExtendPaths() computesD(m) from
D(m−1), from the above formula.

Dynamic Program Shortest Paths

ShortestPath(int n, int W[1..n, 1..n]) {
array D[1..n-1][1..n, 1..n]
copy W to D[1] // initialize D[1]
for m = 2 to n-1 do

D[m] = ExtendPaths(n, D[m-1], W) // comput D[m] from D[m-1]
return D[n-1]

}

ExtendShortestPath(int n, int d[1..n, 1..n], int W[1..n, 1..n]) {
matrix dd[1..n, 1..n] = d[1..n, 1..n] // copy d to temp matrix
for i = 1 to n do // start from i

for j = 1 to n do // ...to j
for k = 1 to n do // ...passing through k

dd[i,j] = min(dd[i,j], d[i,k] + W[k,j])
return dd // return matrix of distances

}

The procedureExtendShortestPath() consists of 3 nested loops, and so its running time isΘ(n3). It
is calledn− 2 times by the main procedure, and so the total running time isΘ(n4). Next time we will
see that we can improve on this. This is illustrated in the figure below.

72

Lecture Notes CMSC 251

1

5
4

1

4

3

2

1

4 12 0 5
5 0 1 ?
0 3 9 1

(2)
D =

3
4

7

5 7

2 3

1

5
4

1

4

3

3

(1)

13

7 2 3 0
4 7 0 5

6

? 2 9 0
4 ? 0 ?
? 0 1 ?
0 8 ? 1

? = infinity

W =

9 1

2

4 81

4

3

2

1

13 2 3 0
3

9
5 12

2
2

1

5 0 1 6
0 3 4 1

(3)
D =

= D

Figure 29: Shortest Path Example.

Lecture 24: Floyd-Warshall Algorithm

(Thursday, April 23, 1998)
Read: Chapt 26 (up to Section 26.2) in CLR.

Floyd-Warshall Algorithm: We continue discussion of computing shortest paths between all pairs of ver-
tices in a directed graph. The Floyd-Warshall algorithm dates back to the early 60’s. Warshall was
interested in the weaker question of reachability: determine for each pair of verticesu andv, whether
u can reachv. Floyd realized that the same technique could be used to compute shortest paths with
only minor variations.

The Floyd-Warshall algorithm improves upon this algorithm, running inΘ(n3) time. The genius of the
Floyd-Warshall algorithm is in finding a different formulation for the shortest path subproblem than
the path length formulation introduced earlier. At first the formulation may seem most unnatural, but
it leads to a faster algorithm. As before, we will compute a set of matrices whose entries ared

(k)
ij . We

will change themeaningof each of these entries.

For a pathp = 〈v1, v2, . . . , v`〉 we say that the verticesv2, v3, . . . , v`−1 are theintermediate vertices

of this path. Note that a path consisting of a single edge has no intermediate vertices. We defined
(k)
ij

to be the shortest path fromi to j such that any intermediate vertices on the path are chosen from the
set{1, 2, . . . , k}. In other words, we consider a path fromi to j which either consists of the single
edge(i, j), or it visits some intermediate vertices along the way, but these intermediate can only be
chosen from{1, 2, . . . , k}. The path is free to visit any subset of these vertices, and to do so in any
order. Thus, the difference between Floyd’s formulation and the previous formulation is that here
the superscript(k) restricts the set of vertices that the path is allowed to pass through, and there the
superscript(m) restricts the number of edges the path is allowed to use. For example, in the digraph

shown in the following figure, notice how the value ofd
(k)
32 changes ask varies.

Floyd-Warshall Update Rule: How do we computed(k)
ij assuming that we have already computed the pre-

vious matrixd(k−1)? As before, there are two basic cases, depending on the ways that we might get
from vertexi to vertexj, assuming that the intermediate vertices are chosen from{1, 2, . . . , k}:

73

