
Lecture Notes CMSC 251

Lecture 25: Longest Common Subsequence

(April 28, 1998)
Read: Section 16.3 in CLR.

Strings: One important area of algorithm design is the study of algorithms for character strings. There are
a number of important problems here. Among the most important has to do with efficiently searching
for a substring or generally a pattern in large piece of text. (This is what text editors and functions
like ”grep” do when you perform a search.) In many instances you do not want to find a piece of text
exactly, but rather something that is ”similar”. This arises for example in genetics research. Genetic
codes are stored as long DNA molecules. The DNA strands can be broken down into a long sequences
each of which is one of four basic types: C, G, T, A.

But exact matches rarely occur in biology because of small changes in DNA replication. Exact sub-
string search will only find exact matches. For this reason, it is of interest to compute similarities
between strings that do not match exactly. The method of string similarities should be insensitive to
random insertions and deletions of characters from some originating string. There are a number of
measures of similarity in strings. The first is theedit distance, that is, the minimum number of single
character insertions, deletions, or transpositions necessary to convert one string into another. The other,
which we will study today, is that of determining the length of the longest common subsequence.

Longest Common Subsequence:Let us think of character strings as sequences of characters. Given two
sequencesX = 〈x1, x2, . . . , xm〉 andZ = 〈z1, z2, . . . , zk〉, we say thatZ is a subsequenceof X if
there is a strictly increasing sequence ofk indices〈i1, i2, . . . , ik〉 (1 ≤ i1 < i2 < . . . < ik ≤ n) such
thatZ = 〈Xi1 , Xi2 , . . . , Xik

〉. For example, letX = 〈ABRACADABRA〉 and letZ = 〈AADAA〉,
thenZ is a subsequence ofX.

Given two stringsX andY , the longest common subsequenceof X andY is a longest sequenceZ
which is both a subsequence ofX andY .

For example, letX be as before and letY = 〈YABBADABBADOO〉. Then the longest common
subsequence isZ = 〈ABADABA〉.
The Longest Common Subsequence Problem (LCS) is the following. Given two sequencesX =
〈x1, . . . , xm〉 andY = 〈y1, . . . , yn〉 determine a longest common subsequence. Note that it is not
always unique. For example the LCS of〈ABC〉 and〈BAC〉 is either〈AC〉 or 〈BC〉.

Dynamic Programming Solution: The simple brute-force solution to the problem would be to try all pos-
sible subsequences from one string, and search for matches in the other string, but this is hopelessly
inefficient, since there are an exponential number of possible subsequences.

Instead, we will derive a dynamic programming solution. In typical DP fashion, we need to break the
problem into smaller pieces. There are many ways to do this for strings, but it turns out for this problem
that considering all pairs ofprefixeswill suffice for us. Aprefixof a sequence is just an initial string of
values,Xi = 〈x1, x2, . . . , xi〉. X0 is the empty sequence.

The idea will be to compute the longest common subsequence for every possible pair of prefixes. Let
c[i, j] denote the length of the longest common subsequence ofXi andYj . Eventually we are interested
in c[m,n] since this will be the LCS of the two entire strings. The idea is to computec[i, j] assuming
that we already know the values ofc[i′, j′] for i′ ≤ i andj′ ≤ j (but not both equal). We begin with
some observations.

Basis: c[i, 0] = c[j, 0] = 0. If either sequence is empty, then the longest common subsequence is
empty.
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Last characters match: Supposexi = yj . Example: LetXi = 〈ABCA〉 and letYj = 〈DACA〉.
Since both end inA, we claim that the LCS must also end inA. (We will explain why later.)
Since theA is part of the LCS we may find the overall LCS by removingA from both sequences
and taking the LCS ofXi−1 = 〈ABC〉 andYj−1 = 〈DAC〉 which is〈AC〉 and then addingA
to the end, giving〈ACA〉 as the answer. (At first you might object: But how did you know that
these twoA’s matched with each other. The answer is that we don’t, but it will not make the LCS
any smaller if we do.)

Thus, ifxi = yj thenc[i, j] = c[i− 1, j − 1] + 1.

Last characters do not match: Suppose thatxi 6= yj . In this casexi andyj cannot both be in the
LCS (since they would have to be the last character of the LCS). Thus eitherxi is not part of the
LCS, oryj is notpart of the LCS (and possiblybothare not part of the LCS).

In the first case the LCS ofXi andYj is the LCS ofXi−1 andYj , which isc[i − 1, j]. In the
second case the LCS is the LCS ofXi andYj−1 which isc[i, j − 1]. We do not know which is
the case, so we try both and take the one that gives us the longer LCS.

Thus, ifxi 6= yj thenc[i, j] = max(c[i− 1, j], c[i, j − 1]).

We left undone the business of showing that if both strings end in the same character, then the LCS
must also end in this same character. To see this, suppose by contradiction that both characters end in
A, and further suppose that the LCS ended in a different characterB. BecauseA is the last character
of both strings, it follows that this particular instance of the characterA cannot be used anywhere else
in the LCS. Thus, we can add it to the end of the LCS, creating a longer common subsequence. But
this would contradict the definition of the LCS as being longest.

Combining these observations we have the following rule:

c[i, j] =




0 if i = 0 or j = 0,
c[i− 1, j − 1] + 1 if i, j > 0 andxi = yj ,
max(c[i, j − 1], c[i− 1, j]) if i, j > 0 andxi 6= yj .

Implementing the Rule: The task now is to simply implement this rule. As with other DP solutions, we
concentrate on computing the maximum length. We will store some helpful pointers in a parallel array,
b[0..m, 0..n].

Longest Common Subsequence

LCS(char x[1..m], char y[1..n]) {
int c[0..m, 0..n]
for i = 0 to m do {

c[i,0] = 0 b[i,0] = SKIPX // initialize column 0
}
for j = 0 to n do {

c[0,j] = 0 b[0,j] = SKIPY // initialize row 0
}
for i = 1 to m do {

for j = 1 to n do {
if (x[i] == y[j]) {

c[i,j] = c[i-1,j-1]+1 // take X[i] and Y[j] for LCS
b[i,j] = ADDXY

}
else if (c[i-1,j] >= c[i,j-1]) { // X[i] not in LCS

c[i,j] = c[i-1,j]
b[i,j] = SKIPX

}
else { // Y[j] not in LCS
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c[i,j] = c[i,j-1]
b[i,j] = SKIPY

}
}

}
return c[m,n];

}

LCS Length Table with back pointers included
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Figure 32: Longest common subsequence example.

The running time of the algorithm is clearlyO(mn) since there are two nested loops withm andn
iterations, respectively. The algorithm also usesO(mn) space.

Extracting the Actual Sequence: Extracting the final LCS is done by using the back pointers stored in
b[0..m, 0..n]. Intuitively b[i, j] = ADDXY means thatX[i] andY [j] together form the last character
of the LCS. So we take this common character, and continue with entryb[i− 1, j − 1] to the northwest
(↖). If b[i, j] = SKIPX , then we know thatX[i] is not in the LCS, and so we skip it and go to
b[i − 1, j] above us (↑). Similarly, if b[i, j] = SKIPY , then we know thatY [j] is not in the LCS,
and so we skip it and go tob[i, j − 1] to the left (←). Following these back pointers, and outputting a
character with each diagonal move gives the final subsequence.

Print Subsequence

getLCS(char x[1..m], char y[1..n], int b[0..m,0..n]) {
LCS = empty string
i = m
j = n
while(i != 0 && j != 0) {

switch b[i,j] {
case ADDXY:

add x[i] (or equivalently y[j]) to front of LCS
i--; j--; break

case SKIPX:
i--; break

case SKIPY:
j--; break

}
}
return LCS

}
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