
Lecture Notes CMSC 251

Lecture 26: Chain Matrix Multiplication

(Thursday, April 30, 1998)
Read: Section 16.1 of CLR.

Chain Matrix Multiplication: This problem involves the question of determining the optimal sequence for
performing a series of operations. This general class of problem is important in compiler design for
code optimization and in databases for query optimization. We will study the problem in a very re-
stricted instance, where the dynamic programming issues are easiest to see.

Suppose that we wish to multiply a series of matrices

A1A2 . . . An

Matrix multiplication is an associative but not a commutative operation. This means that we are free to
parenthesize the above multiplication however we like, but we are not free to rearrange the order of the
matrices. Also recall that when two (nonsquare) matrices are being multiplied, there are restrictions on
the dimensions. Ap× q matrix hasp rows andq columns. You can multiply ap× q matrixA times a
q × r matrixB, and the result will be ap× r matrixC. (The number of columns ofA must equal the
number of rows ofB.) In particular for1 ≤ i ≤ p and1 ≤ j ≤ r,

C[i, j] =
q∑

k=1

A[i, k]B[k, j].

Observe that there arepr total entries inC and each takesO(q) time to compute, thus the total time
(e.g. number of multiplications) to multiply these two matrices isp · q · r.

B C

=

A

p

q

q

r
p

r

Multiplication
pqrtime = 

=*

Figure 33: Matrix Multiplication.

Note that although any legal parenthesization will lead to a valid result, not all involve the same number
of operations. Consider the case of 3 matrices:A1 be5× 4, A2 be4× 6 andA3 be6× 2.

mult[((A1A2)A3)] = (5 · 4 · 6) + (5 · 6 · 2) = 180,
mult[(A1(A2A3))] = (4 · 6 · 2) + (5 · 4 · 2) = 88.

Even for this small example, considerable savings can be achieved by reordering the evaluation se-
quence. The Chain Matrix Multiplication problem is: Given a sequence of matricesA1, A2, . . . , An

and dimensionsp0, p1, . . . , pn whereAi is of dimensionpi−1 × pi, determine the multiplication se-
quence that minimizes the number of operations.

Important Note: This algorithm does not perform the multiplications, it just figures out the best order
in which to perform the multiplications.

79



Lecture Notes CMSC 251

Naive Algorithm: We could write a procedure which tries all possible parenthesizations. Unfortunately, the
number of ways of parenthesizing an expression is very large. If you have just one item, then there is
only one way to parenthesize. If you haven items, then there aren− 1 places where you could break
the list with the outermost pair of parentheses, namely just after the 1st item, just after the 2nd item,
etc., and just after the(n − 1)st item. When we split just after thekth item, we create two sublists to
be parenthesized, one withk items, and the other withn − k items. Then we could consider all the
ways of parenthesizing these. Since these are independent choices, if there areL ways to parenthesize
the left sublist andR ways to parenthesize the right sublist, then the total isL · R. This suggests the
following recurrence forP (n), the number of different ways of parenthesizingn items:

P (n) =
{

1 if n = 1,∑n−1
k=1 P (k)P (n− k) if n ≥ 2.

This is related to a famous function in combinatorics called theCatalan numbers(which in turn is
related to the number of different binary trees onn nodes). In particularP (n) = C(n− 1) and

C(n) =
1

n + 1

(
2n

n

)
.

Applying Stirling’s formula, we find thatC(n) ∈ Ω(4n/n3/2). Since4n is exponential andn3/2 is just
polynomial, the exponential will dominate, and this grows very fast. Thus, this will not be practical
except for very smalln.

Dynamic Programming Solution: This problem, like other dynamic programming problems involves de-
termining a structure (in this case, a parenthesization). We want to break the problem into subproblems,
whose solutions can be combined to solve the global problem.

For convenience we can writeAi..j to be the product of matricesi throughj. It is easy to see that
Ai..j is a pi−1 × pj matrix. In parenthesizing the expression, we can consider the highest level of
parenthesization. At this level we are simply multiplying two matrices together. That is, for anyk,
1 ≤ k ≤ n− 1,

A1..n = A1..kAk+1..n.

Thus the problem of determining the optimal sequence of multiplications is broken up into 2 questions:
how do we decide where to split the chain (what isk?) and how do we parenthesize the subchains
A1..k andAk+1..n? The subchain problems can be solved by recursively applying the same scheme.
The former problem can be solved by just considering all possible values ofk. Notice that this problem
satisfies the principle of optimality, because if we want to find the optimal sequence for multiplying
A1..n we must use the optimal sequences forA1..k andAk+1..n. In other words, the subproblems must
be solved optimally for the global problem to be solved optimally.

We will store the solutions to the subproblems in a table, and build the table in a bottom-up manner.
For 1 ≤ i ≤ j ≤ n, let m[i, j] denote the minimum number of multiplications needed to compute
Ai..j . The optimum cost can be described by the following recursive definition. As a basis observe that
if i = j then the sequence contains only one matrix, and so the cost is 0. (There is nothing to multiply.)
Thus,m[i, i] = 0. If i < j, then we are asking about the productAi..j . This can be split by considering
eachk, i ≤ k < j, asAi..k timesAk+1..j .

The optimum time to computeAi..k is m[i, k], and the optimum time to computeAk+1..j is m[k+1, j].
We may assume that these values have been computed previously and stored in our array. SinceAi..k

is api−1 × pk matrix, andAk+1..j is apk × pj matrix, the time to multiply them ispi−1 · pk · pj . This
suggests the following recursive rule for computingm[i, j].

m[i, i] = 0
m[i, j] = min

i≤k<j
(m[i, k] + m[k + 1, j] + pi−1pkpj) for i < j.

80



Lecture Notes CMSC 251

It is not hard to convert this rule into a procedure, which is given below. The only tricky part is arranging
the order in which to compute the values. In the process of computingm[i, j] we will need to access
valuesm[i, k] andm[k+1, j] for k lying betweeni andj. This suggests that we should organize things
our computation according to the number of matrices in the subchain. LetL = j − i + 1 denote the
length of the subchain being multiplied. The subchains of length 1 (m[i, i]) are trivial. Then we build
up by computing the subchains of lengths2, 3, . . . , n. The final answer ism[1, n]. We need to be a
little careful in setting up the loops. If a subchain of lengthL starts at positioni, thenj = i + L − 1.
Since we wantj ≤ n, this means thati + L − 1 ≤ n, or in other words,i ≤ n − L + 1. So our loop
for i runs from 1 ton− L + 1 (to keepj in bounds).

Chain Matrix Multiplication

Matrix-Chain(array p[1..n], int n) {
array s[1..n-1,2..n]
for i = 1 to n do m[i,i] = 0 // initialize
for L = 2 to n do { // L = length of subchain

for i = 1 to n-L+1 do {
j = i + L - 1
m[i,j] = INFINITY
for k = i to j-1 do {

q = m[i, k] + m[k+1, j] + p[i-1]*p[k]*p[j]
if (q < m[i, j]) { m[i,j] = q; s[i,j] = k }

}
}

}
return m[1,n] and s

}

The arrays[i, j] will be explained later. It is used to extract the actual sequence. The running time of
the procedure isΘ(n3). We’ll leave this as an exercise in solving sums, but the key is that there are
three nested loops, and each can iterate at mostn times.

Extracting the final Sequence: To extract the actual sequence is a fairly easy extension. The basic idea is
to leave asplit markerindicating what the best split is, that is, what value ofk lead to the minimum
value ofm[i, j]. We can maintain a parallel arrays[i, j] in which we will store the value ofk providing
the optimal split. For example, suppose thats[i, j] = k. This tells us that the best way to multiply
the subchainAi..j is to first multiply the subchainAi..k and then multiply the subchainAk+1..j , and
finally multiply these together. Intuitively,s[i, j] tells us what multiplication to performlast. Note that
we only need to stores[i, j] when we have at least two matrices, that is, ifj > i.

The actual multiplication algorithm uses thes[i, j] value to determine how to split the current sequence.
Assume that the matrices are stored in an array of matricesA[1..n], and thats[i, j] is global to this
recursive procedure. The procedure returns a matrix.

Extracting Optimum Sequence

Mult(i, j) {
if (i > j) {

k = s[i,j]
X = Mult(i, k) // X = A[i]...A[k]
Y = Mult(k+1, j) // Y = A[k+1]...A[j]
return X*Y; // multiply matrices X and Y

}
else

return A[i];
}

81



Lecture Notes CMSC 251

i

0

j

7264

1

2

3

4 1

2

3

4

0p 4p3p2p1p

m[i,j]

5

158

88

120 48

104

84

000

Final order

3

4A3A2A1A

4A3A2A1A

2

3

2

1

1
3

31

321

s[i,j]

ij
2

3

4

Figure 34: Chain Matrix Multiplication.

In the figure below we show an example. This algorithm is tricky, so it would be a good idea to trace
through this example (and the one given in the text). The initial set of dimensions are〈5, 4, 6, 2, 7〉
meaning that we are multiplyingA1 (5× 4) timesA2 (4× 6) timesA3 (6× 2) timesA4 (2× 7). The
optimal sequence is((A1(A2A3))A4).

Lecture 27: NP-Completeness: General Introduction

(Tuesday, May 5, 1998)
Read: Chapt 36, up through section 36.4.

Easy and Hard Problems: At this point of the semester hopefully you have learned a few things of what
it means for an algorithm to be efficient, and how to design algorithms and determine their efficiency
asymptotically. All of this is fine if it helps you discover an acceptably efficient algorithm to solve
your problem. The question that often arises in practice is that you have tried every trick in the book,
and still your best algorithm is not fast enough. Although your algorithm can solve small problems
reasonably efficiently (e.g.n ≤ 20) the really large applications that you want to solve (e.g.n ≥ 100)
your algorithm does not terminate quickly enough. When you analyze its running time, you realize that
it is running inexponential time, perhapsn

√
n, or 2n, or 2(2n), or n!, or worse.

Towards the end of the 60’s and in the eary 70’s there were great strides made in finding efficient
solutions to many combinatorial problems. But at the same time there was also a growing list of
problems for which there seemed to be no known efficient algorithmic solutions. The best solutions
known for these problems required exponential time. People began to wonder whether there was some
unknown paradigm that would lead to a solution to these problems, or perhaps some proof that these
problems are inherently hard to solve and no algorithmic solutions exist that run under exponential
time.

Around this time a remarkable discovery was made. It turns out that many of these “hard” problems
were interrelated in the sense that if you could solve any one of them in polynomial time, then you
could solve all of them in polynomial time. The next couple of lectures we will discuss some of these
problems and introduce the notion of P, NP, and NP-completeness.

Polynomial Time: We need some way to separate the class of efficiently solvable problems from ineffi-
ciently solvable problems. We will do this by considering problems that can be solved in polynomial
time.

82


