Lecture Notes CMSC 251

Final order

PR RRY

Po Py ) P3 P4

Figure 34: Chain Matrix Multiplication.

In the figure below we show an example. This algorithm is tricky, so it would be a good idea to trace
through this example (and the one given in the text). The initial set of dimensions,dre, 2, 7)
meaning that we are multiplying; (5 x 4) timesA; (4 x 6) timesAs (6 x 2) timesAy4 (2 x 7). The
optimal sequence i§ A1 (A3 A3))Ay).

Lecture 27: NP-Completeness: General Introduction

(Tuesday, May 5, 1998)
Read: Chapt 36, up through section 36.4.

Easy and Hard Problems: At this point of the semester hopefully you have learned a few things of what
it means for an algorithm to be efficient, and how to design algorithms and determine their efficiency
asymptotically. All of this is fine if it helps you discover an acceptably efficient algorithm to solve
your problem. The question that often arises in practice is that you have tried every trick in the book,
and still your best algorithm is not fast enough. Although your algorithm can solve small problems
reasonably efficiently (e.gr < 20) the really large applications that you want to solve (e.gz 100)
your algorithm does not terminate quickly enough. When you analyze its running time, you realize that
it is running inexponential timegperhaps: V", or 2™, or 2(2") orn!, or worse.

Towards the end of the 60’s and in the eary 70’s there were great strides made in finding efficient
solutions to many combinatorial problems. But at the same time there was also a growing list of
problems for which there seemed to be no known efficient algorithmic solutions. The best solutions
known for these problems required exponential time. People began to wonder whether there was some
unknown paradigm that would lead to a solution to these problems, or perhaps some proof that these
problems are inherently hard to solve and no algorithmic solutions exist that run under exponential
time.

Around this time a remarkable discovery was made. It turns out that many of these “hard” problems
were interrelated in the sense that if you could solve any one of them in polynomial time, then you
could solve all of them in polynomial time. The next couple of lectures we will discuss some of these
problems and introduce the notion of P, NP, and NP-completeness.

Polynomial Time: We need some way to separate the class of efficiently solvable problems from ineffi-
ciently solvable problems. We will do this by considering problems that can be solved in polynomial
time.

82



Lecture Notes CMSC 251

We have measured the running time of algorithms using worst-case complexity, as a funetjoheof

size of the input. We have defined input size variously for different problems, but the bottom line is the
number of bits (or bytes) that it takes to represent the input usingeaspnably efficient encodin(By

a reasonably efficient encoding, we assume that there is not some significantly shorter way of providing
the same information. For example, you could write numbers in unary nofatidi111; = 100, = 8

rather than binary, but that would be unacceptably inefficient.)

We have also assumed that operations on numbers can be performed in constant time. From now on,
we should be more careful and assume that arithmetic operations require at least as much time as there
are bits of precision in the numbers being stored.

Up until now all the algorithms we have seen have had the property that their worst-case running times
are bounded above by sorpelynomialin the input size;n. A polynomial time algorithmis any
algorithm that runs in timé(n*) wherek is some constant that is independent.of problem is said

to besolvable in polynomial tim# there is a polynomial time algorithm that solves it.

Some functions that do not “look” like polynomials but are. For example, a running tid¢rofog n)
does not look like a polynomial, but it is bounded above by a the polynaifiat), so it is considered
to be in polynomial time.

On the other hand, some functions that do “look” like polynomials are not. For example, a running time
of O(n*) is notconsidered in polynomial time ¥ is an input parameter that could vary as a function

of n. The important constraint is that the exponent in a polynomial function mustbesaanthat is
independent of.

Decision Problems: Many of the problems that we have discussed invapémizationof one form or
another: find the shortest path, find the minimum cost spanning tree, find the knapsack packing of
greatest value. For rather technical reasons, most NP-complete problems that we will discuss will be
phrased as decision problems. A problem is calldésion problenif its output is a simple “yes” or
“no” (or you may think of this as True/False, 0/1, accept/reject).

We will phrase many optimization problems in terms of decision problems. For example, rather than
asking, what is the minimum number of colors needed to color a graph, instead we would phrase this
as a decision problem: Given a gra@ghand an integek, is it possible to coloG with & colors. Of
course, if you could answer this decision problem, then you could determine the minimum number of
colors by trying all possible values &f(or if you were more clever, you would do a binary search on

k).

One historical artifact of NP-completeness is that problems are stated in telangoége-recognition
problems This is because the theory of NP-completeness grew out of automata and formal language
theory. We will not be taking this approach, but you should be aware that if you look in the book, it
will often describe NP-complete problems as languages.

Definition: DefineP to be the set of all decision problems that can be solved in polynomial time.

NP and Polynomial Time Verification: Before talking about the class of NP-complete problems, it is im-
portant to introduce the notion of a verification algorithm. Many language recognition problems that
may be very hard to solve, but they have the property that it is easgrify whether its answer is
correct.

Consider the following problem, called thumdirected Hamiltonian cycle proble(HC). Given an
undirected grapld7, doesG have a cycle that visits every vertex exactly once.

An interesting aspect of this problems is thfaithe graph did contain a Hamiltonian cycle, then
it would be easy for someone tnvinceyou that it did. They would simply say “the cycle is
(vs,v7,v1,...,013)". We could then inspect the graph, and check that this is indeed a legal cycle
and that it visits all the vertices of the graph exactly once. Thus, even though we know of no efficient

83



Lecture Notes CMSC 251

O—0O
Nonhamiltonian Hamiltonian

Figure 35: Undirected Hamiltonian cycle.

way tosolvethe Hamiltonian cycle problem, there is a very efficient wayedfy that a given graph is
Hamiltonian. The given cycle is calledcartificate This is some piece of information which allows us

to verify that a given string is in a language. If it is possible to verify the accuracy of a certificate for a
problem in polynomial time , we say that the problenpddynomial time verifiable

Note that not all languages have the property that they are easy to verify. For example, consider the
problem of determining whether a graph hasactly oneHamiltonian cycle. It would be easy for
someone to convince that it has at least one, but it is not clear what someone (no matter how smart)
would say to you to convince you that there is not another one.

Definition: DefineNP to be the set of all decision problems that can be verified by a polynomial time
algorithm.

Beware that polynomial time verification and polynomial time solvable are two very different concepts.
The Hamiltonian cycle problem is NP-complete, and so it is widely believed that there is no polynomial
time solution to the problem.

Why is the set called “NP” rather than “VP"? The original term NP stood for “nondeterministic polyno-
mial time”. This referred to a program running omandeterministic computéhat can make guesses.
Basically, such a computer could nondeterministically guess the value of certificate, and then verify
that the string is in the language in polynomial time. We have avoided introducing nondeterminism
here. It would be covered in a course on complexity theory or formal language theory.

Like P, NP is a set of languages based on some complexity measure (the complexity of verification).
Observe that RZE NP. In other words, if we can solve a problem in polynomial time, then we can
certainly verify that an answer is correct in polynomial time. (More formally, we do not even need to
see a certificate to solve the problem, we can solve it in polynomial time anyway).

However it is not known whether B NP. It seems unreasonable to think that this should be so. In
other words, just being able to verify that you have a correct solution does not help you in finding the
actual solution very much. Most experts believe that RP, but no one has a proof of this.

NP-Completeness:We will not give a formal definition of NP-completeness. (This is covered in the text,
and higher level courses such as 451). For now, think of the sBtPeftompleteproblems as the
“hardest” problems to solve in the entire class NP. There may be even harder problems to solve that are
not in the class NP. These are calldB-hardproblems.

One question is how can we the notion of “hardness” mathematically formal. This is where the concept
of a reduction comes in. We will describe this next.

Reductions: Before discussing reductions, let us first consider the following example. Suppose that there
are two problemsA and B. You know (or you strongly believe at least) that it is impossible to solve

84



Lecture Notes CMSC 251

NP-Complete NP-Hard
Harder

NP

P Easy

Figure 36: Relationship between P, NP, and NP-complete.

problemA in polynomial time. You want to prove th@& cannot be solved in polynomial time. How
would you do this?

We want to show that
(A¢P)= (B¢P).

To do this, we could prove the contrapositive,
(BeP)=(AecP).

In other words, to show thaB is not solvable in polynomial time, we will suppose that there is an
algorithm that solve®3 in polynomial time, and then derive a contradiction by showing thatn be
solved in polynomial time.

How do we do this? Suppose that we have a subroutine that can solve any instance of @#ablem
polynomial time. Then all we need to do is to show that we can use this subroutine to solve pAoblem
in polynomial time. Thus we have “reduced” problefto problemB.

It is important to note here that this supposed subroutine is rediyptasy We know (or strongly
believe) thatd cannot be solved in polynomial time, thus we are essentially proving that the subroutine
cannot exist, implying thaB cannot be solved in polynomial time.

Let us consider an example to make this clearer. It is a fact that the problem of determining whether an
undirected graph has a Hamiltonian cycle (UHC) is an NP-complete problem. Thus, there is no known
polynomial time algorithm, and in fact experts widely believe that no such polynomial time algorithm
exists.

Suppose your boss of yours tells you that he wants you to find a polynomial solution to a different
problem, namely the problem of finding a Hamiltonian cycle idirected graph(DHC). You think

about this for a few minutes, and you convince yourself that this is not a reasonable request. After all,
would allowing directions on the edges make this problem any easier? Suppose you and your boss both
agree that the UHC problem (for undirected graphs) is NP-complete, and so it would be unreasonable
for him to expect you to solve this problem. But he tells you that the directed version is easier. After
all, by adding directions to the edges you eliminate the ambiguity of which direction to travel along
each edge. Shouldn’t that make the problem easier? The problem is, how do you convince your boss
that he is making an unreasonable request (assuming your boss is willing to listen to logic).

You explain to your boss: “Suppose | could find an efficient (i.e., polynomial time) solution to the
DHC problem, then I'll show you that it would then be possible to solve UHC in polynomial time.” In
particular, you will use the efficient algorithm for DHC (which you still haven’t written) as a subroutine

to solve UHC. Since you both agree that UHC is not efficiently solvable, this means that this efficient
subroutine for DHC must not exist. Therefore your boss agrees that he has given you an unreasonable
task.

85



Lecture Notes CMSC 251

Here is how you might do this. Given an undirected gréphcreate a directed grapf’ by just
replacing each undirected ed@e, v} with two directed edgegu, v) and (v, «). Now, every simple
path in theG is a simple path iz, and vice versa. Therefor€&, has a Hamiltonian cycle if and only

if G’ does. Now, if you could develop an efficient solution to the DHC problem, you could use this
algorithm and this little transformation solve the UHC problem. Here is your algorithm for solving the
undirected Hamiltonian cycle problem. You take the undirected g@ptonvert it to an equivalent
directed grapltz’ (by edge-doubling), and then call your (supposed) algorithm for directed Hamiltonian

cycles. Whatever answer this algorithm gives, you return as the answer for the Hamiltonian cycle.
UHC to DHC Reduction

bool Undir_Ham_Cycle(graph G) {
create digraph G’ with the same number of vertices as G
for each edge {u,v} in G {
add edges (u,v) and (v,u) to G’
}
return Dir_Ham_Cycle(G’)

You would now have a polynomial time algorithm for UHC. Since you and your boss both agree that
this is not going to happen soon, he agrees to let you off.

Nonhamiltonian Hamiltonian

Figure 37: Directed Hamiltonian cycle reduction.

Notice that neither problem UHC or DHC has been solved. You have just shown how to convert a
solution to DHC into a solution for UHC. This is calledeductionand is central to NP-completeness.

Lecture 28: NP-Completeness and Reductions

(Thursday, May 7, 1998)
Read: Chapt 36, through Section 36.4.

Summary: Last time we introduced a number of concepts, on the way to defining NP-completeness. In
particular, the following concepts are important.

Decision Problems: are problems for which the answer is either “yes” or “no.” The classes P and NP
problems are defined as classes of decision problems.

P: is the class of all decisions problems that can be solved in polynomial time (th&ti%) for some
constant).

86



