
Lecture Notes CMSC 251

Here is how you might do this. Given an undirected graphG, create a directed graphG′ by just
replacing each undirected edge{u, v} with two directed edges,(u, v) and(v, u). Now, every simple
path in theG is a simple path inG′, and vice versa. Therefore,G has a Hamiltonian cycle if and only
if G′ does. Now, if you could develop an efficient solution to the DHC problem, you could use this
algorithm and this little transformation solve the UHC problem. Here is your algorithm for solving the
undirected Hamiltonian cycle problem. You take the undirected graphG, convert it to an equivalent
directed graphG′ (by edge-doubling), and then call your (supposed) algorithm for directed Hamiltonian
cycles. Whatever answer this algorithm gives, you return as the answer for the Hamiltonian cycle.

UHC to DHC Reduction

bool Undir_Ham_Cycle(graph G) {
create digraph G’ with the same number of vertices as G
for each edge {u,v} in G {

add edges (u,v) and (v,u) to G’
}
return Dir_Ham_Cycle(G’)

}

You would now have a polynomial time algorithm for UHC. Since you and your boss both agree that
this is not going to happen soon, he agrees to let you off.

Nonhamiltonian Hamiltonian

Figure 37: Directed Hamiltonian cycle reduction.

Notice that neither problem UHC or DHC has been solved. You have just shown how to convert a
solution to DHC into a solution for UHC. This is called areductionand is central to NP-completeness.

Lecture 28: NP-Completeness and Reductions

(Thursday, May 7, 1998)
Read: Chapt 36, through Section 36.4.

Summary: Last time we introduced a number of concepts, on the way to defining NP-completeness. In
particular, the following concepts are important.

Decision Problems: are problems for which the answer is either “yes” or “no.” The classes P and NP
problems are defined as classes of decision problems.

P: is the class of all decisions problems that can be solved in polynomial time (that is,O(nk) for some
constantk).

86



Lecture Notes CMSC 251

NP: is defined to be the class of all decision problems that can beverified in polynomial time. This
means that if the answer to the problem is “yes” then it is possible give some piece of information
that would allow someone to verify that this is the correct answer in polynomial time. (If the
answer is “no” then no such evidence need be given.)

Reductions: Last time we introduced the notion of a reduction. Given two problemsA andB, we say that
A is polynomially reducibleto B, if, given a polynomial time subroutine forB, we can use it to solve
A in polynomial time. (Note: This definition differs somewhat from the definition in the text, but it is
good enough for our purposes.) When this is so we will express this as

A ≤P B.

The operative word in the definition is “if”. We will usually apply the concept of reductions to problems
for which we strongly believe that there is no polynomial time solution.

Some important facts about reductions are:

Lemma: If A ≤P B andB ∈ P thenA ∈ P.

Lemma: If A ≤P B andA /∈ P thenB /∈ P.

Lemma: (Transitivity) If A ≤P B andB ≤P C thenA ≤P C.

The first lemma is obvious from the definition. To see the second lemma, observe thatB cannot be in
P, since otherwiseA would be in P by the first lemma, giving a contradiction. The third lemma takes a
bit of thought. It says that if you can use a subroutine forB to solveA in polynomial time, and you can
use a subroutine forC to solveB in polynomial time, then you can use the subroutine forC to solve
A in polynomial time. (This is done by replacing each call toB with its appropriate subroutine calls to
C).

NP-completeness:Last time we gave the informal definition that the NP-complete problems are the “hard-
est” problems in NP. Here is a more formal definition in terms of reducibility.

Definition: A decision problemB ∈ NP isNP-completeif

A ≤P B for all A ∈ NP.

In other words, if you could solveB in polynomial time, then every other problemA in NP would
be solvable in polynomial time.

We can use transitivity to simplify this.

Lemma: B is NP-complete if

(1) B ∈ NP and

(2) A ≤P B for some NP-complete problemA.

Thus, if you can solveB in polynomial time, then you could solveA in polynomial time. SinceA is
NP-complete, you could solve every problem in NP in polynomial time.

Example: 3-Coloring and Clique Cover: Let us consider an example to make this clearer. Consider the
following two graph problems.

3-coloring (3COL): Given a graphG, can each of its vertices be labeled with one of 3 different “col-
ors”, such that no two adjacent vertices have the same label.

Clique Cover (CC): Given a graphG and an integerk, can the vertices ofG be partitioned intok
subsets,V1, V2, . . . , Vk, such that

⋃
i Vi = V , and that eachVi is a clique ofG.

87



Lecture Notes CMSC 251

k=3

Clique cover3−colorable Not 3−colorable

Figure 38: 3-coloring and Clique Cover.

Recall that theclique is a subset of vertices, such that every pair of vertices in the subset are adjacent
to each other.

3COL is a known NP-complete problem. Your boss tells you that he wants you to solve the CC
problem. You suspect that the CC problem is also NP-complete. How do you prove this to your boss?

There are two things to be shown, first that the CC problem is in NP. We won’t worry about this, but it
is pretty easy. (In particular, to convince someone that a graph has a clique cover of sizek, just specify
what thek subsets are. Then it is an easy matter to verify that they form a clique cover.)

The second item is to show that a known NP-complete problem (we will choose 3COL) is polynomially
reducible to CC. To do this, you assume that you have access to a subroutineCliqueCover(G,
k) . Given a graphG and an integerk, this subroutine returns true ifG has a clique cover of sizek
and false otherwise, and furthermore, this subroutine runs in polynomial time. How can we use this
“alleged” subroutine to solve the well-known hard 3COL problem? We want to write a polynomial time
subroutine for 3COL, and this subroutine is allowed to call the subroutineCliqueCover(G,k) for
any graphG and any integerk.

Let’s see in what respect the two problems are similar. Both problems are dividing the vertices up into
groups. In the clique cover problem, for two vertices to be in the same group they must be adjacent to
each other. In the 3-coloring problem, for two vertices to be in the same color group, they must not be
adjacent. In some sense, the problems are almost the same, but the requirement adjacent/non-adjacent
is exactly reversed.

Recall that ifG is a graph, thenG is thecomplementgraph, that is, a graph with the same vertex set, but
in which edges and nonedge have been swapped. The main observation is that a graphG is 3-colorable,
if and only if its complementG, has a clique-cover of sizek = 3. We’ll leave the proof as an exercise.

Using this fact, we can reduce the the 3-coloring problem to the clique cover problem as follows.
Remember that this means that, if we had a polynomial time procedure for the clique cover problem
then we could use it as a subroutine to solve the 3-coloring problem Given the graph we want to
compute the 3-coloring for, we take its complement and then invoke the clique cover, settingk = 3.

3COL to CC Reduction

bool 3Colorable(graph G) {
let G’ = complement(G)
return CliqueCover(G’,3)

}

There are a few important things to observe here. First, we never needed to implement theClique-
Cover() procedure. Remember, these are all “what if” games. If we could solve CC in polynomial
time, then we could solve 3COL. But since we know that 3COL is hard to solve, this means that CC is
also hard to solve.

88



Lecture Notes CMSC 251

GG

k=3k=3G
_

G
_

3−colorable Not 3−colorable

Clique cover No clique cover

Figure 39: Clique covers in the complement.

A second thing to observe that is the direction of the reduction. In normal reductions, you reduce the
problem that you do not know how to solve to one that you do know how to solve. But in NP-complete,
we do not know how to solve either problem (and indeed we are trying to show that an efficient solution
does not exist). Thus the direction of the reduction is naturally backwards. You reduce the known
problem to the problem you want to show is NP-complete. Remember this! It is quite counterintuitive.

Remember: Always reduce the known NP-complete problem to the problem you want to prove
is NP-complete.

The final thing to observe is that the reduction really didn’t attempt to solve the problem at all. It just
tried to make one problem look more like the other problem. A reductionist might go so far as to say
that there really isonly oneNP-complete problem. It has just been dressed up to look differently.

Example: Hamiltonian Path and Hamiltonian Cycle: Let’s consider another example. We have seen the
Hamiltonian Cycle (HC) problem (Given a graph, does it have a cycle that visits every vertex exactly
once?). Another variant is the Hamiltonian Path (HP) problem (Given a graph, does it have a simple
path that visits every vertex exactly once?)

Suppose that we know that the HC problem is NP-complete, and we want to show that the HP problem
is NP-complete. How would we do this. First, remember what we have to show, that a known NP-
complete problem is reducible to our problem. That is,HC ≤P HP. In other words, suppose that
we had a subroutine that could solve HP in polynomial time. How could we use it to solve HC in
polynomial time?

Here is a first attempt (that doesn’t work). First, if a graph has’t a Hamiltonian cycle, then it certainly
must have a Hamiltonian path (by simply deleting any edge on the cycle). So if we just invoke the
HamPath subroutine on the graph and it returns “no” then we can safely answer “no” for HamCycle.
However, if it answers “yes” then what can we say? Notice, that there are graphs that have Hamiltonian
path but no Hamiltonian cycle (as shown in the figure below). Thus this will not do the job.

Here is our second attempt (but this will also have a bug). The problem is that cycles and paths are
different things. We can convert a cycle to a path by deleting any edge on the cycle. Suppose that the

89



Lecture Notes CMSC 251

graphG has a Hamiltonian cycle. Then this cycle starts at some first vertexu then visits all the other
vertices until coming to some final vertexv, and then comes back tou. There must be an edge{u, v}
in the graph. Let’s delete this edge so that the Hamiltonian cycle is now a Hamiltonian path, and then
invoke the HP subroutine on the resulting graph. How do we know which edge to delete? We don’t so
we could try them all. Then if the HP algorithm says “yes” for any deleted edge we would say “yes”
as well.

However, there is a problem here as well. It was our intention that the Hamiltonian path start atu
and end atv. But when we call the HP subroutine, we have no way to enforce this condition. If HP
says “yes”, we do not know that the HP started withu and ended withv. We cannot look inside the
subroutine or modify the subroutine. (Remember, it doesn’t really exist.) We can only call it and check
its answer.

Correct ReductionSecond Attempt

Both HC and HP exist There is both HC and HP

First Attempt

v

u

No HC and no HPNo HC, but after deletingNo HC but

there is HP

u

v y

x

There is HC, and after

deleting {u,v} there is HP

{u,v} there is HP

x

v

u
u

v y

Figure 40: Hamiltonian cycle to Hamiltonian path attempts.

So is there a way to force the HP subroutine to start the path atu and end it atv? The answer is yes,
but we will need to modify the graph to make this happen. In addition to deleting the edge fromu to
v, we will add an extra vertexx attached only tou and an extra vertexy attached only tov. Because
these vertices have degree one, if a Hamiltonian path exists, it must start atx and end aty.

This last reduction is the one that works. Here is how it works. Given a graphG for which we want to
determine whether it has a Hamiltonian cycle, we go through all the edges one by one. For each edge
{u, v} (hoping that it will be the last edge on a Hamiltonian cycle) we create a new graph by deleting
this edge and adding vertexx ontou and vertexy ontov. Let the resulting graph be calledG′. Then
we invoke our Hamiltonian Path subroutine to see whetherG′ has a Hamiltonian path. If it does, then
it must start atx to u, and end withv to y (or vice versa). Then we know that the original graph had
a Hamiltonian cycle (starting atu and ending aty). If this fails for all edges, then we report that the
original graph has no Hamiltonian cycle.

90



Lecture Notes CMSC 251

HC to HP Reduction

bool HamCycle(graph G) {
for each edge {u,v} in G {

copy G to a new graph G’
delete edge {u,v} from G’
add new vertices x and y to G’
add new edges {x,u} and {y,v} to G’
if (HamPath(G’)) return true

}
return false // failed for every edge

}

This is a rather inefficient reduction, but it does work. In particular it makesO(e) calls to theHam-
Path() procedure. Can you see how to do it with fewer calls? (Hint: Consider applying this to the
edges coming out of just one vertex.) Can you see how to do it with only one call? (Hint: This is
trickier.)

As before, notice that we didn’t really attempt to solve either problem. We just tried to figure out how
to make a procedure for one problem (Hamiltonian path) work to solve another problem (Hamiltonian
cycle). Since HC is NP-complete, this means that there is not likely to be an efficient solution to HP
either.

Lecture 29: Final Review

(Tuesday, May 12, 1998)

Final exam: As mentioned before, the exam will be comprehensive, but it will stress material since the
second midterm exam. I would estimate that about 50–70% of the exam will cover material since the
last midterm, and the remainder will be comprehensive. The exam will be closed book/closed notes
with three sheets of notes (front and back).

Overview: This semester we have discussed general approaches to algorithm design. The goal of this course
is to improve your skills in designing good programs, especially on complex problems, where it is not
obvious how to design a good solution. Finding good computational solutions to problems involves
many skills. Here we have focused on the higher level aspects of the problem: what approaches to use
in designing good algorithms, how generate a rough sketch the efficiency of your algorithm (through
asymptotic analysis), how to focus on the essential mathematical aspects of the problem, and strip away
the complicating elements (such as data representations, I/O, etc.)

Of course, to be a complete programmer, you need to be able to orchestrate all of these elements. The
main thrust of this course has only been on the initial stages of this design process. However, these are
important stages, because a poor initial design is much harder to fix later. Still, don’t stop with your
first solution to any problem. As we saw with sorting, there may be many ways of solving a problem.
Even algorithms that are asymptotically equivalent (such as MergeSort, HeapSort, and QuickSort) have
advantages over one another.

The intent of the course has been to investigate basic techniques for algorithm analysis, various algo-
rithm design paradigms: divide-and-conquer graph traversals, dynamic programming, etc. Finally we
have discussed a class of very hard problems to solve, called NP-complete problems, and how to show
that problems are in this class. Here is an overview of the topics that we covered this semester.

Tools of Algorithm Analysis:

91


