
Lecture Notes CMSC 251

HC to HP Reduction

bool HamCycle(graph G) {
for each edge {u,v} in G {

copy G to a new graph G’
delete edge {u,v} from G’
add new vertices x and y to G’
add new edges {x,u} and {y,v} to G’
if (HamPath(G’)) return true

}
return false // failed for every edge

}

This is a rather inefficient reduction, but it does work. In particular it makesO(e) calls to theHam-
Path() procedure. Can you see how to do it with fewer calls? (Hint: Consider applying this to the
edges coming out of just one vertex.) Can you see how to do it with only one call? (Hint: This is
trickier.)

As before, notice that we didn’t really attempt to solve either problem. We just tried to figure out how
to make a procedure for one problem (Hamiltonian path) work to solve another problem (Hamiltonian
cycle). Since HC is NP-complete, this means that there is not likely to be an efficient solution to HP
either.

Lecture 29: Final Review

(Tuesday, May 12, 1998)

Final exam: As mentioned before, the exam will be comprehensive, but it will stress material since the
second midterm exam. I would estimate that about 50–70% of the exam will cover material since the
last midterm, and the remainder will be comprehensive. The exam will be closed book/closed notes
with three sheets of notes (front and back).

Overview: This semester we have discussed general approaches to algorithm design. The goal of this course
is to improve your skills in designing good programs, especially on complex problems, where it is not
obvious how to design a good solution. Finding good computational solutions to problems involves
many skills. Here we have focused on the higher level aspects of the problem: what approaches to use
in designing good algorithms, how generate a rough sketch the efficiency of your algorithm (through
asymptotic analysis), how to focus on the essential mathematical aspects of the problem, and strip away
the complicating elements (such as data representations, I/O, etc.)

Of course, to be a complete programmer, you need to be able to orchestrate all of these elements. The
main thrust of this course has only been on the initial stages of this design process. However, these are
important stages, because a poor initial design is much harder to fix later. Still, don’t stop with your
first solution to any problem. As we saw with sorting, there may be many ways of solving a problem.
Even algorithms that are asymptotically equivalent (such as MergeSort, HeapSort, and QuickSort) have
advantages over one another.

The intent of the course has been to investigate basic techniques for algorithm analysis, various algo-
rithm design paradigms: divide-and-conquer graph traversals, dynamic programming, etc. Finally we
have discussed a class of very hard problems to solve, called NP-complete problems, and how to show
that problems are in this class. Here is an overview of the topics that we covered this semester.

Tools of Algorithm Analysis:

91



Lecture Notes CMSC 251

Asymptotics: O, Ω, Θ. General facts about growth rates of functions.
Summations: Analysis of looping programs, common summations, solving complex summa-

tions, integral approximation, constructive induction.
Recurrences: Analysis of recursive programs, strong induction, expansion, Master Theorem.

Sorting:

Mergesort: Stable,Θ(n log n) sorting algorithm.
Heapsort: Nonstable,Θ(n log n), in-place algorithm. A heap is an important data structure for

implementation of priority queues (a queue in which the highest priority item is dequeued
first).

Quicksort: Nonstable,Θ(n log n) expected case, (almost) in-place sorting algorithm. This is
regarded as the fastest of these sorting algorithms, primarily because of its pattern of locality
of reference.

Sorting lower bounds: Any sorting algorithm that is based on comparisons requiresΩ(n log n)
steps in the worst-case. The argument is based on a decision tree. Considering the number
of possible outcomes, and observe that they form the leaves of the decision tree. The height
of the decision tree isΩ(lg N), whereN is the number of leaves. In this case,N = n!, the
number of different permutations ofn keys.

Linear time sorting: If you are sorting small integers in the range from 1 tok, then you can
applying counting sort inΘ(n + k) time. If k is too large, then you can try breaking the
numbers up into smaller digits, and apply radix sort instead. Radix sort just applies counting
sort to each digit individually. If there ared digits, then its running time isΘ(d(n + k)),
wherek is the number of different values in each digit.

Graphs: We presented basic definitions of graphs and digraphs. A graph (digraph) consists of a set
of vertices and a set of undirected (directed) edges. Recall that the number of edges in a graph
can generally be as large asO(n2), but is often smaller (closer toO(n)). A graph issparseif the
number of edges iso(n2), and dense otherwise.
We discussed two representations:

Adjacency matrix: A[u, v] = 1 if (u, v) ∈ E. These are simple, but requireΘ(n2) storage.
Good for dense graphs.

Adjacency list: Adj [u] is a pointer to a linked list containing the neighbors ofu. These are better
for sparse graphs, since they only requireΘ(n + e) storage.

Breadth-first search: We discussed one graph algorithm:breadth first search. This is a way of
traversing the vertices of a graph in increasing order of distance from a source vertex. Recall
that it colors vertices (white, gray, black) to indicate their status in the search, and it also uses a
FIFO queue to determine which order it will visit the vertices. When we process the next vertex,
we simply visit (that is, enqueue) all of its unvisited neighbors. This runs inΘ(n + e) time. (If
the queue is replaced by a stack, then we get a different type of search algorithm, called depth-
first search.) We showed that breadth-first search could be used to compute shortest paths from a
single source vertex in an (unweighted) graph or digraph.

Dynamic Programming: Dynamic programming is an important design technique used in many op-
timization problems. Its basic elements are those of subdividing large complex problems into
smaller subproblems, solving subproblems in a bottom-up manner (going from smaller to larger).
An important idea in dynamic programming is that of the principal of optimality: For the global
problem to be solved optimally, the subproblems should be solved optimally. This is not always
the case (e.g., when there is dependence between the subproblems, it might be better to do worse
and one to get a big savings on the other).

Floyd-Warshall Algorithm: (Section 26.2) Shortest paths in a weighted digraph between all
pairs of vertices. This algorithm allows negative cost edges, provided that there are no neg-
ative cost cycles. We gave two algorithms. The first was based on a DP formulation of

92



Lecture Notes CMSC 251

building up paths based on the number of edges allowed (takingΘ(n4) time). The second
(the Floyd-Warshall algorithm) uses a DP formulation based on considering which vertices
you are allowed to pass through. It takesO(n3) time.

Longest Common Subsequence:(Section 16.3) Find the longest subsequence of common char-
acters between two character strings. We showed that the LCS of two sequences of lengths
n andm could be computed inΘ(nm).

Chain-Matrix Multiplication: (Section 16.1) Given a chain of matrices, determine the opti-
mum order in which to multiply them. This is an important problem, because many DP
formulations are based on deriving an optimum binary tree given a set of leaves.

NP-completeness:(Chapt 36.)

Basic concepts:Decision problems, polynomial time, the class P, certificates and the class NP,
polynomial time reductions, NP-completeness.

NP-completeness reductions:We showed that to prove that a problem is NP-complete you need
to show (1) that it is in NP (by showing that it is possible to verify correctness if the answer is
“yes”) and (2) show that some known NP-complete problem can be reduced to your problem.
Thus, if there was a polynomial time algorithm for your problem, then you could use it to
solve a known NP-complete problem in polynomial time.
We showed how to reduce 3-coloring to clique cover, and how to reduce Hamiltonian cycle
to Hamiltonian path.

93


