
Lecture Notes CMSC 251

In summary, there is no one way to solve a summation. However, there are many tricks that can be
applied to either find asymptotic approximations or to get the exact solution. The ultimate goal is to
come up with a close-form solution. This is not always easy or even possible, but for our purposes
asymptotic bounds will usually be good enough.

Lecture 4: 2-d Maxima Revisited and Asymptotics

(Thursday, Feb 5, 1998)
Read: Chapts. 2 and 3 in CLR.

2-dimensional Maxima Revisited: Recall the max-dominance problem from the previous lectures. A point
p is said todominated bypoint q if p.x ≤ q.x and p.y ≤ q.y. Given a set ofn points, P =
{p1, p2, . . . , pn} in 2-space a point is said to bemaximal if it is not dominated by any other point
in P . The problem is to output all the maximal points ofP .

So far we have introduced a simple brute-force algorithm that ran inΘ(n2) time, which operated by
comparing all pairs of points. The question we consider today is whether there is an approach that is
significantly better?

The problem with the brute-force algorithm is that uses no intelligence in pruning out decisions. For
example, once we know that a pointpi is dominated by another pointpj , then we we do not need to use
pi for eliminating other points. Any point thatpi dominates will also be dominated bypj . (This follows
from the fact that the domination relation istransitive, which can easily be verified.) This observation
by itself, does not lead to a significantly faster algorithm though. For example, if all the points are
maximal, which can certainly happen, then this optimization saves us nothing.

Plane-sweep Algorithm: The question is whether we can make an significant improvement in the running
time? Here is an idea for how we might do it. We will sweep a vertical line across the plane from left
to right. As we sweep this line, we will build a structure holding the maximal points lying to the left of
the sweep line. When the sweep line reaches the rightmost point ofP , then we will have constructed
the complete set of maxima. This approach of solving geometric problems by sweeping a line across
the plane is calledplane sweep.

Although we would like to think of this as a continuous process, we need some way to perform the
plane sweep in discrete steps. To do this, we will begin by sorting the points in increasing order of
theirx-coordinates. For simplicity, let us assume that no two points have the samey-coordinate. (This
limiting assumption is actually easy to overcome, but it is good to work with the simpler version, and
save the messy details for the actual implementation.) Then we will advance the sweep-line from point
to point inn discrete steps. As we encounter each new point, we will update the current list of maximal
points.

First off, how do we sort the points? We will leave this problem for later in the semester. But the
bottom line is that there exist any number of good sorting algorithms whose running time to sortn
values isΘ(n log n). We will just assume that they exist for now.

So the only remaining problem is, how do we store the existing maximal points, and how do we update
them when a new point is processed? We claim that as each new point is added, it must be maximal for
the current set. (Why? Beacuse itsx-coordinate is larger than all thex-coordinates of all the existing
points, and so it cannot be dominated by any of the existing points.) However, this new point may
dominate some of the existing maximal points, and so we may need to delete them from the list of
maxima. (Notice that once a point is deleted as being nonmaximal, it will never need to be added back
again.) Consider the figure below.

Let pi denote the current point being considered. Notice that since thepi has greaterx-coordinate
than all the existing points, it dominates an existing point if and only if itsy-coordinate is also larger

12



Lecture Notes CMSC 251

(b)

sweep linesweep line

(a)

42

(2,5)

(13,3)

(9,10)
(4,11)

(3,13)

(10,5)

(7,7) (15,7)

(14,10)

(12,12)

(5,1)

(4,4)

14

12

161412

10

8

6

4

2

1086 6

(2,5)

(13,3)

(9,10)
(4,11)

(3,13)

(10,5)

(7,7) (15,7)

(14,10)

(12,12)

8 10

2

4

6

8

10

12 14 16

12

14

(4,4)

(5,1)

42

Figure 3: Plane sweep algorithm for 2-d maxima.

(or equal). Thus, among the existing maximal points, we want to find those having smaller (or equal)
y-coordinate, and eliminate them.

At this point, we need to make an important observation about how maximal points are ordered with
respect to thex- andy-coordinates. As we read maximal points from left to right (in order of increasing
x-coordinates) they-coordinates appear in decreasing order. Why is this so? Suppose to the contrary,
that we had two maximal pointsp andq, with p.x ≥ q.x butp.y ≥ q.y. Then it would follow thatq is
dominated byp, and hence it is not maximal, a contradiction.

This is nice, because it implies that if we store the existing maximal points in a list, the points that
pi dominates (if any) will all appear at the end of this list. So we have to scan this list to find the
breakpoint between the maximal and dominated points. The question is how do we do this?

I claim that we can simply scan the list linearly. But we must do the scan in the proper direction for
the algorithm to be efficient. Which direction should we scan the list of current maxima? From left
to right, until finding the first point that is not dominated, or from right to left, until finding the first
point that is dominated? Stop here and think about it for a moment. If you can answer this question
correctly, then it says something about your intuition for designing efficient algorithms. Let us assume
that we are trying to optimize worst-case performance.

The correct answer is to scan the list from left to right. Here is why. If you only encounter one point
in the scan, then the scan will always be very efficient. The danger is that you may scan many points
before finding the proper breakpoint. If we scan the list from left to right, then every point that we
encounter whosey-coordinate is less thanpi’s will be dominated, and hence it will be eliminated from
the computation forever. We will never have to scan this point again. On the other hand, if we scan
from left to right, then in the worst case (consider when all the points are maximal) we may rescan the
same points over and over again. This will lead to anΘ(n2) algorithm

Now we can give the pseudocode for the final plane sweep algorithm. Since we add maximal points
onto the end of the list, and delete them from the end of the list, we can use a stack to store the maximal
points, where the top of the stack contains the point with the highestx-coordinate. LetS denote this
stack. The top element of the stack is denotedS.top. Popping the stack means removing the top
element.

Plane Sweep Maxima

Maxima2(int n, Point P[1..n]) {

13



Lecture Notes CMSC 251

Sort P in ascending order by x-coordinate;
S = empty; // initialize stack of maxima
for i = 1 to n do { // add points in order of x-coordinate

while (S is not empty and S.top.y <= P[i].y)
Pop(S); // remove points that P[i] dominates

Push(S, P[i]); // add P[i] to stack of maxima
}
output the contents of S;

}

Why is this algorithm correct? The correctness follows from the discussion up to now. The most
important element was that since the current maxima appear on the stack in decreasing order ofx-
coordinates (as we look down from the top of the stack), they occur in increasing order ofy-coordinates.
Thus, as soon as we find the last undominated element in the stack, it follows that everyone else on the
stack is undominated.

Analysis: This is an interesting program to analyze, primarily because the techniques that we discussed in
the last lecture donot apply readily here. I claim that after the sorting (which we mentioned takes
Θ(n log n) time), the rest of the algorithm only takesΘ(n) time. In particular, we have two nested
loops. The outer loop is clearly executedn times. The inner while-loop could be iterated up ton − 1
times in the worst case (in particular, when the last point added dominates all the others). So, it seems
that though we haven(n− 1) for a total ofΘ(n2).

However, this is a good example of how not to be fooled by analyses that are too simple minded.
Although it is true that the inner while-loop could be executed as many asn − 1 times any one time
through the outer loop, over the entire course of the algorithm we claim that it cannot be executed
more thann times. Why is this? First observe that the total number of elements that have ever been
pushed onto the stack is at mostn, since we execute exactly one Push for each time through the outer
for-loop. Also observe that every time we go through the inner while-loop, we must pop an element off
the stack. It is impossible to pop more elements off the stack than are ever pushed on. Therefore, the
inner while-loop cannot be executed more thann times over the entire course of the algorithm. (Make
sure that you believe the argument before going on.)

Therefore, since the total number of iterations of the inner while-loop isn, and since the total number
of iterations in the outer for-loop isn, the total running time of the algorithm isΘ(n).

Is this really better? How much of an improvement is this plane-sweep algorithm over the brute-force al-
gorithm? Probably the most accurate way to find out would be to code the two up, and compare their
running times. But just to get a feeling, let’s look at the ratio of the running times. (We have ignored
constant factors, but we’ll see that they cannot play a very big role.)

We have argued that the brute-force algorithm runs inΘ(n2) time, and the improved plane-sweep
algorithm runs inΘ(n log n) time. What is the base of the logarithm? It turns out that it will not matter
for the asymptotics (we’ll show this later), so for concreteness, let’s assume logarithm base 2, which
we’ll denote aslg n. The ratio of the running times is:

n2

n lg n
=

n

lg n
.

For relatively small values ofn (e.g. less than 100), both algorithms are probably running fast enough
that the difference will be practically negligible. On larger inputs, say,n = 1, 000, the ratio ofn to
lg n is about1000/10 = 100, so there is a 100-to-1 ratio in running times. Of course, we have not
considered the constant factors. But since neither algorithm makes use of very complex constructs, it
is hard to imagine that the constant factors will differ by more than, say, a factor of 10. For even larger

14



Lecture Notes CMSC 251

inputs, say,n = 1, 000, 000, we are looking at a ratio of roughly1, 000, 000/20 = 50, 000. This is
quite a significant difference, irrespective of the constant factors.

For example, suppose that there was a constant factor difference of 10 to 1, in favor of the brute-force
algorithm. The plane-sweep algorithm would still be 5,000 times faster. If the plane-sweep algorithm
took, say 10 seconds to execute, then the brute-force algorithm would take 14 hours.

From this we get an idea about the importance of asymptotic analysis. It tells us which algorithm is
better for large values ofn. As we mentioned before, ifn is not very large, then almost any algorithm
will be fast. But efficient algorithm design is most important for large inputs, and the general rule of
computing is that input sizes continue to grow until people can no longer tolerate the running times.
Thus, by designing algorithms efficiently, you make it possible for the user to run large inputs in a
reasonable amount of time.

Asymptotic Notation: We continue to use the notationΘ() but have never defined it. Let’s remedy this now.

Definition: Given any functiong(n), we defineΘ(g(n)) to be a set of functions that areasymptotically
equivalentto g(n), or put formally:

Θ(g(n)) = {f(n) | there exist positive constantsc1, c2, andn0 such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}.

Your response at this point might be, “I’m sorry that I asked”. It seems that the reasonably simple
concept of “throw away all but the fastest growing term, and ignore constant factors” should have a
simpler and more intuitive definition than this. Unfortunately, it does not (although later we will see
that there is somewhat easier, and nearly equivalent definition).

First off, we can see that we have been misusing the notation. We have been saying things likeT (n) =
Θ(n2). This cannot be true. The left side is a function, and right side is a set of functions. This should
properly be written asT (n) ∈ Θ(n2). However, this abuse of notation is so common in the field of
algorithm design, that no one notices it.

Going back to an earlier lecture, recall that we argued that the brute-force algorithm for 2-d maxima
had a running time ofT (n) = 4n2 + 2n, which we claimed wasΘ(n2). Let’s verify that this is so. In
this caseg(n) = n2. We want to show thatf(n) = 4n2 +2n is a member of this set, which means that
we must argue that there exist constantsc1, c2, andn0 such that

0 ≤ c1n
2 ≤ (4n2 + 2n) ≤ c2n

2 for all n ≥ n0.

There are really three inequalities here. The constraint0 ≤ c1n
2 is no problem, since we will always

be dealing with positiven and positive constants. The next is:

c1n
2 ≤ 4n2 + 2n.

If we setc1 = 4, then we have0 ≤ 4n2 ≤ 4n2 + 2n, which is clearly true as long asn ≥ 0. The other
inequality is

4n2 + 2n ≤ c2n
2.

If we selectc2 = 6, and assume thatn ≥ 1, then we haven2 ≥ n, implying that

4n2 + 2n ≤ 4n2 + 2n2 = 6n2 = c2n
2.

We have two constraints onn, n ≥ 0 andn ≥ 1. So let us maken0 = 1, which will imply that we as
long asn ≥ n0, we will satisfy both of these constraints.

Thus, we have given a formal proof that4n2 + 2n ∈ Θ(n2), as desired. Next time we’ll try to give
some of the intuition behind this definition.

15


