
Lecture Notes CMSC 251

Lecture 5: Asymptotics

(Tuesday, Feb 10, 1998)
Read: Chapt. 3 in CLR. The Limit Rule is not really covered in the text. Read Chapt. 4 for next time.

Asymptotics: We have introduced the notion ofΘ() notation, and last time we gave a formal definition.
Today, we will explore this and other asymptotic notations in greater depth, and hopefully give a better
understanding of what they mean.

Θ-Notation: Recall the following definition from last time.

Definition: Given any functiong(n), we defineΘ(g(n)) to be a set of functions:

Θ(g(n)) = {f(n) | there exist strictly positive constantsc1, c2, andn0 such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}.

Let’s dissect this definition. Intuitively, what we want to say with “f(n) ∈ Θ(g(n))” is that f(n) and
g(n) areasymptotically equivalent. This means that they have essentially the same growth rates for
largen. For example, functions like4n2, (8n2 +2n−3), (n2/5+

√
n−10 log n), andn(n−3) are all

intuitively asymptotically equivalent, since asn becomes large, the dominant (fastest growing) term is
some constant timesn2. In other words, they all growquadraticallyin n. The portion of the definition
that allows us to selectc1 andc2 is essentially saying “the constants do not matter because you may
pick c1 andc2 however you like to satisfy these conditions.” The portion of the definition that allows
us to selectn0 is essentially saying “we are only interested in largen, since you only have to satisfy
the condition for alln bigger thann0, and you may maken0 as big a constant as you like.”

An example: Consider the functionf(n) = 8n2 + 2n − 3. Our informal rule of keeping the largest term
and throwing away the constants suggests thatf(n) ∈ Θ(n2) (sincef grows quadratically). Let’s see
why the formal definition bears out this informal observation.

We need to show two things: first, thatf(n) does grows asymptotically at least as fast asn2, and
second, thatf(n) grows no faster asymptotically thann2. We’ll do both very carefully.

Lower bound: f(n) grows asymptotically at least as fast asn2: This is established by the portion
of the definition that reads: (paraphrasing): “there exist positive constantsc1 andn0, such that
f(n) ≥ c1n

2 for all n ≥ n0.” Consider the following (almost correct) reasoning:

f(n) = 8n2 + 2n− 3 ≥ 8n2 − 3 = 7n2 + (n2 − 3) ≥ 7n2 = 7n2.

Thus, if we setc1 = 7, then we are done. But in the above reasoning we have implicitly made
the assumptions that2n ≥ 0 andn2 − 3 ≥ 0. These are not true for alln, but they are true for all
sufficiently largen. In particular, ifn ≥ √3, then both are true. So let us selectn0 ≥

√
3, and

now we havef(n) ≥ c1n
2, for all n ≥ n0, which is what we need.

Upper bound: f(n) grows asymptotically no faster thann2: This is established by the portion of
the definition that reads “there exist positive constantsc2 andn0, such thatf(n) ≤ c2n

2 for all
n ≥ n0.” Consider the following reasoning (which is almost correct):

f(n) = 8n2 + 2n− 3 ≤ 8n2 + 2n ≤ 8n2 + 2n2 = 10n2.

This means that if we letc2 = 10, then we are done. We have implicitly made the assumption
that2n ≤ 2n2. This is not true for alln, but it is true for alln ≥ 1. So, let us selectn0 ≥ 1, and
now we havef(n) ≤ c2n

2 for all n ≥ n0, which is what we need.

16



Lecture Notes CMSC 251

From the lower bound, we haven0 ≥
√

3 and from the upper bound we haven0 ≥ 1, and so combining
these we letn0 be the larger of the two:n0 =

√
3. Thus, in conclusion, if we letc1 = 7, c2 = 10, and

n0 =
√

3, then we have

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0,

and this is exactly what the definition requires. Since we have shown (by construction) the existence of
constantsc1, c2, andn0, we have established thatf(n) ∈ n2. (Whew! That was a lot more work than
just the informal notion of throwing away constants and keeping the largest term, but it shows how this
informal notion is implemented formally in the definition.)

Now let’s show whyf(n) is not in some other asymptotic class. First, let’s show thatf(n) /∈ Θ(n).
If this were true, then we would have to satisfy both the upper and lower bounds. It turns out that
the lower bound is satisfied (becausef(n) grows at least as fast asymptotically asn). But the upper
bound is false. In particular, the upper bound requires us to show “there exist positive constantsc2

andn0, such thatf(n) ≤ c2n for all n ≥ n0.” Informally, we know that asn becomes large enough
f(n) = 8n2 + 2n − 3 will eventually exceedc2n no matter how large we makec2 (sincef(n) is
growing quadratically andc2n is only growing linearly). To show this formally, suppose towards a
contradiction that constantsc2 andn0 did exist, such that8n2 + 2n − 3 ≤ c2n for all n ≥ n0. Since
this is true for all sufficiently largen then it must be true in the limit asn tends to infinity. If we divide
both side byn we have:

lim
n→∞

(
8n + 2− 3

n

)
≤ c2.

It is easy to see that in the limit the left side tends to∞, and so no matter how largec2 is, this statement
is violated. This means thatf(n) /∈ Θ(n).

Let’s show thatf(n) /∈ Θ(n3). Here the idea will be to violate the lower bound: “there exist positive
constantsc1 andn0, such thatf(n) ≥ c1n

3 for all n ≥ n0.” Informally this is true becausef(n) is
growing quadratically, and eventually any cubic function will exceed it. To show this formally, suppose
towards a contradiction that constantsc1 andn0 did exist, such that8n2+2n−3 ≥ c1n

3 for all n ≥ n0.
Since this is true for all sufficiently largen then it must be true in the limit asn tends to infinity. If we
divide both side byn3 we have:

lim
n→∞

(
8
n

+
2
n2
− 3

n3

)
≥ c1.

It is easy to see that in the limit the left side tends to 0, and so the only way to satisfy this requirement
is to setc1 = 0, but by hypothesisc1 is positive. This means thatf(n) /∈ Θ(n3).

O-notation and Ω-notation: We have seen that the definition ofΘ-notation relies on proving both a lower
and upper asymptotic bound. Sometimes we are only interested in proving one bound or the other. The
O-notation allows us to state asymptotic upper bounds and theΩ-notation allows us to state asymptotic
lower bounds.

Definition: Given any functiong(n),

O(g(n)) = {f(n) | there exist positive constantsc andn0 such that

0 ≤ f(n) ≤ cg(n) for all n ≥ n0}.

Definition: Given any functiong(n),

Ω(g(n)) = {f(n) | there exist positive constantsc andn0 such that

0 ≤ cg(n) ≤ f(n) for all n ≥ n0}.

17



Lecture Notes CMSC 251

Compare this with the definition ofΘ. You will see thatO-notation only enforces the upper bound of
theΘ definition, andΩ-notation only enforces the lower bound. Also observe thatf(n) ∈ Θ(g(n)) if
and only iff(n) ∈ O(g(n)) andf(n) ∈ Ω(g(n)). Intuitively, f(n) ∈ O(g(n)) means thatf(n) grows
asymptotically at the same rate or slower thang(n). Whereas,f(n) ∈ O(g(n)) means thatf(n) grows
asymptotically at the same rate or faster thang(n).

For examplef(n) = 3n2 + 4n ∈ Θ(n2) but it is not inΘ(n) or Θ(n3). But f(n) ∈ O(n2) and in
O(n3) but not inO(n). Finally,f(n) ∈ Ω(n2) and inΩ(n) but not inΩ(n3).

The Limit Rule for Θ: The previous examples which used limits suggest alternative way of showing that
f(n) ∈ Θ(g(n)).

Limit Rule for Θ-notation: Given positive functionsf(n) andg(n), if

lim
n→∞

f(n)
g(n)

= c,

for some constantc > 0 (strictly positive but not infinity), thenf(n) ∈ Θ(g(n)).

Limit Rule for O-notation: Given positive functionsf(n) andg(n), if

lim
n→∞

f(n)
g(n)

= c,

for some constantc ≥ 0 (nonnegative but not infinite), thenf(n) ∈ O(g(n)).

Limit Rule for Ω-notation: Given positive functionsf(n) andg(n), if

lim
n→∞

f(n)
g(n)

6= 0

(either a strictly positive constant or infinity) thenf(n) ∈ Ω(g(n)).

This limit rule can be applied in almost every instance (that I know of) where the formal definition can
be used, and it is almost always easier to apply than the formal definition. The only exceptions that I
know of are strange instances where the limit does not exist (e.g.f(n) = n(1+sin n)). But since most
running times are fairly well-behaved functions this is rarely a problem.

You may recall the important rules from calculus for evaluating limits. (If not, dredge out your old
calculus book to remember.) Most of the rules are pretty self evident (e.g., the limit of a finite sum is
the sum of the individual limits). One important rule to remember is the following:

L’H ôpital’s rule: If f(n) andg(n) both approach 0 or both approach∞ in the limit, then

lim
n→∞

f(n)
g(n)

= lim
n→∞

f ′(n)
g′(n)

,

wheref ′(n) andg′(n) denote the derivatives off andg relative ton.

Polynomial Functions: Using the Limit Rule it is quite easy to analyze polynomial functions.

Lemma: Let f(n) = 2n4 − 5n3 − 2n2 + 4n− 7. Thenf(n) ∈ Θ(n4).

Proof: This would be quite tedious to do by the formal definition. Using the limit rule we have:

lim
n→∞

f(n)
n4

= lim
n→∞

(
2− 5

n
− 2

n2
+

4
n3
− 7

n4

)
= 2− 0− 0 + 0− 0 = 2.

Since 2 is a strictly positive constant it follows from the limit rule thatf(n) ∈ Θ(n2).

18



Lecture Notes CMSC 251

In fact, it is easy to generalize this to arbitrary polynomials.

Theorem: Consider any asymptotically positive polynomial of degreep(n) =
∑d

i=0 ain
i, where

ad > 0. Thenp(n) ∈ Θ(nd).

From this, the informal rule of “keep the largest term and throw away the constant factors” is now much
more evident.

Exponentials and Logarithms: Exponentials and logarithms are very important in analyzing algorithms.
The following are nice to keep in mind. The terminologylgb n means(lg n)b.

Lemma: Given any positive constantsa > 1, b, andc:

lim
n→∞

nb

an
= 0 lim

n→∞
lgb n

nc
= 0.

We won’t prove these, but they can be shown by taking appropriate powers, and then applying L’Hôpital’s
rule. The important bottom line is that polynomials always grow more slowly than exponentials whose
base is greater than 1. For example:

n500 ∈ O(2n).

For this reason, we will try to avoid exponential running times at all costs. Conversely, logarithmic
powers (sometimes calledpolylogarithmic functions) grow more slowly than any polynomial. For
example:

lg500 n ∈ O(n).

For this reason, we will usually be happy to allow any number of additional logarithmic factors, if it
means avoiding any additional powers ofn.

At this point, it should be mentioned that these last observations are really asymptotic results. They
are true in the limit for largen, but you should be careful just how high the crossover point is. For
example, by my calculations,lg500 n ≤ n only for n > 26000 (which is much larger than input size
you’ll ever see). Thus, you should take this with a grain of salt. But, for small powers of logarithms,
this applies to all reasonably large input sizes. For examplelg2 n ≤ n for all n ≥ 16.

Asymptotic Intuition: To get a intuitive feeling for what common asymptotic running times map into in
terms of practical usage, here is a little list.

• Θ(1): Constant time; you can’t beat it!

• Θ(log n): This is typically the speed that most efficient data structures operate in for a single
access. (E.g., inserting a key into a balanced binary tree.) Also it is the time to find an object in a
sorted list of lengthn by binary search.

• Θ(n): This is about the fastest that an algorithm can run, given that you needΘ(n) time just to
read in all the data.

• Θ(n log n): This is the running time of the best sorting algorithms. Since many problems require
sorting the inputs, this is still considered quite efficient.

• Θ(n2),Θ(n3), . . ..: Polynomial time. These running times are acceptable either when the expo-
nent is small or when the data size is not too large (e.g.n ≤ 1, 000).

• Θ(2n),Θ(3n): Exponential time. This is only acceptable when either (1) your know that you
inputs will be of very small size (e.g.n ≤ 50), or (2) you know that this is a worst-case running
time that will rarely occur in practical instances. In case (2), it would be a good idea to try to get
a more accurate average case analysis.

• Θ(n!),Θ(nn): Acceptable only for really small inputs (e.g.n ≤ 20).

Are their even bigger functions. You betcha! For example, if you want to see a function that grows
inconceivably fast, look up the definition of Ackerman’s function in our book.

19


