
Lecture Notes CMSC 251

Analysis: What remains is to analyze the running time of MergeSort. First let us consider the running time
of the procedureMerge(A, p, q, r) . Let n = r − p + 1 denote the total length of both the left
and right subarrays. What is the running time of Merge as a function ofn? The algorithm contains four
loops (none nested in the other). It is easy to see that each loop can be executed at mostn times. (If
you are a bit more careful you can actually see that all the while-loops together can only be executedn
times in total, because each execution copies one new element to the arrayB, andB only has space for
n elements.) Thus the running time to Mergen items isΘ(n). Let us write this without the asymptotic
notation, simply asn. (We’ll see later why we do this.)

Now, how do we describe the running time of the entire MergeSort algorithm? We will do this through
the use of arecurrence, that is, a function that is defined recursively in terms of itself. To avoid
circularity, the recurrence for a given value ofn is defined in terms of values that are strictly smaller
thann. Finally, a recurrence has some basis values (e.g. forn = 1), which are defined explicitly.

Let’s see how to apply this to MergeSort. LetT (n) denote the worst case running time of MergeSort on
an array of lengthn. For concreteness we could count whatever we like: number of lines of pseudocode,
number of comparisons, number of array accesses, since these will only differ by a constant factor.
Since all of the real work is done in the Merge procedure, we will count the total time spent in the
Merge procedure.

First observe that if we call MergeSort with a list containing a single element, then the running time is a
constant. Since we are ignoring constant factors, we can just writeT (n) = 1. When we call MergeSort
with a list of lengthn > 1, e.g.Merge(A, p, r) , wherer−p+1 = n, the algorithm first computes
q = b(p + r)/2c. The subarrayA[p..q], which containsq − p + 1 elements. You can verify (by some
tedious floor-ceiling arithmetic, or simpler by just trying an odd example and an even example) that is
of sizedn/2e. Thus the remaining subarrayA[q+1..r] hasbn/2c elements in it. How long does it take
to sort the left subarray? We do not know this, but becausedn/2e < n for n > 1, we can express this
asT (dn/2e). Similarly, we can express the time that it takes to sort the right subarray asT (bn/2c).
Finally, to merge both sorted lists takesn time, by the comments made above. In conclusion we have

T (n) =
{

1 if n = 1,
T (dn/2e) + T (bn/2c) + n otherwise.

Lecture 7: Recurrences

(Tuesday, Feb 17, 1998)
Read: Chapt. 4 on recurrences. Skip Section 4.4.

Divide and Conquer and Recurrences:Last time we introduced divide-and-conquer as a basic technique
for designing efficient algorithms. Recall that the basic steps in divide-and-conquer solution are (1)
divide the problem into a small number of subproblems, (2) solve each subproblem recursively, and (3)
combine the solutions to the subproblems to a global solution. We also described MergeSort, a sorting
algorithm based on divide-and-conquer.

Because divide-and-conquer is an important design technique, and because it naturally gives rise to
recursive algorithms, it is important to develop mathematical techniques for solving recurrences, either
exactly or asymptotically. To do this, we introduced the notion of arecurrence, that is, a recursively
defined function. Today we discuss a number of techniques for solving recurrences.

MergeSort Recurrence: Here is the recurrence we derived last time for MergeSort. Recall thatT (n) is the
time to run MergeSort on a list of sizen. We argued that if the list is of length 1, then the total sorting
time is a constantΘ(1). If n > 1, then we must recursively sort two sublists, one of sizedn/2e and
the other of sizebn/2c, and the nonrecursive part tookΘ(n) time for splitting the list (constant time)

23

Lecture Notes CMSC 251

and merging the lists (Θ(n) time). Thus, the total running time for MergeSort could be described by
the following recurrence:

T (n) =
{

1 if n = 1,
T (dn/2e) + T (bn/2c) + n otherwise.

Notice that we have dropped theΘ()’s, replacingΘ(1) andΘ(n) by just 1 andn, respectively. This
is done to make the recurrence more concrete. If we had wanted to be more precise, we could have
replaced these with more exact functions, e.g.,c1 andc2n for some constantsc1 andc2. The analysis
would have been a bit more complex, but we would arrive at the same asymptotic formula.

Getting a feel: We could try to get a feeling for what this means by plugging in some values and expanding
the definition.

T (1) = 1 (by the basis.)

T (2) = T (1) + T (1) + 2 = 1 + 1 + 2 = 4
T (3) = T (2) + T (1) + 3 = 4 + 1 + 3 = 8
T (4) = T (2) + T (2) + 4 = 4 + 4 + 4 = 12
T (5) = T (3) + T (2) + 5 = 8 + 4 + 5 = 17

. . .

T (8) = T (4) + T (4) + 8 = 12 + 12 + 8 = 32
. . .

T (16) = T (8) + T (8) + 16 = 32 + 32 + 16 = 80
. . .

T (32) = T (16) + T (16) + 32 = 80 + 80 + 32 = 192.

It’s hard to see much of a pattern here, but here is a trick. Since the recurrence divides by 2 each time,
let’s consider powers of 2, since the function will behave most regularly for these values. If we consider
the ratiosT (n)/n for powers of 2 and interesting pattern emerges:

T (1)/1 = 1 T (8)/8 = 4
T (2)/2 = 2 T (16)/16 = 5
T (4)/4 = 3 T (32)/32 = 6.

This suggests that for powers of 2,T (n)/n = (lg n) + 1, or equivalently,T (n) = (n lg n) + n which
is Θ(n log n). This is not a proof, but at least it provides us with a starting point.

Logarithms in Θ-notation: Notice that I have broken away from my usual convention of saylg n and just
said log n inside theΘ(). The reason is that the base really does not matter when it is inside theΘ.
Recall the change of base formula:

logb n =
loga n

loga b
.

If a andb are constants theloga b is a constant. Consequentlylogb n andloga n differ only by a constant
factor. Thus, inside theΘ() we do not need to differentiate between them. Henceforth, I will not be
fussy about the bases of logarithms if asymptotic results are sufficient.

Eliminating Floors and Ceilings: One of the nasty things about recurrences is that floors and ceilings are
a pain to deal with. So whenever it is reasonable to do so, we will just forget about them, and make
whatever simplifying assumptions we like aboutn to make things work out. For this case, we will
make the simplifying assumption thatn is a power of 2. Notice that this means that our analysis will

24

Lecture Notes CMSC 251

only be correct for a very limited (but infinitely large) set of values ofn, but it turns out that as long as
the algorithm doesn’t act significantly different for powers of 2 versus other numbers, the asymptotic
analysis will hold for alln as well. So let us restate our recurrence under this assumption:

T (n) =
{

1 if n = 1,
2T (n/2) + n otherwise.

Verification through Induction: We have just generated a guess for the solution to our recurrence. Let’s
see if we can verify its correctness formally. The proof will be by strong induction onn. Becausen is
limited to powers of 2, we cannot do the usualn to n + 1 proof (because ifn is a power of 2,n + 1
will generally not be a power of 2). Instead we use strong induction.

Claim: For alln ≥ 1, n a power of 2,T (n) = (n lg n) + n.

Proof: (By strong induction onn.)

Basis case:(n = 1) In this caseT (1) = 1 by definition and the formula gives1 lg 1 + 1 = 1,
which matches.

Induction step: Let n > 1, and assume that the formulaT (n′) = (n′ lg n′)+n′, holds whenever
n′ < n. We want to prove the formula holds forn itself. To do this, we need to expressT (n)
in terms of smaller values. To do this, we apply the definition:

T (n) = 2T (n/2) + n.

Now,n/2 < n, so we can apply the induction hypothesis here, yieldingT (n/2) = (n/2) lg(n/2)+
(n/2). Plugging this in gives

T (n) = 2((n/2) lg(n/2) + (n/2)) + n

= (n lg(n/2) + n) + n

= n(lg n− lg 2) + 2n
= (n lg n− n) + 2n
= n lg n + n,

which is exactly what we want to prove.

The Iteration Method: The above method of “guessing” a solution and verifying through induction works
fine as long as your recurrence is simple enough that you can come up with a good guess. But if the
recurrence is at all messy, there may not be a simple formula. The following method is quite powerful.
When it works, it allows you to convert a recurrence into a summation. By in large, summations are
easier to solve than recurrences (and if nothing else, you can usually approximate them by integrals).

The method is callediteration. Let’s start expanding out the definition until we see a pattern developing.
We first write out the definitionT (n) = 2T (n/2) + n. This has a recursive formula insideT (n/2)
which we can expand, by filling in the definition but this time with the argumentn/2 rather thann.
Plugging in we getT (n) = 2(2T (n/4) + n/2) + n. We then simplify and repeat. Here is what we get
when we repeat this.

T (n) = 2T (n/2) + n

= 2(2T (n/4) + n/2) + n = 4T (n/4) + n + n

= 4(2T (n/8) + n/4) + n + n = 8T (n/8) + n + n + n

= 8(2T (n/16) + n/8) + n + n + n = 16T (n/16) + n + n + n + n

= . . .

25

Lecture Notes CMSC 251

At this point we can see a general pattern emerging.

T (n) = 2kT (n/(2k)) + (n + n + · · ·+ n) (k times)

= 2kT (n/(2k)) + kn.

Now, we have generated alot of equations, but we still haven’t gotten anywhere, because we need to
get rid of theT () from the right-hand side. Here’s how we can do that. WeknowthatT (1) = 1. Thus,
let us selectk to be a value which forces the termn/(2k) = 1. This means thatn = 2k, implying that
k = lg n. If we substitute this value ofk into the equation we get

T (n) = 2(lg n)T (n/(2(lg n))) + (lg n)n
= 2(lg n)T (1) + n lg n = 2(lg n) + n lg n = n + n lg n.

In simplifying this, we have made use of the formula from the first homework,alogb n = nlogb a, where
a = b = 2. Thus we have arrived at the same conclusion, but this time no guesswork was involved.

The Iteration Method (a Messier Example): That one may have been a bit too easy to see the general form.
Let’s try a messier recurrence:

T (n) =
{

1 if n = 1,
3T (n/4) + n otherwise.

To avoid problems with floors and ceilings, we’ll make the simplifying assumption here thatn is a
power of 4. As before, the idea is to repeatedly apply the definition, until a pattern emerges.

T (n) = 3T (n/4) + n

= 3(3T (n/16) + n/4) + n = 9T (n/16) + 3(n/4) + n

= 9(3T (n/64) + n/16) + 3(n/4) + n = 27T (n/64) + 9(n/16) + 3(n/4) + n

= . . .

= 3kT
(n

4k

)
+ 3k−1(n/4k−1) + · · ·+ 9(n/16) + 3(n/4) + n

= 3kT
(n

4k

)
+

k−1∑
i=0

3i

4i
n.

As before, we have the recursive termT (n/4k) still floating around. To get rid of it we recall that
we know the value ofT (1), and so we setn/4k = 1 implying that4k = n, that is,k = log4 n. So,
plugging this value in fork we get:

T (n) = 3log4 nT (1) +
(log4 n)−1∑

i=0

3i

4i
n

= nlog4 3 +
(log4 n)−1∑

i=0

3i

4i
n.

Again, in the last step we used the formulaalogb n = nlogb a wherea = 3 andb = 4, and the fact that
T (1) = 1. (Why did we write it this way? This emphasizes that the function is of the formnc for some
constantc.) By the way,log4 3 = 0.7925 . . . ≈ 0.79, sonlog4 3 ≈ n0.79.

26

Lecture Notes CMSC 251

We have this messy summation to solve though. First observe that the valuen remains constant
throughout the sum, and so we can pull it out front. Also note that we can write3i/4i and(3/4)i.

T (n) = nlog4 3 + n

(log4 n)−1∑
i=0

(
3
4

)i

.

Note that this is a geometric series. We may apply the formula for the geometric series, which gave in
an earlier lecture. Forx 6= 1:

m∑
i=0

xi =
xm+1 − 1

x− 1
.

In this casex = 3/4 andm = log4 n− 1. We get

T (n) = nlog4 3 + n
(3/4)log4 n − 1

(3/4)− 1
.

Applying our favorite log identity once more to the expression in the numerator (witha = 3/4 and
b = 4) we get

(3/4)log4 n = nlog4(3/4) = n(log4 3−log4 4) = n(log4 3−1) =
nlog4 3

n
.

If we plug this back in, we have

T (n) = nlog4 3 + n
nlog4 3

n − 1
(3/4)− 1

= nlog4 3 +
nlog4 3 − n

−1/4

= nlog4 3 − 4(nlog4 3 − n)
= nlog4 3 + 4(n− nlog4 3)
= 4n− 3nlog4 3.

So the final result (at last!) is

T (n) = 4n− 3nlog4 3 ≈ 4n− 3n0.79 ∈ Θ(n).

It is interesting to note the unusual exponent oflog4 3 ≈ 0.79. We have seen that two nested loops typi-
cally leads toΘ(n2) time, and three nested loops typically leads toΘ(n3) time, so it seems remarkable
that we could generate a strange exponent like0.79 as part of a running time. However, as we shall
see, this is often the case in divide-and-conquer recurrences.

Lecture 8: More on Recurrences

(Thursday, Feb 19, 1998)
Read: Chapt. 4 on recurrences, skip Section 4.4.

Recap: Last time we discussed recurrences, that is, functions that are defined recursively. We discussed
their importance in analyzing divide-and-conquer algorithms. We also discussed two methods for solv-
ing recurrences, namely guess-and-verify (by induction), and iteration. These are both very powerful
methods, but they are quite “mechanical”, and it is difficult to get a quick and intuitive sense of what
is going on in the recurrence. Today we will discuss two more techniques for solving recurrences. The
first provides a way of visualizing recurrences and the second, called the Master Theorem, is a method
of solving many recurrences that arise in divide-and-conquer applications.

27

