
Lecture Notes CMSC 251

We have this messy summation to solve though. First observe that the valuen remains constant
throughout the sum, and so we can pull it out front. Also note that we can write3i/4i and(3/4)i.

T (n) = nlog4 3 + n

(log4 n)−1∑
i=0

(
3
4

)i

.

Note that this is a geometric series. We may apply the formula for the geometric series, which gave in
an earlier lecture. Forx 6= 1:

m∑
i=0

xi =
xm+1 − 1

x− 1
.

In this casex = 3/4 andm = log4 n− 1. We get

T (n) = nlog4 3 + n
(3/4)log4 n − 1

(3/4)− 1
.

Applying our favorite log identity once more to the expression in the numerator (witha = 3/4 and
b = 4) we get

(3/4)log4 n = nlog4(3/4) = n(log4 3−log4 4) = n(log4 3−1) =
nlog4 3

n
.

If we plug this back in, we have

T (n) = nlog4 3 + n
nlog4 3

n − 1
(3/4)− 1

= nlog4 3 +
nlog4 3 − n

−1/4

= nlog4 3 − 4(nlog4 3 − n)
= nlog4 3 + 4(n− nlog4 3)
= 4n− 3nlog4 3.

So the final result (at last!) is

T (n) = 4n− 3nlog4 3 ≈ 4n− 3n0.79 ∈ Θ(n).

It is interesting to note the unusual exponent oflog4 3 ≈ 0.79. We have seen that two nested loops typi-
cally leads toΘ(n2) time, and three nested loops typically leads toΘ(n3) time, so it seems remarkable
that we could generate a strange exponent like0.79 as part of a running time. However, as we shall
see, this is often the case in divide-and-conquer recurrences.

Lecture 8: More on Recurrences

(Thursday, Feb 19, 1998)
Read: Chapt. 4 on recurrences, skip Section 4.4.

Recap: Last time we discussed recurrences, that is, functions that are defined recursively. We discussed
their importance in analyzing divide-and-conquer algorithms. We also discussed two methods for solv-
ing recurrences, namely guess-and-verify (by induction), and iteration. These are both very powerful
methods, but they are quite “mechanical”, and it is difficult to get a quick and intuitive sense of what
is going on in the recurrence. Today we will discuss two more techniques for solving recurrences. The
first provides a way of visualizing recurrences and the second, called the Master Theorem, is a method
of solving many recurrences that arise in divide-and-conquer applications.

27

Lecture Notes CMSC 251

Visualizing Recurrences Using the Recursion Tree:Iteration is a very powerful technique for solving re-
currences. But, it is easy to get lost in all the symbolic manipulations and lose sight of what is going
on. Here is a nice way to visualize what is going on in iteration. We can describe any recurrence in
terms of a tree, where each expansion of the recurrence takes us one level deeper in the tree.

Recall that the recurrence for MergeSort (which we simplified by assuming thatn is a power of 2, and
hence could drop the floors and ceilings)

T (n) =
{

1 if n = 1,
2T (n/2) + n otherwise.

Suppose that we draw the recursion tree for MergeSort, but each time we merge two lists, we label that
node of the tree with the time it takes to perform the associated (nonrecursive) merge. Recall that to
merge two lists of sizem/2 to a list of sizem takesΘ(m) time, which we will just write asm. Below
is an illustration of the resulting recursion tree.

= n

n

n

n2(/2) =

n4(/4) =n/4n/4n/4n/4

n/2n/2

n

+

T(n/4)

T(n/2)

T(n)

T(n/2)

...

n(lg +1)n

n(n/n) = n...11

+ 1 levels

+

+

11

nlg

Figure 5: Using the recursion tree to visualize a recurrence.

Observe that the total work at the topmost level of the recursion isΘ(n) (or justn for short). At the
second level we have two merges, each takingn/2 time, for a total of2(n/2) = n. At the third level we
have 4 merges, each takingn/4 time, for a total of4(n/4) = n. This continues until the bottommost
level of the tree. Since the tree exactlylg n + 1 levels (0, 1, 2, . . . , lg n), and each level contributes a
total of n time, the total running time isn(lg n + 1) = n lg n + n. This is exactly what we got by the
iteration method.

This can be used for a number of simple recurrences. For example, let’s try it on the following recur-
rence. The tree is illustrated below.

T (n) =
{

1 if n = 1,
3T (n/2) + n2 otherwise.

Again, we label each node with the amount of work at that level. In this case the work forT (m) is m2.
For the top level (or 0th level) the work isn2. At level 1 we have three nodes whose work is(n/2)2

each, for a total of3(n/2)2. This can be written asn2(3/4). At the level 2 the work is9(n/4)2, which
can be written asn2(9/16). In general it is easy to extrapolate to see that at the leveli, we have3i

nodes, each involving(n/2i)2 work, for a total of3i(n/2i)2 = n2(3/4)i.

This leads to the following summation. Note that we have not determined where the tree bottoms out,
so we have left off the upper bound on the sum.

T (n) = n2
?∑

i=0

(
3
4

)i

.

28

Lecture Notes CMSC 251

T(n/2)T(n/2)

T(n/4)

T(n/2)

T(n)

(n/4)2

...

22n

+

+

+

= n

... 9(n/4) = n (9/16)

223(n/2) = n (3/4)

(n/4)2(n/4)2(n/4)2(n/4)2 (n/4)2 2

(n/2) 2(n/2) 2(n/2) 2

in (3/4)2

2

Figure 6: Another recursion tree example.

If all we wanted was an asymptotic expression, then are essentially done at this point. Why? The
summation is a geometric series, and the base (3/4) is less than 1. This means that this series converges
to some nonzero constant (even if we ran the sum out to∞). Thus the running time isΘ(n2).

To get a more exact result, observe that the recursion bottoms out when we get down to single items,
and since the sizes of the inputs are cut by half at each level, it is not hard to see that the final level is
level lg n. (It is easy to be off by±1 here, but this sort of small error will not affect the asymptotic
result. In this case we happen to be right.) So, we can plug inlg n for the “?” in the above summation.

T (n) = n2

lg n∑
i=0

(
3
4

)i

.

If we wanted to get a more exact answer, we could plug the summation into the formula for the geo-
metric series and simplify. This would lead to an expression like

T (n) = n2 (3/4)lg n+1 − 1
(3/4)− 1

.

This will take some work to simplify, but at this point it is all just tedious algebra to get the formula
into simple form. (This sort of algebraic is typical of algorithm analysis, so be sure that you follow
each step.)

T (n) = n2 (3/4)lg n+1 − 1
(3/4)− 1

= − 4n2((3/4)lg n+1 − 1)

= 4n2(1− (3/4)lg n+1) = 4n2(1− (3/4)(3/4)lg n)
= 4n2(1− (3/4)nlg(3/4)) = 4n2(1− (3/4)nlg 3−lg 4)
= 4n2(1− (3/4)nlg 3−2) = 4n2(1− (3/4)(nlg 3/n2))
= 4n2 − 3nlg 3.

Note thatlg 3 ≈ 1.58, so the whole expression isΘ(n2).

In conclusion, the technique of drawing the recursion tree is a somewhat more visual way of analyzing
summations, but it is really equivalent to the method of iteration.

(Simplified) Master Theorem: If you analyze many divide-and-conquer algorithms, you will see that the
same general type of recurrence keeps popping up. In general you are breaking a problem intoa
subproblems, where each subproblem is roughly a factor of1/b of the original problem size, and

29

Lecture Notes CMSC 251

the time it takes to do the splitting and combining on an input of sizen is Θ(nk). For example, in
MergeSort,a = 2, b = 2, andk = 1.

Rather than doing every such recurrence from scratch, can we just come up with a general solution?
The answer is that you can if all you need is an asymptotic expression. This result is called theMaster
Theorem, because it can be used to “master” so many different types of recurrence. Our text gives a
fairly complicated version of this theorem. We will give a simpler version, which is general enough for
most typical situations. In cases where this doesn’t apply, try the one from the book. If the one from
the book doesn’t apply, then you will probably need iteration, or some other technique.

Theorem: (Simplified Master Theorem) Leta ≥ 1, b > 1 be constants and letT (n) be the recurrence

T (n) = aT (n/b) + nk,

defined forn ≥ 0. (As usual let us assume thatn is a power ofb. The basis case,T (1) can be any
constant value.) Then

Case 1: if a > bk thenT (n) ∈ Θ(nlogb a).
Case 2: if a = bk thenT (n) ∈ Θ(nk log n).
Case 3: if a < bk thenT (n) ∈ Θ(nk).

Using this version of the Master Theorem we can see that in the MergeSort recurrencea = 2, b = 2,
andk = 1. Thus,a = bk (2 = 21) and so Case 2 applies. From this we haveT (n) ∈ Θ(n log n).

In the recurrence above,T (n) = 3T (n/2) + n2, we havea = 3, b = 2 andk = 2. We havea < bk

(3 < 22) in this case, and so Case 3 applies. From this we haveT (n) ∈ Θ(n2).

Finally, consider the recurrenceT (n) = 4T (n/3) + n, in which we havea = 4, b = 3 andk = 1. In
this case we havea > bk (4 > 31), and so Case 1 applies. From this we haveT (n) ∈ Θ(nlog3 4) ≈
Θ(n1.26). This may seem to be a rather strange running time (a non-integer exponent), but this not
uncommon for many divide-and-conquer solutions.

There are many recurrences that cannot be put into this form. For example, if the splitting and combin-
ing steps involve sorting, we might have seen a recurrence of the form

T (n) =
{

1 if n = 1,
2T (n/2) + n log n otherwise.

This solves toT (n) = Θ(n log2 n), but the Master Theorem (neither this form nor the one in CLR)
will tell you this. However, iteration works just fine here.

Recursion Trees Revisited:The recursion trees offer some intuition about why it is that there are three cases
in the Master Theorem. Generally speaking the question is where is most of the work done: at the top
of the tree (the root level), at the bottom of the tree (the leaf level), or spread equally throughout the
entire tree.

For example, in the MergeSort recurrence (which corresponds to Case 2 in the Master Theorem) every
level of the recursion tree provides the same total work, namelyn. For this reason the total work is
equal to this value times the height of the tree, namelyΘ(log n), for a total ofΘ(n log n).

Next consider the earlier recurrenceT (n) = 3T (n/2)+n2 (which corresponds to Case 3 in the Master
Theorem). In this instance most of the work was concentrated at the root of the tree. Each level of the
tree provided a smaller fraction of work. By the nature of the geometric series, it did not matter how
many levels the tree had at all. Even with an infinite number of levels, the geometric series that result
will converge to a constant value. This is an important observation to make. A common way to design
the most efficient divide-and-conquer algorithms is to try to arrange the recursion so that most of the
work is done at the root, and at each successive level of the tree the work at this level reduces (by some
constant factor). As long as this is the case, Case 3 will apply.

30

Lecture Notes CMSC 251

Finally, in the recurrenceT (n) = 4T (n/3) + n (which corresponds to Case 1), most of the work is
done at the leaf level of the recursion tree. This can be seen if you perform iteration on this recurrence,
the resulting summation is

n

log3 n∑
i=0

(
4
3

)i

.

(You might try this to see if you get the same result.) Since4/3 > 1, as we go deeper into the levels
of the tree, that is deeper into the summation, the terms are growing successively larger. The largest
contribution will be from the leaf level.

Lecture 9: Medians and Selection

(Tuesday, Feb 24, 1998)
Read: Todays material is covered in Sections 10.2 and 10.3. You are not responsible for the randomized
analysis of Section 10.2. Our presentation of the partitioning algorithm and analysis are somewhat different
from the ones in the book.

Selection: In the last couple of lectures we have discussed recurrences and the divide-and-conquer method
of solving problems. Today we will give a rather surprising (and very tricky) algorithm which shows
the power of these techniques.

The problem that we will consider is very easy to state, but surprisingly difficult to solve optimally.
Suppose that you are given a set ofn numbers. Define therank of an element to be one plus the
number of elements that are smaller than this element. Since duplicate elements make our life more
complex (by creating multiple elements of the same rank), we will make the simplifying assumption
that all the elements are distinct for now. It will be easy to get around this assumption later. Thus, the
rank of an element is its final position if the set is sorted. The minimum is of rank 1 and the maximum
is of rankn.

Of particular interest in statistics is themedian. If n is odd then the median is defined to be the element
of rank (n + 1)/2. Whenn is even there are two natural choices, namely the elements of ranksn/2
and(n/2) + 1. In statistics it is common to return the average of these two elements. We will define
the median to be either of these elements.

Medians are useful as measures of thecentral tendencyof a set, especially when the distribution of val-
ues is highly skewed. For example, the median income in a community is likely to be more meaningful
measure of the central tendency than the average is, since if Bill Gates lives in your community then
his gigantic income may significantly bias the average, whereas it cannot have a significant influence
on the median. They are also useful, since in divide-and-conquer applications, it is often desirable to
partition a set about its median value, into two sets of roughly equal size. Today we will focus on the
following generalization, called theselection problem.

Selection: Given a setA of n distinct numbers and an integerk, 1 ≤ k ≤ n, output the element ofA
of rankk.

The selection problem can easily be solved inΘ(n log n) time, simply by sorting the numbers ofA,
and then returningA[k]. The question is whether it is possible to do better. In particular, is it possible
to solve this problem inΘ(n) time? We will see that the answer is yes, and the solution is far from
obvious.

The Sieve Technique:The reason for introducing this algorithm is that it illustrates a very important special
case of divide-and-conquer, which I call thesieve technique. We think of divide-and-conquer as break-
ing the problem into a small number of smaller subproblems, which are then solved recursively. The
sieve technique is a special case, where the number of subproblems is just 1.

31

