
Lecture Notes CMSC 251

Finally, in the recurrenceT (n) = 4T (n/3) + n (which corresponds to Case 1), most of the work is
done at the leaf level of the recursion tree. This can be seen if you perform iteration on this recurrence,
the resulting summation is

n

log3 n∑
i=0

(
4
3

)i

.

(You might try this to see if you get the same result.) Since4/3 > 1, as we go deeper into the levels
of the tree, that is deeper into the summation, the terms are growing successively larger. The largest
contribution will be from the leaf level.

Lecture 9: Medians and Selection

(Tuesday, Feb 24, 1998)
Read: Todays material is covered in Sections 10.2 and 10.3. You are not responsible for the randomized
analysis of Section 10.2. Our presentation of the partitioning algorithm and analysis are somewhat different
from the ones in the book.

Selection: In the last couple of lectures we have discussed recurrences and the divide-and-conquer method
of solving problems. Today we will give a rather surprising (and very tricky) algorithm which shows
the power of these techniques.

The problem that we will consider is very easy to state, but surprisingly difficult to solve optimally.
Suppose that you are given a set ofn numbers. Define therank of an element to be one plus the
number of elements that are smaller than this element. Since duplicate elements make our life more
complex (by creating multiple elements of the same rank), we will make the simplifying assumption
that all the elements are distinct for now. It will be easy to get around this assumption later. Thus, the
rank of an element is its final position if the set is sorted. The minimum is of rank 1 and the maximum
is of rankn.

Of particular interest in statistics is themedian. If n is odd then the median is defined to be the element
of rank (n + 1)/2. Whenn is even there are two natural choices, namely the elements of ranksn/2
and(n/2) + 1. In statistics it is common to return the average of these two elements. We will define
the median to be either of these elements.

Medians are useful as measures of thecentral tendencyof a set, especially when the distribution of val-
ues is highly skewed. For example, the median income in a community is likely to be more meaningful
measure of the central tendency than the average is, since if Bill Gates lives in your community then
his gigantic income may significantly bias the average, whereas it cannot have a significant influence
on the median. They are also useful, since in divide-and-conquer applications, it is often desirable to
partition a set about its median value, into two sets of roughly equal size. Today we will focus on the
following generalization, called theselection problem.

Selection: Given a setA of n distinct numbers and an integerk, 1 ≤ k ≤ n, output the element ofA
of rankk.

The selection problem can easily be solved inΘ(n log n) time, simply by sorting the numbers ofA,
and then returningA[k]. The question is whether it is possible to do better. In particular, is it possible
to solve this problem inΘ(n) time? We will see that the answer is yes, and the solution is far from
obvious.

The Sieve Technique:The reason for introducing this algorithm is that it illustrates a very important special
case of divide-and-conquer, which I call thesieve technique. We think of divide-and-conquer as break-
ing the problem into a small number of smaller subproblems, which are then solved recursively. The
sieve technique is a special case, where the number of subproblems is just 1.

31

Lecture Notes CMSC 251

The sieve technique works in phases as follows. It applies to problems where we are interested in
finding a single item from a larger set ofn items. We do not know which item is of interest, however
after doing some amount of analysis of the data, taking sayΘ(nk) time, for some constantk, we find
that we do not know what the desired item is, but we can identify a large enough number of elements
thatcannotbe the desired value, and can be eliminated from further consideration. In particular “large
enough” means that the number of items is at least some fixed constant fraction ofn (e.g. n/2, n/3,
0.0001n). Then we solve the problem recursively on whatever items remain. Each of the resulting
recursive solutions then do the same thing, eliminating a constant fraction of the remaining set.

Applying the Sieve to Selection:To see more concretely how the sieve technique works, let us apply it to
the selection problem. Recall that we are given an arrayA[1..n] and an integerk, and want to find the
k-th smallest element ofA. Since the algorithm will be applied inductively, we will assume that we
are given a subarrayA[p..r] as we did in MergeSort, and we want to find thekth smallest item (where
k ≤ r − p + 1). The initial call will be to the entire arrayA[1..n].

There are two principal algorithms for solving the selection problem, but they differ only in one step,
which involves judiciously choosing an item from the array, called thepivot element, which we will
denote byx. Later we will see how to choosex, but for now just think of it as a random element ofA.
We then partitionA into three parts.A[q] contains the elementx, subarrayA[p..q − 1] will contain all
the elements that are less thanx, andA[q + 1..r], will contain all the element that are greater thanx.
(Recall that we assumed that all the elements are distinct.) Within each subarray, the items may appear
in any order. This is illustrated below.

Before partitioing

After partitioing

2 6 4 1 3 79

pivot

3 51 94 6
x

p r

qp r

A[q+1..r] > x
A[p..q−1] < x

5

2 7

Partition
(pivot = 4)

9
7
5
6

(k=6−4=2)
Recurse

x_rnk=2 (DONE!)

6
5

5
6

(pivot = 6)
Partition

(k=2)
Recurse

x_rnk=3

(pivot = 7)
Partition

(k=6)
Initial

x_rnk=4
6

7
3
1
4
6
2
9
5

4

1

9
5

3

7

2

6
9
5
7

Figure 7: Selection Algorithm.

It is easy to see that the rank of the pivotx is q−p+1 in A[p..r]. Letx rnk = q−p+1 . If k = x rnk ,
then the pivot is thekth smallest, and we may just return it. Ifk < x rnk , then we know that we need
to recursively search inA[p..q − 1] and if k > x rnk then we need to recursively searchA[q + 1..r].
In this latter case we have eliminatedq smaller elements, so we want to find the element of rankk− q.
Here is the complete pseudocode.

Selection

Select(array A, int p, int r, int k) { // return kth smallest of A[p..r]
if (p == r) return A[p] // only 1 item left, return it

32

Lecture Notes CMSC 251

else {
x = Choose_Pivot(A, p, r) // choose the pivot element
q = Partition(A, p, r, x) // partition <A[p..q-1], x, A[q+1..r]>
x_rnk = q - p + 1 // rank of the pivot
if (k == x_rnk) return x // the pivot is the kth smallest
else if (k < x_rnk)

return Select(A, p, q-1, k) // select from left subarray
else

return Select(A, q+1, r, k-x_rnk)// select from right subarray
}

}

Notice that this algorithm satisfies the basic form of a sieve algorithm. It analyzes the data (by choosing
the pivot element and partitioning) and it eliminates some part of the data set, and recurses on the rest.
Whenk = x rnk then we get lucky and eliminate everything. Otherwise we either eliminate the pivot
and the right subarray or the pivot and the left subarray.

We will discuss the details of choosing the pivot and partitioning later, but assume for now that they
both takeΘ(n) time. The question that remains is how many elements did we succeed in eliminating?
If x is the largest or smallest element in the array, then we may only succeed in eliminating one element
with each phase. In fact, ifx is one of the smallest elements ofA or one of the largest, then we get
into trouble, because we may only eliminate it and the few smaller or larger elements ofA. Ideallyx
should have a rank that is neither too large nor too small.

Let us suppose for now (optimistically) that we are able to design the procedureChoose Pivot in
such a way that is eliminates exactly half the array with each phase, meaning that we recurse on the
remainingn/2 elements. This would lead to the following recurrence.

T (n) =
{

1 if n = 1,
T (n/2) + n otherwise.

We can solve this either by expansion (iteration) or the Master Theorem. If we expand this recurrence
level by level we see that we get the summation

T (n) = n +
n

2
+

n

4
+ · · · ≤

∞∑
i=0

n

2i
= n

∞∑
i=0

1
2i

.

Recall the formula for the infinite geometric series. For anyc such that|c| < 1,
∑∞

i=0 ci = 1/(1− c).
Using this we have

T (n) ≤ 2n ∈ O(n).

(This only proves the upper bound on the running time, but it is easy to see that it takes at leastΩ(n)
time, so the total running time isΘ(n).)

This is a bit counterintuitive. Normally you would think that in order to design aΘ(n) time algorithm
you could only make a single, or perhaps a constant number of passes over the data set. In this algorithm
we make many passes (it could be as many aslg n). However, because we eliminate a constant fraction
of elements with each phase, we get this convergent geometric series in the analysis, which shows that
the total running time is indeed linear inn. This lesson is well worth remembering. It is often possible
to achieve running times in ways that you would not expect.

Note that the assumption of eliminating half was not critical. If we eliminated even one per cent, then
the recurrence would have beenT (n) = T (99n/100)+n, and we would have gotten a geometric series
involving 99/100, which is still less than 1, implying a convergent series. Eliminatingany constant
fraction would have been good enough.

33

Lecture Notes CMSC 251

Choosing the Pivot: There are two issues that we have left unresolved. The first is how to choose the pivot
element, and the second is how to partition the array. Both need to be solved inΘ(n) time. The second
problem is a rather easy programming exercise. Later, when we discuss QuickSort, we will discuss
partitioning in detail.

For the rest of the lecture, let’s concentrate on how to choose the pivot. Recall that before we said that
we might think of the pivot as a random element ofA. Actually this is not such a bad idea. Let’s see
why.

The key is that we want the procedure to eliminate at least some constant fraction of the array after
each partitioning step. Let’s consider the top of the recurrence, when we are givenA[1..n]. Suppose
that the pivotx turns out to be of rankq in the array. The partitioning algorithm will split the array into
A[1..q − 1] < x, A[q] = x andA[q + 1..n] > x. If k = q, then we are done. Otherwise, we need
to search one of the two subarrays. They are of sizesq − 1 andn − q, respectively. The subarray that
contains thekth smallest element will generally depend on whatk is, so in the worst case,k will be
chosen so that we have to recurse on the larger of the two subarrays. Thus ifq > n/2, then we may
have to recurse on the left subarray of sizeq − 1, and ifq < n/2, then we may have to recurse on the
right subarray of sizen− q. In either case, we are in trouble ifq is very small, or ifq is very large.

If we could selectq so that it is roughly of middle rank, then we will be in good shape. For example,
if n/4 ≤ q ≤ 3n/4, then the larger subarray will never be larger than3n/4. Earlier we said that we
might think of the pivot as a random element of the arrayA. Actually this works pretty well in practice.
The reason is that roughly half of the elements lie between ranksn/4 and3n/4, so picking a random
element as the pivot will succeed about half the time to eliminate at leastn/4. Of course, we might be
continuously unlucky, but a careful analysis will show that the expected running time is stillΘ(n). We
will return to this later.

Instead, we will describe a rather complicated method for computing a pivot element that achieves the
desired properties. Recall that we are given an arrayA[1..n], and we want to compute an elementx
whose rank is (roughly) betweenn/4 and3n/4. We will have to describe this algorithm at a very high
level, since the details are rather involved. Here is the description for SelectPivot:

Groups of 5: PartitionA into groups of 5 elements, e.g.A[1..5], A[6..10], A[11..15], etc. There will
be exactlym = dn/5e such groups (the last one might have fewer than 5 elements). This can
easily be done inΘ(n) time.

Group medians: Compute the median of each group of 5. There will bem group medians. We do not
need an intelligent algorithm to do this, since each group has only a constant number of elements.
For example, we could just BubbleSort each group and take the middle element. Each will take
Θ(1) time, and repeating thisdn/5e times will give a total running time ofΘ(n). Copy the group
medians to a new arrayB.

Median of medians: Compute the median of the group medians. For this, we will have to call the
selection algorithm recursively onB, e.g. Select(B, 1, m, k) , wherem = dn/5e, and
k = b(m + 1)/2c. Let x be this median of medians. Returnx as the desired pivot.

The algorithm is illustrated in the figure below. To establish the correctness of this procedure, we need
to argue thatx satisfies the desired rank properties.

Lemma: The elementx is of rank at leastn/4 and at most3n/4 in A.

Proof: We will show thatx is of rank at leastn/4. The other part of the proof is essentially sym-
metrical. To do this, we need to show that there are at leastn/4 elements that are less than or
equal tox. This is a bit complicated, due to the floor and ceiling arithmetic, so to simplify things
we will assume thatn is evenly divisible by 5. Consider the groups shown in the tabular form
above. Observe that at least half of the group medians are less than or equal tox. (Becausex is

34

Lecture Notes CMSC 251

 8

10

27

Group

29

11

58

39

60

55

 1

21

52

19

48 63

12

23

 3

24

37

57

14

 6

4824

57

14

25

30

43

 2

32

 3

63

12

52

23

64

34

17

44

 5

19

 8

27

10

41

25

25

43

30

32

 2

63

52

12

23

 3

34

44

17

27

10

 8

19

48

41

60

 1

29

11

39

58

Get median of medians
(Sorting of group medians is not really performed)

 6

43

30

32

 2

64

 5

34

44

17 29

11

39

58 55

21

41

60

 1

24

64

 5

55

21

Get group medians

37

57

14

37

 6

Figure 8: Choosing the Pivot. 30 is the final pivot.

their median.) And for each group median, there are three elements that are less than or equal to
this median within its group (because it is the median of its group). Therefore, there are at least
3((n/5)/2 = 3n/10 ≥ n/4 elements that are less than or equal tox in the entire array.

Analysis: The last order of business is to analyze the running time of the overall algorithm. We achieved
the main goal, namely that of eliminating a constant fraction (at least1/4) of the remaining list at each
stage of the algorithm. The recursive call inSelect() will be made to list no larger than3n/4.
However, in order to achieve this, withinSelect Pivot() we needed to make a recursive call to
Select() on an arrayB consisting ofdn/5e elements. Everything else took onlyΘ(n) time. As
usual, we will ignore floors and ceilings, and write theΘ(n) asn for concreteness. The running time
is

T (n) ≤
{

1 if n = 1,
T (n/5) + T (3n/4) + n otherwise.

This is a very strange recurrence because it involves a mixture of different fractions (n/5 and3n/4).
This mixture will make it impossible to use the Master Theorem, and difficult to apply iteration. How-
ever, this is a good place to apply constructive induction. We know we want an algorithm that runs in
Θ(n) time.

Theorem: There is a constantc, such thatT (n) ≤ cn.

Proof: (by strong induction onn)

Basis: (n = 1) In this case we haveT (n) = 1, and soT (n) ≤ cn as long asc ≥ 1.

Step: We assume thatT (n′) ≤ cn′ for all n′ < n. We will then show thatT (n) ≤ cn. By
definition we have

T (n) = T (n/5) + T (3n/4) + n.

35

Lecture Notes CMSC 251

Sincen/5 and3n/4 are both less thann, we can apply the induction hypothesis, giving

T (n) ≤ c
n

5
+ c

3n

4
+ n = cn

(
1
5

+
3
4

)
+ n

= cn
19
20

+ n = n

(
19c
20

+ 1
)

.

This last expression will be≤ cn, provided that we selectc such thatc ≥ (19c/20) + 1.
Solving forc we see that this is true provided thatc ≥ 20.

Combining the constraints thatc ≥ 1, andc ≥ 20, we see that by lettingc = 20, we are done.

A natural question is why did we pick groups of 5? If you look at the proof above, you will see that it
works for any value that is strictly greater than 4. (You might try it replacing the 5 with 3, 4, or 6 and
see what happens.)

Lecture 10: Long Integer Multiplication

(Thursday, Feb 26, 1998)
Read: Todays material on integer multiplication is not covered in CLR.

Office hours: The TA, Kyongil, will have extra office hours on Monday before the midterm, from 1:00-2:00.
I’ll have office hours from 2:00-4:00 on Monday.

Long Integer Multiplication: The following little algorithm shows a bit more about the surprising applica-
tions of divide-and-conquer. The problem that we want to consider is how to perform arithmetic on
long integers, and multiplication in particular. The reason for doing arithmetic on long numbers stems
from cryptography. Most techniques for encryption are based on number-theoretic techniques. For
example, the character string to be encrypted is converted into a sequence of numbers, and encryption
keys are stored as long integers. Efficient encryption and decryption depends on being able to perform
arithmetic on long numbers, typically containing hundreds of digits.

Addition and subtraction on large numbers is relatively easy. Ifn is the number of digits, then these
algorithms run inΘ(n) time. (Go back and analyze your solution to the problem on Homework 1). But
the standard algorithm for multiplication runs inΘ(n2) time, which can be quite costly when lots of
long multiplications are needed.

This raises the question of whether there is a more efficient way to multiply two very large numbers. It
would seem surprising if there were, since for centuries people have used the same algorithm that we
all learn in grade school. In fact, we will see that it is possible.

Divide-and-Conquer Algorithm: We know the basic grade-school algorithm for multiplication. We nor-
mally think of this algorithm as applying on a digit-by-digit basis, but if we partition ann digit number
into two “super digits” with roughlyn/2 each into longer sequences, the same multiplication rule still
applies.

To avoid complicating things with floors and ceilings, let’s just assume that the number of digitsn is
a power of 2. LetA andB be the two numbers to multiply. LetA[0] denote the least significant digit
and letA[n − 1] denote the most significant digit ofA. Because of the way we write numbers, it is
more natural to think of the elements ofA as being indexed in decreasing order from left to right as
A[n− 1..0] rather than the usualA[0..n− 1].

Let m = n/2. Let

w = A[n− 1..m] x = A[m− 1..0] and
y = B[n− 1..m] z = B[m− 1..0].

36

