
Word alignment

32-bit word: 4 bytes
Suppose we want to store the word 0123ABCDhex

Start at address 1000
big-endian data 01 23 AB CD

address 1000 1001 1002 1003
little-endian data CD AB 23 01

address 1000 1001 1002 1003
We say the word is stored at address 1000, meaning it's stored beginning at address 1000
Could we store these same 4 bytes starting at address 1001, for example?
Yes, but the hardware for accessing the data in memory is simpler if the data is aligned

A word begins on a word boundary (address divisible by 4)
What's a good way to tell if an address is a word boundary?
If its address in binary ends in 00
A halfword is aligned on an address divisible by 2

What is the effect on high-level language?
Consider the structure

struct Foo {

 char x ; // 1 byte
 int y ; // 4 bytes
 char z ; // 1 byte
 int w ; // 4 bytes
} ;

What is the size of a variable of type struct Foo?
1 + 4 + 1 + 4 = 10 bytes

Not necessarily! If the ints are aligned on word boundaries, there must be 3 bytes between
the chars and the ints.
This means that the size of the struct is 16 bytes, if alignment is required.

The extra bytes are called padding or holes.
This is the main reason struct variables can't be directly compared in C,

but they can be assigned directly.
The efficient way to compare would be to compare all bits in each struct, but
the pad bytes, if any, are undefined, and may be any value.

Why is assignment OK?
Try sizeof operator on this struct
Summary

address binary address
divisible by ends in

byte 1 anything
halfword 2 0
word 4 00
doubleword 8 000

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

