
IA-32 Instruction Set Architecture

CS 365 Lecture 4 Prof. Yih Huang

CS 365

General-Purpose Registers

Assembly Name	Reg #
EAX	000
EBX	001
ECX	010
EDX	011
ESP	100
EDP	101
ESI	110
EDI	111

- We also have BX, BH, BL, CX, CH CL, DX, CH, CL.
- □ SP, BP, SI, DI are lower-halves of the other 4 registers.

CS 365

- □ When operating on 16-bit data, the 7 register numbers (000 111) refers to AX, BX, CX, DX, SP, BP, SI and DI.
- □ When operating on 8-bit data, the 7 register numbers (000 111) refers to AL, CL, DL, BL, AH, CL, DH and BL.
- □ Data width is specified by the opcode.

Instruction Format

Opcode	ModR/M	SIB	displacement	Immediate	
1 or 2 bytes	1 byte, If required	1 byte, If required	1,2 or 4 bytes If required	1,2 or 4 bytes If required	
□ Opcode: determine the action					
☐ ModR/M: Addressing modes register/memory					
□SIB: Scale-Index-Base					
□ Not all fields are present in all instr.					
☐ If present, must be in the above order					
_					

ModR/M

Mod Reg # R/M

2 bits 3 bits 3 bits

□ Mod=00,

- First operand a register, specified by Reg #
- Second operand in memory; address stored in a register numbered by R/M.
 - \gt That is, Memory[Reg[R/M]]
- Exceptions:

R/M=100 (SP): SIB needed

>R/M=101 (BP): disp32 needed

CS 365

- □ **Mod=01**, same as Mod 00 with 8-bit displacement.
 - Second operand: Memory[disp8+Reg[R/M].
 - Exception: SIB needed when R/M=100
- □ **Mod=10**, same as Mod 01 with 32-bit displacement
- \square Mod=11
 - Second operand is also a register, numbered by R/M.

CS 365

- ☐ Do not confuse displacement width with data width.
 - Data width is specified by the opcode.
 - For example, the use of disp8 does not imply 8-bit data.
- □ For some opcodes, the reg# is used as an extension of the opcode.

CS 365

SIB

- □ Specify how a memory address is calculated
- \square Address=Reg[base] + Reg[Index]*2^{scale}
- □ Exceptions:
 - SP cannot be an index, and
 - -BP cannot be a base.

CS 365

9

Example: Add Instructions

- ☐ The first operand is the destination.
 - Can be register or memory
- ☐ The second operand is the source
 - Can be register or memory
- ☐ The two operands cannot be both memory.
- □ Action: dest += source

CS 365

immd8 AL += immd804 05 immd32 EAX += immd32Rm8 += r800 modRM modRMRm32 += r3201 03 modRM r32 += rm3211 000 immd8 Rm8 += immd880 11 000 immd32 81 Rm32 += immd32CS 365

Even Longer Varieties?

CS 365

Multiplication

F7	100	SIB/displacement if required

- \square Action: EDX:EAX \leftarrow EAX \times Rm32
- □ Notice that the multiplier is fixed. It must be EAX.
- ☐ The multiplicand can be register or memory.

CS 365

Special Purpose Instructions

- □ Decimal arithmetic
- □ Strings
- \square MMX
- □ SIMD (single instruction multiple data)

MIPS versus IA32

- ☐ Fixed instruction formats of MIPS
 - Simple decoding logic
 - Waste of memory space
 - Limited addressing modes
- □ Variable length formats of IA32
 - Difficult to decode; sequential decoding
 - Compact machine codes
 - Accommodate versatile addressing modes

CS 365

- □ Large pool of general purpose registers in MIPS.
 - No special considerations for particular opcodes/registers; everything is born equal.
 - > Well, there are exceptions. Can you name one?
 - Simplify programming and program optimizations
 - Good for compilations

☐ Small pool of registers in IA32

- Small amount of data stored inside CPU
 - Recall that moving data between CPU and memory is slow, compared to pure register operations.
 - ➤ Usually lead to inefficient code
- Many registers serve special purposes;
 making programmer/compiler's job
 difficult
 - > Again could lead to inefficient code

CS 365

☐ Operand architecture of MIPS

- Uses three register operands
- All data must be (explicitly) moved into registers before the CPU and manipulate them.
- Results have to be explicitly stored back to memory.
- Creates longer machine codes but reflects the reality.

S 365

□ Operand architecture of IA32

- One or two operands
- Operands in some instructions are fixed and implied
 - >Compact code but lack flexibilities
 - > Makes code optimizations difficult
- One operand can be memory
 - >No explicit load/stores; compact code
 - >Data are moved in/out of CPU anyway; no gain in performance

CS 365

- □ IA32 has to be backward compatible with previous 8/16 bit architectures.
 - This contributes to its complexities, many of which unnecessarily so
 - However, Intel gets to keep its software and customer base. BIG PLUS.
 - Intel commands huge resources to push improvements.
 - The result is IA32 chips are generally on par with other modern ISAs.

S 365

- ☐ MIPS representation a new generation of computer architectures.
 - Called Reduced Instruction Set Computer (RISC)
 - No corpses to carry; clean designs
 - Everything is purposely kept simple.
 - In theory, this shortens design cycles and produces efficient implementations.
 - In reality, you need people and money to compete with Intel. Very difficult.