
1

EECS 252 Graduate Computer
Architecture

Lec 20 – How to Have a Bad Career
in Grad School and Beyond

David Patterson
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~pattrsn
http://vlsi.cs.berkeley.edu/cs252-s06

2

Outline
• Part I: Key Advice for a Bad Career while a Grad Student
• Part II: Advice on Alternatives to a Bad Graduate Career
• Administrivia
• Part III: Key Advice for a Bad Career
• Part IV: Key Advice on Alternatives to a Bad Career
• Topics covered in Parts III (today) and IV (next meeting)

– Selecting a Problem
– Picking a Solution
– Performing the Research
– Evaluating the Results
– Communicating Results
– Transferring Technology

• (Post-Tenure) Career Advice from Richard Hamming, Ivan
Sutherland, Karl Pister (next meeting)

• Conclusion and Acknowledgments (next meeting)

3

Part I: How to Have a Bad Graduate Career

• Concentrate on getting good grades:
– postpone research involvement: might lower GPA

• Minimize number and flavors of courses
– Why take advantage of 1 of the top departments with an

emphasis on excellent grad courses?
– Why take advantage of a campus with 35/36 courses in the

top 10?
– May affect GPA

• Don’t trust your advisor
– Advisor is only interested in his or her own career, not your’s
– Advisor may try to mentor you, use up time, interfering with

GPA
• Only work the number of hours per week you are paid!

– Don’t let master class exploit the workers!
• Work at home as much as possible

– Avoid distractions of talking to others 4

Part I: How to Have a Bad Graduate Career

• Concentrate on graduating as fast as possible
– Winner is first in class to PhD
– People only care about that you have a PhD and your GPA,

not on what you know
» Nirvana: graduating in 3.5 years with a 4.0 GPA!

– Don’t spend a summer in industry: takes longer
» How could industry experience help with selecting PhD topic?

– Don’t work on large projects: takes longer
» Have to talk to others, have to learn different areas
» Synchronization overhead of multiple people
» You’ll get lost

– Don’t do a systems PhD: takes longer
• Don’t go to conferences

– It costs money and takes time; you’ll have plenty of time to
learn the field after graduating

• Don’t waste time polishing writing or talks
– Again, that takes time

5

Part II: Alternatives to a Bad Graduate Career
• Concentrate on getting good grades?

– Reality: need to maintain reasonable grades
» Only once gave a below B in CS 252
» 3 prelim courses only real grades that count

– What matters on graduation is letters of recommendation from 3-4
faculty/PhDs who have known you for 5+ years
(including 1 outside of Berkeley: see summer jobs)

• Minimize number and flavors of courses?
– Your last chance to be exposed to new ideas before have to learn

them on your own (re: queueing theory and me)
– Get a real outside minor from a campus with great departments in

all fields; e.g., Management of Technology certificate, Copyright
Law, SIM, Genetics, …

• Don’t trust your advisor?
– Primary attraction of campus vs. research lab is grad students
– Faculty career is judged in large part by success of their students
– Try taking advice of advisor?

• Stay home to avoid distractions?
– Research is not a straight line; need to interact to get great ideas

6

Part II: Alternatives to a Bad Graduate Career
• Concentrate on graduating as fast as possible?

– Your last chance to learn; most learning will be outside the classroom
– Considered newly “minted” when finish PhD

» Judged on year of PhD vs. year of birth
» To a person in their 40s or 50s,

1 or 2 more years is roundoff error (27 = 29)

• Don’t go to conferences?
– Chance to see firsthand what the field is like, where its going
– There are student rates, you can share a room
– Talk to people in the field in the halls
– If your faculty advisor won’t pay, then pay it yourself;

almost always offer student rates, can often share rooms
» Landay paid his own way to conferences while grad student

• Don’t waste time polishing writing or talks?
– In the marketplace of ideas, the more polish the more likely people

will pay attention to your ideas
– Practice presentation AND answering tough questions

7

Part II: Alternatives to a Bad Graduate Career
• Only work the number of hours per week you are paid?

– Campus Faculty average is 65-70 hours/work; EECS higher
– Students should be in that range
– Organize each day: when most alert? nap? exercise? sleep?
– When/how often/how long: write, read, program, email?
– To do lists: daily, weekly, semester

• Industrial Experience?
– 1st or 2nd summer get work experience, or 1 semester off

• Advice from a very successful recent student; Remzi Arpaci
(just got tenure at University Wisconsin – Madison)

– Great ideas, did lots of papers, well thought of
– I asked: Why do you think you did so well?
– He said I gave him advice the first week he arrived
– I asked: What did I say?
– He said 3 observations, and still good advice today

8

Part II: How to be a Success in Graduate School

1) “Swim or Sink”
“Success is determined by me (student) primarily”
Faculty will set up the opportunity,

but its up to me leverage it
2) “Read/learn on your own”

“Related to 1), I think you told me this as you
handed me a stack of about 20 papers”

3) “Teach your advisor”
“I really liked this concept; go out and learn about

something and then teach the professor”
Fast moving field, don’t expect prof to be

at forefront everywhere

9

CS252: Administrivia
• Still Grading Quiz 2
• Project Presentations Monday 5/1 in

– Soda 6th Floor Alcove 9:45 to 4PM
• Signup sheet! Only 2 so far. Will assign randomly!
• Project Posters 5/3 Wednesday (11-12:30 in Soda

6th floor); lunch will be served
– Cecilia has some poster boards in her office (676

Soda)...get them from her ASAP (she's on vacation
Thursday-Monday). You will have to pick up easels for
your posters on May 3rd before the poster session.

• Final Papers due Friday 5/5
– Email Archana, who will post papers on class web site

• Last Meeting Monday 5/8: Goodbye to Computer
Architecture / Your Cal Cultural History, Course
Evaluation ; projects/grades handed out 10

Outline
• Part I: Key Advice for a Bad Career while a Grad Student
• Part II: Advice on Alternatives to a Bad Graduate Career
• Administrivia
• Part III: Key Advice for a Bad Career
• Part IV: Key Advice on Alternatives to a Bad Career
• Topics covered in Parts III (today) and IV (next meeting)

– Selecting a Problem
– Picking a Solution
– Performing the Research
– Evaluating the Results
– Communicating Results
– Transferring Technology

• (Post-Tenure) Career Advice from Richard Hamming, Ivan
Sutherland, Karl Pister (next meeting)

• Conclusion and Acknowledgments (next meeting)

11

Bad Career Move #1: Be THE leading expert

• Invent a new field!
– Make sure its slightly different

• Be the real Lone Ranger: Don’t work with others
– No ambiguity in credit
– Adopt the Prima Donna personality

• Research Horizons
– Never define success
– Avoid Payoffs of less than 20 years
– Stick to one topic for whole career
– Even if technology appears to leave you behind,

stand by your problem

12

Bad Career Move #2: Let Complexity Be Your Guide
(Confuse Thine Enemies)

• Best compliment:
“Its so complicated, I can’t understand the ideas”

• Easier to claim credit for subsequent good ideas
– If no one understands, how can they contradict your

claim?
• It’s easier to be complicated

– Also: to publish it must be different; N+1st incremental
change

• If it were not unsimple then how could
distinguished colleagues in departments around
the world be positively appreciative of both your
extraordinary intellectual grasp of the nuances of
issues as well as the depth of your contribution?

13

Bad Career Move #3: Never be Proven Wrong

• Avoid Implementing
• Avoid Quantitative Experiments

– If you’ve got good intuition, who needs
experiments?

– Why give grist for critics’ mill?
– Plus, it takes too long to measure

• Avoid Benchmarks
• Projects whose payoff is ≥ 20 years

gives you 19 safe years

14

Bad Career Move #4:
Use the Computer Scientific Method

Computer Scientific Method
• Hunch
• 1 experiment

& change all parameters

• Discard if doesn’t support
hunch

• Why waste time? We know
this

Obsolete Scientific Method
• Hypothesis
• Sequence of experiment
• Change 1 parameter/ex
• Prove/Disprove

Hypothesis
• Document for others to

reproduce results

15

Bad Career Move #5:
Don’t be Distracted by Others (Avoid Feedback)

• Always dominate conversations:
Silence is ignorance

– Corollary: Loud is smart
• Don’t read
• Don’t be tainted by interaction with users,

industry
• Reviews

– If it's simple and obvious in retrospect ⇒ Reject
– Quantitative results don't matter if they just show you

what you already know ⇒ Reject
– Everything else ⇒ Reject

16

Bad Career Move #6:
Publishing Journal Papers IS Technology Transfer

• Target Archival Journals: the Coin of the
Academic Realm

– It takes 2 to 3 years from submission to publication
⇒ timeless

• As the leading scientist, your job is to publish in
journals;
its not your job to make you the ideas palatable
to the ordinary engineer

• Going to conferences and visiting companies
just uses up valuable research time

– Travel time, having to interact with others, serve on
program committees, ...

17

Bad Career Move #7:
Writing Tactics for a Bad Career

• Student productivity = number of papers
– Number of students: big is beautiful
– Never ask students to implement: reduces papers

• Legally change your name to Aaaanderson

1
idea

4
journal papers

16
extended abstracts

64
technical reports

“Publication
pyramid

of
success”

• Papers: It’s Quantity, not Quality
– Personal Success = Length of Publication List
– “The LPU (Least Publishable Unit) is Good for You”

18

5 Writing Commandments for a Bad Career

I. Thou shalt not define terms, nor explain anything.
II. Thou shalt replace “will do” with “have done”.
III. Thou shalt not mention drawbacks to your

approach.
IV. Thou shalt not reference any papers.
V. Thou shalt publish before implementing.

19

7 Talk Commandments for a Bad Career

I. Thou shalt not illustrate.
II. Thou shalt not covet brevity.
III. Thou shalt not print large.
IV. Thou shalt not use color.
V. Thou shalt cover thy naked slides.
VI. Thou shalt not skip slides in a long talk.
VII. Thou shalt not practice.

20

Following all the commandments in Powerpoint!

• We describe the philosophy and design of the control flow machine, and present the results of detailed simulations of the
performance of a single processing element. Each factor is compared with the measured performance of an advanced von
Neumann computer running equivalent code. It is shown that the control flow processor compares favorably in the program.

• We present a denotational semantics for a logic program to construct a control flow for the logic program. The control flow is
defined as an algebraic manipulator of idempotent substitutions and it virtually reflects the resolution deductions. We also
present a bottom-up compilation of medium grain clusters from a fine grain control flow graph. We compare the basic block
and the dependence sets algorithms that partition control flow graphs into clusters.

• A hierarchical macro-control-flow computation allows them to exploit the coarse grain parallelism inside a macrotask, such as
a subroutine or a loop, hierarchically. We use a hierarchical definition of macrotasks, a parallelism extraction scheme among
macrotasks defined inside an upper layer macrotask, and a scheduling scheme which assigns hierarchical macrotasks on
hierarchical clusters.

• We apply a parallel simulation scheme to a real problem: the simulation of a control flow architecture, and we compare the
performance of this simulator with that of a sequential one. Moreover, we investigate the effect of modeling the application on
the performance of the simulator. Our study indicates that parallel simulation can reduce the execution time significantly if
appropriate modeling is used.

• We have demonstrated that to achieve the best execution time for a control flow program, the number of nodes within the
system and the type of mapping scheme used are particularly important. In addition, we observe that a large number of
subsystem nodes allows more actors to be fired concurrently, but the communication overhead in passing control tokens to
their destination nodes causes the overall execution time to increase substantially.

• The relationship between the mapping scheme employed and locality effect in a program are discussed. The mapping
scheme employed has to exhibit a strong locality effect in order to allow efficient execution

• Medium grain execution can benefit from a higher output bandwidth of a processor and finally, a simple superscalar processor
with an issue rate of ten is sufficient to exploit the internal parallelism of a cluster. Although the technique does not
exhaustively detect all possible errors, it detects nontrivial errors with a worst-case complexity quadratic to the system size. It
can be automated and applied to systems with arbitrary loops and nondeterminism.

21

7 Poster Commandments for a Bad Career

I. Thou shalt not illustrate.
II. Thou shalt not covet brevity.
III. Thou shalt not print large.
IV. Thou shalt not use color.
V. Thou shalt not attract attention to thyself.
VI. Thou shalt not prepare a short oral overview.
VII. Thou shalt not prepare in advance.

22

Following all the commandments

We describe the philosophy and design of the
control flow machine, and present the results
of detailed simulations of the performance of a
single processing element. Each factor is
compared with the measured performance of
an advanced von Neumann computer running
equivalent code. It is shown that the control
flow processor compares favorably in the
program.

We present a denotational semantics for a
logic program to construct a control flow for
the logic program. The control flow is defined
as an algebraic manipulator of idempotent
substitutions and it virtually reflects the
resolution deductions. We also present a
bottom-up compilation of medium grain
clusters from a fine grain control flow graph.
We compare the basic block and the
dependence sets algorithms that partition
control flow graphs into clusters.

Our compiling strategy is to exploit coarse-
grain parallelism at function application level:
and the function application level parallelism is
implemented by fork-join mechanism. The
compiler translates source programs into
control flow graphs based on analyzing flow of
control, and then serializes instructions within
graphs according to flow arcs such that
function applications, which have no control
dependency, are executed in parallel.

A hierarchical macro-control-flow computation
allows them to exploit the coarse grain
parallelism inside a macrotask, such as a
subroutine or a loop, hierarchically. We use a
hierarchical definition of macrotasks, a
parallelism extraction scheme among
macrotasks defined inside an upper layer
macrotask, and a scheduling scheme which
assigns hierarchical macrotasks on
hierarchical clusters.

We apply a parallel simulation scheme to a
real problem: the simulation of a control flow
architecture, and we compare the
performance of this simulator with that of a
sequential one. Moreover, we investigate the
effect of modeling the application on the
performance of the simulator. Our study
indicates that parallel simulation can reduce
the execution time significantly if appropriate
modeling is used.

We have demonstrated that to achieve the
best execution time for a control flow program,
the number of nodes within the system and
the type of mapping scheme used are
particularly important. In addition, we observe
that a large number of subsystem nodes
allows more actors to be fired concurrently,
but the communication overhead in passing
control tokens to their destination nodes
causes the overall execution time to increase
substantially.

The relationship between the mapping
scheme employed and locality effect in a
program are discussed. The mapping scheme
employed has to exhibit a strong locality effect
in order to allow efficient execution. We
assess the average number of instructions in
a cluster and the reduction in matching
operations compared with fine grain control
flow execution.

Medium grain execution can benefit from a
higher output bandwidth of a processor and
finally, a simple superscalar processor with an
issue rate of ten is sufficient to exploit the
internal parallelism of a cluster. Although the
technique does not exhaustively detect all
possible errors, it detects nontrivial errors with
a worst-case complexity quadratic to the
system size. It can be automated and applied
to systems with arbitrary loops and
nondeterminism.

How to Do a Bad Poster
David Patterson

University of California
Berkeley, CA 94720

23

Outline
• Part I: Key Advice for a Bad Career while a Grad Student
• Part II: Advice on Alternatives to a Bad Graduate Career
• Administrivia
• Part III: Key Advice for a Bad Career
• Part IV: Key Advice on Alternatives to a Bad Career
• Topics covered in Parts III (today) and IV (next meeting)

– Selecting a Problem
– Picking a Solution
– Performing the Research
– Evaluating the Results
– Communicating Results
– Transferring Technology

• (Post-Tenure) Career Advice from Richard Hamming, Ivan
Sutherland, Karl Pister (next meeting)

• Conclusion and Acknowledgments (next meeting)
24

Alternatives to Bad Papers
• Do opposite of Bad Paper commandments

Define terms, distinguish “will do” vs “have done”,
mention drawbacks, real performance, reference other papers.

• Find related work via online search/paper retrieval
(e.g., ACM portal) vs. www only

www.dbs.cdlib.org
• First read Strunk and White, then follow these steps;

1. 1-page paper outline, with tentative page budget/section
2. Paragraph map

» 1 topic phrase/sentence per paragraph, handdrawn figures w. captions
3. (Re)Write draft

» Long captions/figure can contain details ~ Scientific American
» Uses Tables to contain facts that make dreary prose

4. Read aloud, spell check & grammar check
(MS Word; Under Tools, select Grammar, select Options, select
“technical” for writing style vs. “standard”; select Settings and select)

5. Get feedback from friends and critics on draft; go to 3.
• www.cs.berkeley.edu/~pattrsn/talks/writingtips.html

25

Alternatives to Bad Talks
• Do opposite of Bad Talk commandments

I. Thou shalt not illustrate.
II. Thou shalt not covet brevity.
III. Thou shalt not print large.
IV. Thou shalt not use color.
V. Thou shalt cover thy naked slides.
VI. Thou shalt not skip slides in a long talk.
VII. Thou shalt not practice.

• Allocate 1.5 to 2 minutes per slide (not counting title, outline
sides), leave time for questions

• Don’t over animate
• Do dry runs with friends/critics for feedback

– including tough audience questions
• Tape a practice talk (audio tape or video tape)

» Don’t memorize speech, but have notes ready

26

Alternatives to Bad Posters (from Randy Katz)

• Answer Five Heilmeier Questions
1. What is the problem you are tackling?
2. What is the current state-of-the-art?
3. What is your key make-a-difference concept or technology?
4. What have you already accomplished?
5. What is your plan for success?

• Do opposite of Bad Poster commandments
– Poster tries to catch the eye of person walking by

• 9 page poster might look like
Problem
Statement

State-of-
the-Art

Key
Concept

Accomplish
-ment # 1

Title and
Visual logo

Accomplish
-ment # 2

Accomplish
-ment # 3

Plan for
Success

Summary &
Conclusion

27

AME is the 21st Century Challenge
• Availability

– systems should continue to meet quality of service
goals despite hardware and software failures

• Maintainability
– systems should require only minimal ongoing human

administration, regardless of scale or complexity:
Today, cost of maintenance = 10X cost of purchase

• Evolutionary Growth
– systems should evolve gracefully in terms of

performance, maintainability, and availability as they
are grown/upgraded/expanded

• Performance was the 20th Century Challenge
– 1000X Speedup suggests problems are elsewhere

ROC: Recovery-Oriented Computing
Aaron Brown and David Patterson

ROC Research Group, EECS Division, University of California at Berkeley For more info: http://roc.cs.berkeley.edu

Minute s o f Failure

People are the biggest challenge

• People > 50% outages/minutes of failure
– “Sources of Failure in the Public Switched Telephone

Network,” Kuhn; IEEE Computer, 30:4 (Apr 97)
– FCC Records 1992-1994; Overload (not sufficient

switching to lower costs) + 6% outages, 44% minutes

Num be r o f Outag e s

Hum a n -com p a n y
Hum a n -e xte rn a l
HW fa ilu re s
Act of Na ture
S W fa ilu re
Va nd a lis m

Recovery-Oriented Computing
(ROC) Hypothesis

“If a problem has no solution, it may not be a problem,
but a fact, not to be solved, but to be coped with over time”

— Shimon Peres

• Failures are a fact, and recovery/repair is how
we cope with them

• Improving recovery/repair improves availability
– Availability = MTTF

(MTTF + MTTR)
– Since MTTF >> MTTR,

1/10th MTTR just as valuable as 10X MTBF

• Since major Sys Admin job is recovery after
failure, ROC also helps with maintenance

ROC Principles:
(1) Isolation and redundancy

• System is partitionable
– to isolate faults
– to enable online repair/recovery
– to enable online HW growth/SW upgrade
– to enable operator training/expand experience on

portions of real system
– Techniques: Geographically replicated sites, Shared-

nothing cluster, Separate address spaces inside CPU
• System is redundant

– sufficient HW redundancy/data replication => part of
system down but satisfactory service still available

– enough to survive 2nd failure or more during recovery
– Techniques: RAID-6; N-copies of data

ROC Principles:
(2) Online verification

• System enables input insertion, output check
of all modules (including fault insertion)
– to check module operation to find failures faster
– to test correctness of recovery mechanisms

» insert faults and known-incorrect inputs
» also enables availability benchmarks

– to test if proposed solution fixed the problem
» discover whether need to try another solution

– to discover if warning systems are broken
– to expose and remove latent errors from each system
– to train/expand experience of operator
– Techniques: Global invariants; Topology discovery;

Program checking (SW ECC)

ROC Principles:
(3) Undo Support

• ROC system should offer Undo
– to recover from operator errors

» undo is ubiquitous in productivity apps
» should have “undo for maintenance”

– to recover from inevitable SW errors
» restore entire system state to pre-error version

– to recover from operator training via fault-insertion
– to replace traditional backup and restore
– Techniques: Checkpointing; Logging; and time travel

(log structured) file systems

ROC Principles:
(4) Diagnosis Support

• System assists human in diagnosing problems
– root-cause analysis to suggest possible failure points

» track resource dependencies of all requests
» correlate symptomatic requests with component

dependency model to isolate culprit components
– “health” reporting to detect failed/failing components

» failure information, self-test results propagated
upwards

– unified status console to highlight improper behavior,
predict failure, and suggest corrective action

– Techniques: Stamp data blocks with modules used;
Log faults, errors, failures and recovery methods

Lessons Learned from Other Fields
• 1800s: 25% railroad bridges failed!
• Techniques invented since:

– Learn from failures vs. successes
– Redundancy to survive some failures
– Margin of safety 3X-6X times calculated

load to cover what they don’t know
• Safety now in Civil Engineering DNA

– “Structural engineering is the science and art
of designing and making, with economy and
elegance, structures that can safely resist the
forces to which they may be subjected”

• Have we been building the computing
equivalent of the 19th Century iron-
truss bridges?
– What is computer equivalent of safety margin?

Recovery-Oriented Computing
Conclusion

• New century needs new
research agenda
– (and its not performance)

• Embrace failure of HW, SW,
people and still build systems
that work

• ROC: Significantly reducing
Time to Recover/Repair
=> much greater availability
+ much lower maintenance costs

Legendary great bird of Arab
folklore, the Roc is known to be of
such huge size that it can carry off
elephants and other great land
beasts with its large feet. Sinbad
the Sailor encountered such a bird
in The Thousand and One Nights. 28

Conclusions

• Part IV … to be continued next meeting

