15-213
“The Class That Gives CMU Its Zip!”

Introduction to
Computer Systems

Randal E. Bryant
August 27, 2002

Topics:
= Theme
m Five great realities of computer systems
m How this fits within CS curriculum

classOla.ppt CS 213 F 02

Course Theme

m Abstraction is good, but don’t forget reality!

Courses to date emphasize abstraction
m Abstract data types
m Asymptotic analysis

These abstractions have limits
m Especially in the presence of bugs
m Need to understand underlying implementations

Useful outcomes

m Become more effective programmers
® Able to find and eliminate bugs efficiently
e Able to tune program performance

m Prepare for later “systems” classes in CS & ECE

e Compilers, Operating Systems, Networks, Computer
—-2- Architecture, Embedded Systems

15-213, F’02

Great Reality #1

Int’s are not Integers, Float’s are not Reals

Examples
mls x2=20?
® Float’s: Yes!
® Int’s:
» 40000 * 40000 --> 1600000000
» 50000 * 50000 --> ??
mils(x+y)+z = x+(y+2)?
® Unsigned & Signed Int’s: Yes!
® Float’s:
» (1€20 + -1€20) + 3.14 --> 3.14
» 120 + (-1e20 + 3.14) --> ??

15-213, F’02

Computer Arithmetic

Does not generate random values

m Arithmetic operations have important mathematical
properties

Cannot assume “usual” properties
m Due to finiteness of representations

m Integer operations satisfy “ring” properties
e Commutativity, associativity, distributivity

m Floating point operations satisfy “ordering” properties
e Monotonicity, values of signs

Observation
m Need to understand which abstractions apply in which
contexts
= Important issues for compiler writers and serious application
programmers 15213 F'02

Great Reality #2

You’ve got to know assembly

Chances are, you’ll never write program in assembly
m Compilers are much better & more patient than you are

Understanding assembly key to machine-level
execution model
m Behavior of programs in presence of bugs
e High-level language model breaks down
m Tuning program performance
® Understanding sources of program inefficiency

= Implementing system software
e Compiler has machine code as target
e Operating systems must manage process state

5 15-213, F'02

Assembly Code Example

Time Stamp Counter
m Special 64-bit register in Intel-compatible machines
m Incremented every clock cycle
m Read with rdtsc instruction

Application

m Measure time required by procedure
® In units of clock cycles

double t;

start counter();

P();

t = get _counter();

printf ("P required %f clock cycles\n"”, t);

_6— 15-213, F'02

Code to Read Counter

= Write small amount of assembly code using GCC’s asm

facility
m Inserts assembly code into machine code generated by
compiler
static unsigned cyc hi = 0;
static unsigned cyc lo = 0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/

void access_counter (unsigned *hi, unsigned *10)

{

asm("rdtsc, movl %$%edx, %0, movl $%$%eax, 31"
Ne=p" (*hl) , Ne=p" (*10)

"Sedx" ’ "%eax") ’

7 15-213, F’02

Code to Read Counter

/* Record the current value of the cycle counter. */
void start counter()
{

access_counter (&cyc hi, &cyc 1lo);

}

/* Number of cycles since the last call to start counter. */
double get counter()
{
unsigned ncyc_hi, ncyc lo;
unsigned hi, lo, borrow;
/* Get cycle counter */
access_counter (&ncyc hi, &ncyc _1lo);
/* Do double precision subtraction */
lo = ncyc_lo - cyc lo;
borrow = lo > ncyc lo;
hi = ncyc hi - cyc hi - borrow;
return (double) hi * (1 << 30) * 4 + lo;

g 15-213, F'02

Measuring Time

Trickier than it Might Look

m Many sources of variation

Example
m Sum integers from 1 ton
n Cycles
100 961
1,000 8,407
1,000 8,426
10,000 82,861
10,000 82,876
1,000,000 8,419,907
1,000,000 8,425,181

1,000,000,000 8,371,2305,591

Cycles/n
9.61
8.41
8.43
8.29
8.29
8.42
8.43
8.37

15-213, F’02

Great Reality #3

Memory Matters

Memory is not unbounded
m It must be allocated and managed
m Many applications are memory dominated

Memory referencing bugs especially pernicious
m Effects are distant in both time and space

Memory performance is not uniform

m Cache and virtual memory effects can greatly affect program
performance

m Adapting program to characteristics of memory system can
lead to major speed improvements

—10 - 15-213, F’02

Memory Referencing Bug Example

—-11 -

main ()

{

long int a[2];

double d = 3.14;

a[2] = 1073741824; /* Out of bounds reference */
printf("d = %.15g\n", d);

exit (0) ;

Alpha MIPS Linux
-g 5.30498947741318e-315 3.1399998664856 3.14
-0 3.14 3.14 3.14

(Linux version gives correct result, but
implementing as separate function gives

segmentation fault.)
15-213, F'02

Memory Referencing Errors

C and C++ do not provide any memory protection
m Out of bounds array references
m Invalid pointer values
m Abuses of malloc/free

Can lead to nasty bugs

m Whether or not bug has any effect depends on system and
compiler

m Action at a distance
e Corrupted object logically unrelated to one being accessed
e Effect of bug may be first observed long after it is generated

How can | deal with this?
m Program in Java, Lisp, or ML
m Understand what possible interactions may occur

m Use or develop tools to detect referencing errors
12 — 15-213, F'02

Memory Performance Example

Implementations of Matrix Multiplication

m Multiple ways to nest loops

/* ijk */
for (i=0; i<n; i++) {
for (3=0; j<n; Jj++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i] [k] * b[k]l[j];
c[i] []]
}

sum,

—13—

/* jik */
for (3=0; j<n; Jj++) {
for (i=0; i<n; i++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i] [k] * b[k]l[j];
c[i] [J] = sum

}

15-213, F’02

Matmult Performance (Alpha 21164)

Too big for L1 Cache

Too big for L2 Cache

- —o— ijk
e ikj
- —A— ik
e jki
=

= —x— kij
E —o— kiji

T OEEELL L PSS
matrix size (n)

—14 —

15-213, F’02

Blocked matmult perf (Alpha 21164)

—15—

160
=
- —e— Dbijk
- bikj
B A ik
] .
e ikj
E
20+
0 i i i i i i i i i i i i i i i i i
50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
matrix size (n)
15-213, F’02

Great Reality #4

There’s more to performance than asymptotic
complexity

Constant factors matter too!

m Easily see 10:1 performance range depending on how code
written

m Must optimize at multiple levels: algorithm, data
representations, procedures, and loops

Must understand system to optimize performance
= How programs compiled and executed

m How to measure program performance and identify
bottlenecks

m How to improve performance without destroying code
modularity and generality

_ 16— 15-213, F'02

Great Reality #5

Computers do more than execute programs

They need to get data in and out
m I/O system critical to program reliability and performance

They communicate with each other over networks

m Many system-level issues arise in presence of network
e Concurrent operations by autonomous processes
® Coping with unreliable media
® Cross platform compatibility
e Complex performance issues

- 17 - 15-213, F’02

Role within Curriculum

CS 441 ool CS 411
Operating .
Networks Compilers
Systems
| A A ECE 349
Network Processes Machine Code | , Eﬁf 3‘:7 Embedded
Protocols Mem. Mgmt Optimization rchitecture Systems
\ ‘ / Exec. Model /
ECS 21_2 cS 213 Memory System
xecution Svstems
Models y
U Transition from Abstract to
Data Structures
Applications Concrete!
Programming .
| m From: high-level language
CS 211 model
Fundamental conile .
Structures C Programming m To: underlying

implementation

_ 18— 15-213, F'02

Course Perspective

Most Systems Courses are Builder-Centric

m Computer Architecture
® Design pipelined processor in Verilog
m Operating Systems
e Implement large portions of operating system

m Compilers
® Write compiler for simple language

m Networking
e Implement and simulate network protocols

—19—

15-213, F’02

Course Perspective (Cont.)

Our Course is Programmer-Centric

m Purpose is to show how by knowing more about the
underlying system, one can be more effective as a
programmer

m Enable you to

e Write programs that are more reliable and efficient
® Incorporate features that require hooks into OS
» E.g., concurrency, signal handlers

m Not just a course for dedicated hackers
® We bring out the hidden hacker in everyone

m Cover material in this course that you won’t see elsewhere

_ 20— 15-213, F'02

