
Bits and Bytes
Aug. 29, 2002

TopicsTopics
 Why bits?
 Representing information as bits

 Binary/Hexadecimal
 Byte representations

» numbers
» characters and strings
» Instructions

 Bit-level manipulations
 Boolean algebra
 Expressing in C

15-213 F’02class02.ppt

15-213
“The Class That Gives CMU Its Zip!”

– 2 – 15-213, F’02

Why Don’t Computers Use Base 10?
Base 10 Number RepresentationBase 10 Number Representation

 That’s why fingers are known as “digits”
 Natural representation for financial transactions

 Floating point number cannot exactly represent $1.20
 Even carries through in scientific notation

 1.5213 X 104

Implementing ElectronicallyImplementing Electronically
 Hard to store

 ENIAC (First electronic computer) used 10 vacuum tubes / digit
 Hard to transmit

 Need high precision to encode 10 signal levels on single wire
 Messy to implement digital logic functions

 Addition, multiplication, etc.

– 3 – 15-213, F’02

Binary Representations
Base 2 Number RepresentationBase 2 Number Representation

 Represent 1521310 as 111011011011012

 Represent 1.2010 as 1.0011001100110011[0011]…2

 Represent 1.5213 X 104 as 1.11011011011012 X 213

Electronic ImplementationElectronic Implementation
 Easy to store with bistable elements
 Reliably transmitted on noisy and inaccurate wires

 Straightforward implementation of arithmetic functions

0.0V
0.5V

2.8V
3.3V

0 1 0

– 4 – 15-213, F’02

Byte-Oriented Memory Organization
Programs Refer to Virtual AddressesPrograms Refer to Virtual Addresses

 Conceptually very large array of bytes
 Actually implemented with hierarchy of different memory

types
 SRAM, DRAM, disk
 Only allocate for regions actually used by program

 In Unix and Windows NT, address space private to particular
“process”
 Program being executed
 Program can clobber its own data, but not that of others

Compiler + Run-Time System Control AllocationCompiler + Run-Time System Control Allocation
 Where different program objects should be stored
 Multiple mechanisms: static, stack, and heap
 In any case, all allocation within single virtual address space

– 5 – 15-213, F’02

Encoding Byte Values
Byte = 8 bitsByte = 8 bits

 Binary 000000002 to 111111112

 Decimal: 010 to 25510

 Hexadecimal 0016 to FF16
 Base 16 number representation
 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 Write FA1D37B16 in C as 0xFA1D37B

» Or 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decimal

Binary

– 6 – 15-213, F’02

Machine Words
Machine Has Machine Has ““Word SizeWord Size””

 Nominal size of integer-valued data
 Including addresses

 Most current machines are 32 bits (4 bytes)
 Limits addresses to 4GB
 Becoming too small for memory-intensive applications

 High-end systems are 64 bits (8 bytes)
 Potentially address ≈ 1.8 X 1019 bytes

 Machines support multiple data formats
 Fractions or multiples of word size
 Always integral number of bytes

– 7 – 15-213, F’02

Word-Oriented Memory
Organization

Addresses Specify ByteAddresses Specify Byte
LocationsLocations
 Address of first byte in

word
 Addresses of successive

words differ by 4 (32-bit) or
8 (64-bit)

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

32-bit
Words

Bytes Addr.

0012

0013

0014

0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

– 8 – 15-213, F’02

Data Representations
Sizes of C Objects (in Bytes)Sizes of C Objects (in Bytes)

 C Data Type Compaq Alpha Typical 32-bit Intel IA32
 int 4 4 4
 long int 8 4 4
 char 1 1 1
 short 2 2 2
 float 4 4 4
 double 8 8 8
 long double 8 8 10/12
 char * 8 4 4

» Or any other pointer

– 9 – 15-213, F’02

Byte Ordering
How should bytes within multi-byte word be ordered inHow should bytes within multi-byte word be ordered in

memory?memory?
ConventionsConventions

 Sun’s, Mac’s are “Big Endian” machines
 Least significant byte has highest address

 Alphas, PC’s are “Little Endian” machines
 Least significant byte has lowest address

– 10 – 15-213, F’02

Byte Ordering Example
Big Big EndianEndian

 Least significant byte has highest address

Little Little EndianEndian
 Least significant byte has lowest address

ExampleExample
 Variable x has 4-byte representation 0x01234567
 Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

– 11 – 15-213, F’02

Reading Byte-Reversed Listings
DisassemblyDisassembly

 Text representation of binary machine code
 Generated by program that reads the machine code

Example FragmentExample Fragment
 Address Instruction Code Assembly Rendition
 8048365: 5b pop %ebx
 8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx
 804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Deciphering NumbersDeciphering Numbers
 Value: 0x12ab

 Pad to 4 bytes: 0x000012ab

 Split into bytes: 00 00 12 ab

 Reverse: ab 12 00 00

– 12 – 15-213, F’02

Examining Data Representations
Code to Print Byte Representation of DataCode to Print Byte Representation of Data

 Casting pointer to unsigned char * creates byte array

typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{
 int i;
 for (i = 0; i < len; i++)
 printf("0x%p\t0x%.2x\n",
 start+i, start[i]);
 printf("\n");
}

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

– 13 – 15-213, F’02

show_bytes Execution Example

int a = 15213;

printf("int a = 15213;\n");

show_bytes((pointer) &a, sizeof(int));

Result (Linux):
int a = 15213;

0x11ffffcb8 0x6d

0x11ffffcb9 0x3b

0x11ffffcba 0x00

0x11ffffcbb 0x00

– 14 – 15-213, F’02

Representing Integers
intint A = 15213; A = 15213;
intint B = -15213; B = -15213;
long long intint C = 15213; C = 15213;

Decimal: 15213

Binary: 0011 1011 0110 1101
Hex: 3 B 6 D

6D
3B
00
00

Linux/Alpha A

3B
6D

00
00

Sun A

93
C4
FF
FF

Linux/Alpha B

C4
93

FF
FF

Sun B

Two’s complement representation
(Covered next lecture)

00
00
00
00

6D
3B
00
00

Alpha C

3B
6D

00
00

Sun C

6D
3B
00
00

Linux C

– 15 – 15-213, F’02

Representing Pointers
intint B = -15213; B = -15213;
intint *P = &B; *P = &B;

Alpha Address
Hex: 1 F F F F F C A 0

Binary: 0001 1111 1111 1111 1111 1111 1100 1010 0000

01
00
00
00

A0
FC
FF
FF

Alpha P

Sun Address
Hex: E F F F F B 2 C
Binary: 1110 1111 1111 1111 1111 1011 0010 1100

Different compilers & machines assign different locations to objects

FB
2C

EF
FF

Sun P

FF
BF

D4
F8

Linux P

Linux Address
Hex: B F F F F 8 D 4
Binary: 1011 1111 1111 1111 1111 1000 1101 0100

– 16 – 15-213, F’02

Representing Floats
Float F = 15213.0;Float F = 15213.0;

IEEE Single Precision Floating Point Representation
Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
15213: 1110 1101 1011 01

Not same as integer representation, but consistent across machines

00
B4
6D
46

Linux/Alpha F

B4
00

46
6D

Sun F

Can see some relation to integer representation, but not obvious

IEEE Single Precision Floating Point Representation
Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
15213: 1110 1101 1011 01

IEEE Single Precision Floating Point Representation
Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
15213: 1110 1101 1011 01

– 17 – 15-213, F’02

char S[6] = "15213";char S[6] = "15213";

Representing Strings
Strings in CStrings in C

 Represented by array of characters
 Each character encoded in ASCII format

 Standard 7-bit encoding of character set
 Other encodings exist, but uncommon
 Character “0” has code 0x30

» Digit i has code 0x30+i
 String should be null-terminated

 Final character = 0

CompatibilityCompatibility
 Byte ordering not an issue

 Data are single byte quantities
 Text files generally platform independent

 Except for different conventions of line termination character(s)!

Linux/Alpha S Sun S

32
31

31
35

33
00

32
31

31
35

33
00

– 18 – 15-213, F’02

Machine-Level Code Representation
Encode Program as Sequence of InstructionsEncode Program as Sequence of Instructions

 Each simple operation
 Arithmetic operation
 Read or write memory
 Conditional branch

 Instructions encoded as bytes
 Alpha’s, Sun’s, Mac’s use 4 byte instructions

» Reduced Instruction Set Computer (RISC)
 PC’s use variable length instructions

» Complex Instruction Set Computer (CISC)
 Different instruction types and encodings for different

machines
 Most code not binary compatible

Programs are Byte Sequences Too!Programs are Byte Sequences Too!

– 19 – 15-213, F’02

Representing Instructions
intint sum(sum(intint x, x, intint y) y)
{{
 return x+y; return x+y;
}}

Different machines use totally different instructions and encodings

00
00
30
42

Alpha sum

01
80
FA
6B

E0
08

81
C3

Sun sum

90
02
00
09

 For this example, Alpha &
Sun use two 4-byte
instructions
 Use differing numbers of

instructions in other cases
 PC uses 7 instructions with

lengths 1, 2, and 3 bytes
 Same for NT and for Linux
 NT / Linux not fully binary

compatible

E5
8B

55
89

PC sum

45
0C
03
45
08
89
EC
5D
C3

– 20 – 15-213, F’02

Boolean Algebra
Developed by George Developed by George BooleBoole in 19th Century in 19th Century

 Algebraic representation of logic
 Encode “True” as 1 and “False” as 0

AndAnd
 A&B = 1 when both A=1 and

B=1
& 0 1

0 0 0

1 0 1

~

0 1

1 0

NotNot
 ~A = 1 when A=0

OrOr
 A|B = 1 when either A=1 or

B=1
| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

Exclusive-Or (Exclusive-Or (XorXor))
 A^B = 1 when either A=1 or

B=1, but not both

– 21 – 15-213, F’02

A

~A

~B

B

Connection when

 A&~B | ~A&B

Application of Boolean Algebra
Applied to Digital Systems by Claude ShannonApplied to Digital Systems by Claude Shannon

 1937 MIT Master’s Thesis
 Reason about networks of relay switches

 Encode closed switch as 1, open switch as 0
A&~B

~A&B = A^B

– 22 – 15-213, F’02

Integer Algebra
Integer ArithmeticInteger Arithmetic

 〈Z, +, *, –, 0, 1〉 forms a “ring”
 Addition is “sum” operation
 Multiplication is “product” operation
 – is additive inverse
 0 is identity for sum
 1 is identity for product

– 23 – 15-213, F’02

Boolean Algebra
Boolean AlgebraBoolean Algebra

 〈{0,1}, |, &, ~, 0, 1〉 forms a “Boolean algebra”
 Or is “sum” operation
 And is “product” operation
 ~ is “complement” operation (not additive inverse)
 0 is identity for sum
 1 is identity for product

– 24 – 15-213, F’02

 Commutativity
A | B = B | A A + B = B + A
A & B = B & A A * B = B * A

 Associativity
(A | B) | C = A | (B | C) (A + B) + C = A + (B + C)
(A & B) & C = A & (B & C) (A * B) * C = A * (B * C)

 Product distributes over sum
A & (B | C) = (A & B) | (A & C) A * (B + C) = A * B + B * C

 Sum and product identities
A | 0 = A A + 0 = A
A & 1 = A A * 1 = A

 Zero is product annihilator
A & 0 = 0 A * 0 = 0

 Cancellation of negation
~ (~ A) = A – (– A) = A

Boolean Algebra Boolean Algebra ≈≈ Integer RingInteger Ring

– 25 – 15-213, F’02

 Boolean: Sum distributes over product
A | (B & C) = (A | B) & (A | C) A + (B * C) ≠ (A + B) * (B + C)

 Boolean: Idempotency
A | A = A A + A ≠ A

“A is true” or “A is true” = “A is true”
A & A = A A * A ≠ A

 Boolean: Absorption
A | (A & B) = A A + (A * B) ≠ A

“A is true” or “A is true and B is true” = “A is true”
A & (A | B) = A A * (A + B) ≠ A

 Boolean: Laws of Complements
A | ~A = 1 A + –A ≠ 1

“A is true” or “A is false”
 Ring: Every element has additive inverse

A | ~A ≠ 0 A + –A = 0

Boolean Algebra Boolean Algebra ≠≠ Integer RingInteger Ring

– 26 – 15-213, F’02

Properties of & and ^Boolean RingBoolean Ring
 〈{0,1}, ^, &, Ι, 0, 1〉
 Identical to integers mod 2
 Ι is identity operation: Ι (A) = A

A ^ A = 0

PropertyProperty Boolean RingBoolean Ring
 Commutative sum A ^ B = B ^ A
 Commutative product A & B = B & A
 Associative sum (A ^ B) ^ C = A ^ (B ^ C)
 Associative product (A & B) & C = A & (B & C)
 Prod. over sum A & (B ^ C) = (A & B) ^ (B & C)
 0 is sum identity A ^ 0 = A
 1 is prod. identity A & 1 = A
 0 is product annihilator A & 0 = 0
 Additive inverse A ^ A = 0

– 27 – 15-213, F’02

Relations Between Operations
DeMorganDeMorgan’’ss Laws Laws

 Express & in terms of |, and vice-versa
 A & B = ~(~A | ~B)

» A and B are true if and only if neither A nor B is false
 A | B = ~(~A & ~B)

» A or B are true if and only if A and B are not both false

Exclusive-Or using Inclusive OrExclusive-Or using Inclusive Or
 A ^ B = (~A & B) | (A & ~B)

» Exactly one of A and B is true
 A ^ B = (A | B) & ~(A & B)

» Either A is true, or B is true, but not both

– 28 – 15-213, F’02

General Boolean Algebras
Operate on Bit VectorsOperate on Bit Vectors

 Operations applied bitwise

All of the Properties of Boolean Algebra ApplyAll of the Properties of Boolean Algebra Apply

 01101001
& 01010101
 01000001

 01101001
| 01010101
 01111101

 01101001
^ 01010101
 00111100

~ 01010101
 10101010 01000001 01111101 00111100 10101010

– 29 – 15-213, F’02

Representing & Manipulating Sets
RepresentationRepresentation

 Width w bit vector represents subsets of {0, …, w–1}
 aj = 1 if j ∈ A

01101001 { 0, 3, 5, 6 }
76543210

01010101 { 0, 2, 4, 6 }
76543210

OperationsOperations
 & Intersection 01000001 { 0, 6 }
 | Union 01111101 { 0, 2, 3, 4, 5, 6 }
 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
 ~ Complement 10101010 { 1, 3, 5, 7 }

– 30 – 15-213, F’02

Bit-Level Operations in C
Operations &, |, ~, ^ Available in COperations &, |, ~, ^ Available in C

 Apply to any “integral” data type
 long, int, short, char

 View arguments as bit vectors
 Arguments applied bit-wise

Examples (Char data type)Examples (Char data type)
 ~0x41 --> 0xBE

~010000012 --> 101111102
 ~0x00 --> 0xFF

~000000002 --> 111111112
 0x69 & 0x55 --> 0x41

011010012 & 010101012 --> 010000012
 0x69 | 0x55 --> 0x7D

011010012 | 010101012 --> 011111012

– 31 – 15-213, F’02

Contrast: Logic Operations in C
Contrast to Logical OperatorsContrast to Logical Operators

 &&, ||, !
 View 0 as “False”
 Anything nonzero as “True”
 Always return 0 or 1
 Early termination

Examples (char data type)Examples (char data type)
 !0x41 --> 0x00

 !0x00 --> 0x01

 !!0x41 --> 0x01

 0x69 && 0x55 --> 0x01

 0x69 || 0x55 --> 0x01

 p && *p (avoids null pointer access)

– 32 – 15-213, F’02

Shift Operations
Left Shift: Left Shift: x << yx << y

 Shift bit-vector x left y positions
 Throw away extra bits on left
 Fill with 0’s on right

Right Shift: Right Shift: x >> yx >> y
 Shift bit-vector x right y

positions
 Throw away extra bits on right

 Logical shift
 Fill with 0’s on left

 Arithmetic shift
 Replicate most significant bit on

right
 Useful with two’s complement

integer representation

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

– 33 – 15-213, F’02

Cool Stuff with Xor

void funny(void funny(intint *x, *x, intint *y) *y)
{{
 *x = *x ^ *y; /* #1 */ *x = *x ^ *y; /* #1 */
 *y = *x ^ *y; /* #2 */ *y = *x ^ *y; /* #2 */
 *x = *x ^ *y; /* #3 */ *x = *x ^ *y; /* #3 */
}}

 Bitwise Xor is form
of addition

 With extra property
that every value is
its own additive
inverse

 A ^ A = 0

BABegin
BA^B1

(A^B)^B = AA^B2
A(A^B)^A = B3
ABEnd

*y*x

– 34 – 15-213, F’02

Main Points
ItIt’’s All About Bits & Bytess All About Bits & Bytes

 Numbers
 Programs
 Text

Different Machines Follow Different ConventionsDifferent Machines Follow Different Conventions
 Word size
 Byte ordering
 Representations

Boolean Algebra is Mathematical BasisBoolean Algebra is Mathematical Basis
 Basic form encodes “false” as 0, “true” as 1
 General form like bit-level operations in C

 Good for representing & manipulating sets

