15-213

“The course that gives CMU its Zip!”

Integers
Sep 3, 2002

Topics
m Numeric Encodings
e Unsigned & Two’s complement

m Programming Implications
® C promotion rules

m Basic operations
e Addition, negation, multiplication

m Programming Implications
® Consequences of overflow
® Using shifts to perform power-of-2 multiply/divide

class03.ppt 15-213 F’'02

C Puzzles

m Taken from old exams

m Assume machine with 32 bit word size, two’s complement
integers

m For each of the following C expressions, either:

e Argue that is true for all argument values

® Give example where not true

Initialization
int x = foo();
int y = bar();

unsigned ux =

unsigned uy =

X,

V'

x <0

ux >= 0

X

& ==

ux > -1

X

X

X

>y
* x >=

> 0 &&

y >0

((x*2) < 0)

(x<<30) < 0

-X < -y

x+y >0

-x <=0

-x >= 0 15-213,F02

Encoding Integers

Unsigned Two’s Complement
w-1 . w=2 .
B2UX) = Y x -2 B2T(X) = -x,,2""+ Y x 2
i=0 i=0
short int x = 15213; \ _
short int y = -15213; Sign
Bit

m C short 2 bytes long

DecimalHexBinaryx

Sign Bit
m For 2’s complement, most significant bit indicates sign

e 0 for nonnegative
e 1 for negative

3 15-213, F'02

Encoding Example (Cont.)

15213: 00111011 01101101
-15213: 11000100 10010011

X
y

Weight15P13-15213

15-213, F'02

Numeric Ranges

Unsigned Values Two’s Complement Values
m UMin = 0 m TMin = —2w-T

000...0 100...0

m UMax = 2%"-1 m TMax = 2w-1 -1
111...1 011...1
Other Values
m Minus 1
111...1

Values for W=16
DecimalHexBinaryUMax

5 15-213, F'02

Values for Different Word Sizes

w8163264
Observations C Programming
m |TMinl = TMax + 1 B #include <limits.h>
e Asymmetric range ® K&R App. B11

m UMax = 2* TMax+ 1 m Declares constants, e.g.,
® ULONG MAX
® LONG MAX
® LONG MIN

m Values platform-specific

-6 - 15-213, F'02

Unsigned & Signhed Numeric Values

X B2U(X) | B2T(X)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 —7
1010 10 -6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14 —2
1111 15 —1

Equivalence

m Same encodings for
nonnegative values

Uniqueness

m Every bit pattern represents
unique integer value

m Each representable integer
has unique bit encoding

=> Can Invert Mappings

m U2B(x) = B2U'(x)
e Bit pattern for unsigned
integer
m T2B(x) = B2T'(x)
e Bit pattern for two’s comp
integer 15-213, F'02

Casting Signed to Unsigned

C Allows Conversions from Signed to Unsigned

short int x = 15213;

unsigned short int ux = (unsigned short) x;
short int y = -15213;

unsigned short int uy = (unsigned short) y;

Resulting Value
m No change in bit representation

= Nonnegative values unchanged
® ux=15213

m Negative values change into (large) positive values
® uy=50323

15-213, F'02

Relation between Signed & Unsigned

Two’s Complement T2U Unsigned
X » T2B |—»| B2U > ux
X

Maintain Same Bit Pattern

w—1 0
ux |+|+|+ o o o +]+]+

o o 3 K O A A

+2w—1 _ _2w—1 — 2*2w—1 — 2w X X > O
{x +2" x<0

9- 15-213, F'02

Relation Between Signhed & Unsigned

Weight-1$21350323

muy = y+2*32768 = y+ 65536
—-10 - 15-213, F'02

Signed vs. Unsigned in C

Constants
m By default are considered to be signed integers

m Unsigned if have “U” as suffix
0U, 4294967259U

Casting
m Explicit casting between signed & unsigned same as U2T and
T2U

int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

m Implicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;

Casting Surprises

Expression Evaluation

m If mix unsigned and signed in single expression, signed values
implicitly cast to unsigned

m Including comparison operations <, >, ==, <=, >=
m Examples for W= 32

Constant, Constant, Relation Evaluation
0 oU == unsigned
-1 0 < signed
-1 oU > unsigned
2147483647 -2147483648 > signed
21474836470 -2147483648 < unsigned
-1 -2 > sighed
(unsigned) -1 -2 > unsigned
2147483647 2147483648U < unsigned

-12- 2147483647 (int) 2147483648U > signed, Fo2

Explanation of Casting Surprises

2’s Comp. — Unsigned
m Ordering Inversion
m Negative — Big Positive

UMax
UMax — 1

s ® TMax +1| ynsigned
< J

TMax |@ TMax

Range
2’s Comp.
Range 0 |® »®| 0]
=/
—2
TMin

_ 43— - 15-213, F'02

Sign Extension

Task:

m Given w-bit signed integer x
m Convert it to w+k-bit integer with same value

Rule:
m Make k copies of sign bit:
B X = X, qyenny X1 Xyt s Xpynseeey Xo
k copies of MSB < w >
X [] [] []
, VVY vVY
X (] (] [] [] [] []
14— < K >< w >

15-213, F'02

Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

X 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
Y -15213 Cc4 93 11000100 10010011
iy -15213| FF FF C4 93] 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type
m C automatically performs sign extension

- 15 - 15-213, F'02

Justification For Sign Extension

Prove Correctness by Induction on k
m Induction Step: extending by single bit maintains value

< w >
X — e o o
VY YVY
— +)) [
< w+l ———>
m Key observation: 201 = 2w 42w
m Look at weight of upper bits:
X =21 X,
X =2"X,,+2"7 X, = 2%1X,,

—-16 - 15-213, F'02

Why Should | Use Unsigned?

Don’t Use Just Because Number Nonzero

m C compilers on some machines generate less efficient code
unsigned 1i;
for (1 = 1; i < cnt; i++)
a[i] += a[i-1];

m Easy to make mistakes
for (i = cnt-2; i >= 0; i--)
af[i] += a[i+1];

Do Use When Performing Modular Arithmetic
m Multiprecision arithmetic
m Other esoteric stuff

Do Use When Need Extra Bit’s Worth of Range
m Working right up to limit of word size

—-17 - 15-213, F'02

Negating with Complement &
Increment

Claim: Following Holds for 2’s Complement

~X + 1 == -x

Complement
m Observation: ~x + x == 1111.11, == -1

X [1]0|0f1]|1]|1]|0|1

+ ~x |0|1{1]|0(0|O]|1|O

-1 (zfxfz]z]|1]1]1]2

Increment

m~x + X+ (/:{+1) = -¥ + (-x + /)
-X

m~x + 1

Warning: Be cautious treating int’s as integers
~18-— m OK here 15-213, F’'02

Comp. & Incr. Examples

X =15213

IHexBinafyx

DecimalHexBinary0 ~0

_ 19— 15-213, F'02

Unsigned Addition

Operands: w bits u *

+ y e o o
True Sum: w+1 bits U4y . —
Discard Carry: w bits UAdd (u, V) s -

Standard Addition Function
m Ignores carry output

Implements Modular Arithmetic

s = UAdd,(u,v) = u+v mod2"
w
UAdd,,(nv) = u+v u+v<?2
u+v-2" u+v=2"

— 20—

15-213, F'02

Visualizing Integer Addition

Add,(u, v)

Integer Addition

—21—

m 4-bit integers u, v

m Compute true sum
Add,(u, v)

m Values increase
linearly with uand v

m Forms planar
surface

Integer Addition

15-213, F’02

Visualizing Unsigned Addition

Overflow

Wraps Around
m If true sum = 2%
m At most once

True Sum
2W+1 —_
Overflow
ow | __>
I
O L

—922_

Modular Sum

15-213, F’02

Mathematical Properties

Modular Addition Forms an Abelian Group

m Closed under addition
0 <UAdd (u,v) = 21

= Commutative
UAdd (u, v) = UAdd (v, u)
m Associative
UAdd (t, UAdd (u, v)) = UAdd (UAdd (t, u), v)
m 0 is additive identity
UAdd (u,0) = u
m Every element has additive inverse
o Let UComp (u) =2"—-u
UAdd, (u, UComp,(u)) = 0

23—

15-213, F'02

Two’s Complement Addition

u

Operands: w bits

+ v

True Sum: w41 bits u+v [l

Discard Carry: w bits TAdd (u, v)

TAdd and UAdd have Identical Bit-Level Behavior

m Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t=u+v
m Will give s ==

—924 —

15-213, F'02

Characterizing TAdd

Functionality True Sum
m True sum requires 0111.1 w1+
w+1 bits " TAdd Result
= Drop off MSB 0100..0 pw-11 T 011.1
m Treat remaining
bits as 2’s comp. 0000..0 o + T 000...0
integer
PosOver 1100...0 —ow-14 L 100...0
TAdd(u, v) |
-0 X 1000..0 —2% 1 NegOver
A\
<0 \ (u+v+2" urv< TMin,, (NegOver)
£ TAdd,,(u,v) = Jqu+v TMin,, su+v=<TMax,
/ <0 >0 w=1
u u+v-—-72 TMax,, <u+v (PosOver)
NegOver)

_ o5 _ 15-213, F'02

Visualizing 2°s Comp. Addition

NegOver

Values \

m 4-bit two’s comp.
= Range from -8 to +7

Wraps Around

m If sum = 2w1
® Becomes negative
® At most once

m If sum <-2%1
® Becomes positive
® At most once

PosOver

— 26 — 15-213, F’02

Detecting 2’s Comp. Overflow

Task
m Given s = TAdd (u, v)
m Determine if s = Add, (u, V)
m Example
int s, u, v;

s =u + v;

Claim
m Overflow iff either:
uv<0,s=0 (NegOver)
u,v=0,s<0 (PosOver)

2W_1 _

2W—1--

PosOver

| NegOver

ovf = (u<0 == v<0) && (u<0 '= s<0);

—27 —

15-213, F'02

Mathematical Properties of TAdd

Isomorphic Algebra to UAdd

m TAdd (u, v) = U2T(UAdd (T2U(u), T2U(Vv)))
® Since both have identical bit patterns

Two’s Complement Under TAdd Forms a Group
m Closed, Commutative, Associative, 0 is additive identity

m Every element has additive inverse
Let TComp (u) = U2T(UComp (T2U(u))
TAdd (u, TComp ,(u)) = 0

—u u=TMin,,
TComp,,(u) = {

TMin, u=TMin,

— 28— 15-213, F'02

Multiplication

Computing Exact Product of w-bit numbers Xx, y
m Either signed or unsigned

Ranges
m Unsigned: 0 < x*y<(2%—1)2 = 22w_ 2w+l 4 4
® Up to 2w bits
m Two’s complement min: x* y = (-2w")*(2w1-1) = —22w-2 4 pw-1
e Up to 2w-1 bits

= Two’s complement max: x* y< (-2%1) 2 = 22w-2
e Up to 2w bits, but only for (TMin,)?

Maintaining Exact Results

= Would need to keep expanding word size with each product
computed

m Done in software by “arbitrary precision” arithmetic
packages

— 29— 15-213, F'02

Unsigned Multiplication in C

u
Operands: w bits
* vy
True Product: 2*w bits u - v
Discard w bits: w bits UMult, (u , v)

Standard Multiplication Function
m Ignores high order w bits

Implements Modular Arithmetic
UMult (u,v) = u - v mod2%

—30-—

15-213, F'02

Unsigned vs. Signed Multiplication

Unsigned Multiplication

unsigned ux = (unsigned) x;
unsigned uy = (unsigned) vy’

unsigned up = ux * uy

m Truncates product to w-bit number up = UMult, (ux, uy)

m Modular arithmetic: up = ux- uy mod 2%

Two’s Complement Multiplication

—31-—

int x, y;

int p=x * y;
m Compute exact product of two w-bit numbers x, y
m Truncate result to w-bit number p = TMult (x, y)

15-213, F'02

Unsigned vs. Signed Multiplication

Unsigned Multiplication
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) vy’

unsigned up = ux * uy

Two’s Complement Multiplication
int x, y;

int p =x * y;

Relation
m Signed multiplication gives same bit-level result as unsigned

B up == (unsigned) p

- 32 — 15-213, F'02

Power-of-2 Multiply with Shift

Operation
mu << kgivesu * 22X
m Both signed and unsigned

w [ITTT -~ JTT]

* 2k [o] <<~ Jo[@o] «-~ JoJ0

Operands: w bits

True Product: w+k bits «-2¢ [N Io] =~~~ [o[0

Discard k bits: w bits UMult, (u , 25) 0 0]0
TMult (u , 25)

Examples
mEu << 3 == u * 8
Bu << 5 -u<k<3 == u * 24

m Most machines shift and add much faster than multiply

e Compiler generates this code automatically
— 33— 15-213, F'02

Unsigned Power-0f-2 Divide with

Shift

Quotient of Unsigned by Power of 2

mu >> kgives [u / 2¢]

m Uses logical shift

u

Operands:

/ 2k 0 0]0 /
Division: u/ 2k _
Result: | u/2x]
DivisionComputedHexBinaryx X

—34—

15-213, F'02

Signed Power-of-2 Divide with Shift

Quotient of Signed by Power of 2

mx > kgives | x / 2¢|
m Uses arithmetic shift

m Rounds wrong direction when u lf 0

[T Binary Point

0

1

0

0

0

/

P11

X
Operands:
/ 2k
Division: x/ 2k
Result: RoundDown(x / 2F)

DivisionComputedHexBinaryy

—35—

15-213, F'02

Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2
m Want [x / 2k] (Round Toward 0)

m Compute as | (x+2k-1)/ 2k|
e InC: (x + (1<<k)-1) >> k
® Biases dividend toward 0

Case 1: No rounding

— 36—

Dividend:

u

+2k+-1

Divisor:

[/ 2k

Binary Point

/

[u/2k]

Biasing has no effect

L&

15-213, F'02

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding
Dividend: N I I I e |

+2k4-1 [O] ==~ JoJOTZ] =+~ J1]T

\ J
Y
Incremented by 1 Binary Point
Divisor: / 2k O] e JOJLJO] o= |O]O /
|-_x/2k-| 11 e 1711111 eooe ﬁ eooe
\ J

Biasing adds 1 to final result Incremented by 1

37 15-213, F'02

Properties of Unsigned Arithmetic

Unsigned Multiplication with Addition Forms
Commutative Ring

m Addition is commutative group

m Closed under multiplication
0 <UMult (u, v) = 2v -1

= Multiplication Commutative
UMult (u, v) = UMult (v, u)
m Multiplication is Associative
UMult (f, UMult (u, v)) = UMult (UMult (t, u), v)

m 1 is multiplicative identity
UMult (u,1) = u
= Multiplication distributes over addtion
UMult, (¢, UAdd (u, v)) = UAdd (UMult (t, u), UMult (t, v))

— 38— 15-213, F'02

Properties of Two’s Comp. Arithmetic

Isomorphic Algebras

m Unsigned multiplication and addition
® Truncating to w bits

m Two’s complement multiplication and addition
® Truncating to w bits

Both Form Rings
m Isomorphic to ring of integers mod 2%

Comparison to Integer Arithmetic
m Both are rings

m Integers obey ordering properties, e.g.,
u>0 = U+VvV>V
u>0,v>0 = u-v>0

m These properties are not obeyed by two’s comp. arithmetic
TMax + 1 == TMin
-39- 15213 * 30426 == -10030 (16-bit words) 15-213, F'02

C Puzzle Answers

o O 0O 0O 0 0O 0O 0O O

— 40—

m Assume machine with 32 bit word size, two’s comp. integers
m TMin makes a good counterexample in many cases

<0

S

ux >= 0
X & 7 ==

ux > -1

y >0

I

I

((x*2) < 0)

(x<<30) < 0

-X < -y

x+y >0

-x <=0

-x >= 0

False:

True:

True:

False:
False:
False:

False:

True:

False:

TMin

0 = UMin

X, =1

0

-1, TMin
30426
TMax, TMax
—TMax <0
TMin

15-213, F'02

