
Machine-Level Programming V:
Miscellaneous Topics

Sept. 24, 2002

Machine-Level Programming V:
Miscellaneous Topics

Sept. 24, 2002
TopicsTopics

 Linux Memory Layout
 Understanding Pointers
 Buffer Overflow
 Floating Point Code

class09.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’02

Linux Memory LayoutLinux Memory Layout
StackStack

 Runtime stack (8MB limit)

HeapHeap
 Dynamically allocated storage
 When call malloc, calloc, new

DLLsDLLs
 Dynamically Linked Libraries
 Library routines (e.g., printf, malloc)
 Linked into object code when first executed

DataData
 Statically allocated data
 E.g., arrays & strings declared in code

TextText
 Executable machine instructions
 Read-only

Upper
2 hex
digits of
address

Red Hat
v. 6.2
~1920MB
memory
limit

FF

BF

7F

3F

C0

80

40

00

Stack

DLLs

Text
Data

Heap

Heap

08

– 3 – 15-213, F’02

Linux Memory AllocationLinux Memory Allocation
Linked

BF

7F

3F

80

40

00

Stack

DLLs

Text
Data

08

Some
Heap

BF

7F

3F

80

40

00

Stack

DLLs

Text
Data

Heap

08

More
Heap

BF

7F

3F

80

40

00

Stack

DLLs

Text
Data
Heap

Heap

08

Initially
BF

7F

3F

80

40

00

Stack

Text
Data

08

– 4 – 15-213, F’02

Text & Stack ExampleText & Stack Example

(gdb) break main
(gdb) run
 Breakpoint 1, 0x804856f in main ()
(gdb) print $esp
 $3 = (void *) 0xbffffc78

MainMain
 Address 0x804856f should be read
0x0804856f

StackStack
 Address 0xbffffc78

Initially
BF

7F

3F

80

40

00

Stack

Text
Data

08

– 5 – 15-213, F’02

Dynamic Linking ExampleDynamic Linking Example
(gdb) print malloc
 $1 = {<text variable, no debug info>}
 0x8048454 <malloc>
(gdb) run
 Program exited normally.
(gdb) print malloc
 $2 = {void *(unsigned int)}
 0x40006240 <malloc>

InitiallyInitially
 Code in text segment that invokes dynamic

linker
 Address 0x8048454 should be read
0x08048454

FinalFinal
 Code in DLL region

Linked
BF

7F

3F

80

40

00

Stack

DLLs

Text
Data

08

– 6 – 15-213, F’02

Memory Allocation ExampleMemory Allocation Example
char big_array[1<<24]; /* 16 MB */
char huge_array[1<<28]; /* 256 MB */

int beyond;
char *p1, *p2, *p3, *p4;

int useless() { return 0; }

int main()
{
 p1 = malloc(1 <<28); /* 256 MB */
 p2 = malloc(1 << 8); /* 256 B */
 p3 = malloc(1 <<28); /* 256 MB */
 p4 = malloc(1 << 8); /* 256 B */
 /* Some print statements ... */
}

– 7 – 15-213, F’02

Example AddressesExample Addresses
$esp 0xbffffc78
p3 0x500b5008
p1 0x400b4008
Final malloc 0x40006240
p4 0x1904a640
p2 0x1904a538
beyond 0x1904a524
big_array 0x1804a520
huge_array 0x0804a510
main() 0x0804856f
useless() 0x08048560
Initial malloc 0x08048454

BF

7F

3F

80

40

00

Stack

DLLs

Text
Data
Heap

Heap

08

– 8 – 15-213, F’02

C operatorsC operators
Operators Associativity
() [] -> . left to right
! ~ ++ -- + - * & (type) sizeof right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= &= ^= != <<= >>= right to left
, left to right

Note: Unary +, -, and * have higher precedence than binary forms

– 9 – 15-213, F’02

C pointer declarationsC pointer declarations
int *p p is a pointer to int

int *p[13] p is an array[13] of pointer to int

int *(p[13]) p is an array[13] of pointer to int

int **p p is a pointer to a pointer to an int

int (*p)[13] p is a pointer to an array[13] of int

int *f() f is a function returning a pointer to int

int (*f)() f is a pointer to a function returning int

int (*(*f())[13])() f is a function returning ptr to an array[13]
 of pointers to functions returning int

int (*(*x[3])())[5] x is an array[3] of pointers to functions
returning pointers to array[5] of ints

– 10 – 15-213, F’02

Internet Worm and IM WarInternet Worm and IM War
November, 1988November, 1988

 Internet Worm attacks thousands of Internet hosts.
 How did it happen?

July, 1999July, 1999
 Microsoft launches MSN Messenger (instant messaging

system).
 Messenger clients can access popular AOL Instant

Messaging Service (AIM) servers

AIM
server

AIM
client

AIM
client

MSN
client

MSN
server

– 11 – 15-213, F’02

Internet Worm and IM War (cont.)Internet Worm and IM War (cont.)
August 1999August 1999

 Mysteriously, Messenger clients can no longer access AIM
servers.

 Microsoft and AOL begin the IM war:
 AOL changes server to disallow Messenger clients
 Microsoft makes changes to clients to defeat AOL changes.
 At least 13 such skirmishes.

 How did it happen?

The Internet Worm and AOL/Microsoft War were bothThe Internet Worm and AOL/Microsoft War were both
based on based on stack buffer overflowstack buffer overflow exploits! exploits!

 many Unix functions do not check argument sizes.
 allows target buffers to overflow.

– 12 – 15-213, F’02

String Library CodeString Library Code
 Implementation of Unix function gets

 No way to specify limit on number of characters to read

 Similar problems with other Unix functions
 strcpy: Copies string of arbitrary length
 scanf, fscanf, sscanf, when given %s conversion specification

/* Get string from stdin */
char *gets(char *dest)
{
 int c = getc();
 char *p = dest;
 while (c != EOF && c != '\n') {
 *p++ = c;
 c = getc();
 }
 *p = '\0';
 return dest;
}

– 13 – 15-213, F’02

Vulnerable Buffer CodeVulnerable Buffer Code

int main()
{
 printf("Type a string:");
 echo();
 return 0;
}

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}

– 14 – 15-213, F’02

Buffer Overflow ExecutionsBuffer Overflow Executions

unix>./bufdemo
Type a string:123
123

unix>./bufdemo
Type a string:12345
Segmentation Fault

unix>./bufdemo
Type a string:12345678
Segmentation Fault

– 15 – 15-213, F’02

Buffer Overflow StackBuffer Overflow Stack

echo:
pushl %ebp # Save %ebp on stack
movl %esp,%ebp
subl $20,%esp # Allocate space on stack
pushl %ebx # Save %ebx
addl $-12,%esp # Allocate space on stack
leal -4(%ebp),%ebx # Compute buf as %ebp-4
pushl %ebx # Push buf on stack
call gets # Call gets
. . .

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}

Return Address
Saved %ebp

[3][2][1][0] buf

%ebp

Stack
Frame

for main

Stack
Frame

for echo

– 16 – 15-213, F’02

Buffer
Overflow Stack
Example

Buffer
Overflow Stack
Example

Before call to gets

unix> gdb bufdemo
(gdb) break echo
Breakpoint 1 at 0x8048583
(gdb) run
Breakpoint 1, 0x8048583 in echo ()
(gdb) print /x *(unsigned *)$ebp
$1 = 0xbffff8f8
(gdb) print /x *((unsigned *)$ebp + 1)
$3 = 0x804864d

 8048648: call 804857c <echo>
 804864d: mov 0xffffffe8(%ebp),%ebx # Return Point

Return Address
Saved %ebp

[3][2][1][0] buf

%ebp

Stack
Frame

for main

Stack
Frame

for echo

0xbffff8d8

Return Address
Saved %ebp

[3][2][1][0] buf

Stack
Frame

for main

Stack
Frame

for echo

bf ff f8 f8

08 04 86 4d

xx xx xx xx

– 17 – 15-213, F’02

Buffer Overflow Example #1Buffer Overflow Example #1

Before Call to gets Input = “123”

No Problem

0xbffff8d8

Return Address
Saved %ebp

[3][2][1][0] buf

Stack
Frame

for main

Stack
Frame

for echo

bf ff f8 f8

08 04 86 4d

00 33 32 31

Return Address
Saved %ebp

[3][2][1][0] buf

%ebp

Stack
Frame

for main

Stack
Frame

for echo

– 18 – 15-213, F’02

Buffer Overflow Stack Example #2Buffer Overflow Stack Example #2
Input = “12345”

 8048592: push %ebx
 8048593: call 80483e4 <_init+0x50> # gets
 8048598: mov 0xffffffe8(%ebp),%ebx
 804859b: mov %ebp,%esp
 804859d: pop %ebp # %ebp gets set to invalid value
 804859e: ret

echo code:

0xbffff8d8

Return Address
Saved %ebp

[3][2][1][0] buf

Stack
Frame

for main

Stack
Frame

for echo

bf ff 00 35
08 04 86 4d

34 33 32 31

Return Address
Saved %ebp

[3][2][1][0] buf

%ebp

Stack
Frame

for main

Stack
Frame

for echo

Saved value of %ebp set
to 0xbfff0035

Bad news when later
attempt to restore %ebp

– 19 – 15-213, F’02

Buffer Overflow Stack Example #3Buffer Overflow Stack Example #3

Input = “12345678”

Return Address
Saved %ebp

[3][2][1][0] buf

%ebp

Stack
Frame

for main

Stack
Frame

for echo

 8048648: call 804857c <echo>
 804864d: mov 0xffffffe8(%ebp),%ebx # Return Point

0xbffff8d8

Return Address
Saved %ebp

[3][2][1][0] buf

Stack
Frame

for main

Stack
Frame

for echo

38 37 36 35
08 04 86 00

34 33 32 31

Invalid address

No longer pointing to
desired return point

%ebp and return
address corrupted

– 20 – 15-213, F’02

Malicious Use of Buffer OverflowMalicious Use of Buffer Overflow

 Input string contains byte representation of executable code
 Overwrite return address with address of buffer
 When bar() executes ret, will jump to exploit code

void bar() {
 char buf[64];
 gets(buf);
 ...
}

void foo(){
 bar();
 ...
}

Stack
after call to gets()

B

return
address

A

foo stack frame

bar stack frame

B

exploit
code

pad

data
written

by
gets()

– 21 – 15-213, F’02

Exploits Based on Buffer OverflowsExploits Based on Buffer Overflows
Buffer overflow bugs allow remote machines to executeBuffer overflow bugs allow remote machines to execute

arbitrary code on victim machines.arbitrary code on victim machines.
Internet wormInternet worm

 Early versions of the finger server (fingerd) used gets() to
read the argument sent by the client:
 finger droh@cs.cmu.edu

 Worm attacked fingerd server by sending phony argument:
 finger “exploit-code padding new-return-address”
 exploit code: executed a root shell on the victim machine with a

direct TCP connection to the attacker.

– 22 – 15-213, F’02

Exploits Based on Buffer OverflowsExploits Based on Buffer Overflows
Buffer overflow bugs allow remote machines to executeBuffer overflow bugs allow remote machines to execute

arbitrary code on victim machines.arbitrary code on victim machines.
IM WarIM War

 AOL exploited existing buffer overflow bug in AIM clients
 exploit code: returned 4-byte signature (the bytes at some

location in the AIM client) to server.
 When Microsoft changed code to match signature, AOL

changed signature location.

– 23 – 15-213, F’02

Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT)Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT)
From: Phil Bucking <From: Phil Bucking <philbuckingphilbucking@yahoo.com>@yahoo.com>
Subject: AOL exploiting buffer overrun bug in their own software!Subject: AOL exploiting buffer overrun bug in their own software!
To: To: rmsrms@@pharlappharlap.com.com

Mr. Smith,Mr. Smith,

I am writing you because I have discovered something that I think youI am writing you because I have discovered something that I think you
might find interesting because you are an Internet security expert withmight find interesting because you are an Internet security expert with
experience in this area. I have also tried to contact AOL but receivedexperience in this area. I have also tried to contact AOL but received
no response.no response.

I am a developer who has been working on a revolutionary new instantI am a developer who has been working on a revolutionary new instant
messaging client that should be released later this year.messaging client that should be released later this year.
......
It appears that the AIM client has a buffer overrun bug. By itselfIt appears that the AIM client has a buffer overrun bug. By itself
this might not be the end of the world, as MS surely has had its share.this might not be the end of the world, as MS surely has had its share.
But AOL is now *exploiting their own buffer overrun bug* to help inBut AOL is now *exploiting their own buffer overrun bug* to help in
its efforts to block MS Instant Messenger.its efforts to block MS Instant Messenger.
........
Since you have significant credibility with the press I hope that youSince you have significant credibility with the press I hope that you
can use this information to help inform people that behind AOL'scan use this information to help inform people that behind AOL's
friendly exterior they are nefariously compromising peoples' security.friendly exterior they are nefariously compromising peoples' security.

Sincerely,Sincerely,
Phil BuckingPhil Bucking
Founder, Bucking ConsultingFounder, Bucking Consulting
philbuckingphilbucking@yahoo.com@yahoo.com

It was later determined that this email
originated from within Microsoft!

– 24 – 15-213, F’02

Code Red WormCode Red Worm
HistoryHistory

 June 18, 2001. Microsoft announces buffer overflow
vulnerability in IIS Internet server

 July 19, 2001. over 250,000 machines infected by new virus
in 9 hours

 White house must change its IP address. Pentagon shut
down public WWW servers for day

When We Set Up CS:APP Web SiteWhen We Set Up CS:APP Web Site
 Received strings of form
GET
/default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN....NNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN%u9090%u6858%ucbd3%u780
1%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%u909
0%u8190%u00c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u00=a

HTTP/1.0" 400 325 "-" "-"

– 25 – 15-213, F’02

Code Red Exploit CodeCode Red Exploit Code
 Starts 100 threads running
 Spread self

 Generate random IP addresses & send attack string
 Between 1st & 19th of month

 Attack www.whitehouse.gov
 Send 98,304 packets; sleep for 4-1/2 hours; repeat

» Denial of service attack
 Between 21st & 27th of month

 Deface server’s home page
 After waiting 2 hours

– 26 – 15-213, F’02

Code Red EffectsCode Red Effects
Later Version Even More MaliciousLater Version Even More Malicious

 Code Red II
 As of April, 2002, over 18,000 machines infected
 Still spreading

Paved Way for NIMDAPaved Way for NIMDA
 Variety of propagation methods
 One was to exploit vulnerabilities left behind by Code Red II

– 27 – 15-213, F’02

Avoiding Overflow VulnerabilityAvoiding Overflow Vulnerability

Use Library Routines that Limit String LengthsUse Library Routines that Limit String Lengths
 fgets instead of gets
 strncpy instead of strcpy
 Don’t use scanf with %s conversion specification

 Use fgets to read the string

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 fgets(buf, 4, stdin);
 puts(buf);
}

– 28 – 15-213, F’02

IA32 Floating PointIA32 Floating Point
HistoryHistory

 8086: first computer to implement IEEE FP
 separate 8087 FPU (floating point unit)

 486: merged FPU and Integer Unit onto one
chip

SummarySummary
 Hardware to add, multiply, and divide
 Floating point data registers
 Various control & status registers

Floating Point FormatsFloating Point Formats
 single precision (C float): 32 bits
 double precision (C double): 64 bits
 extended precision (C long double): 80 bits

Instruction
decoder and
sequencer

FPUInteger
Unit

Memory

– 29 – 15-213, F’02

FPU Data Register StackFPU Data Register Stack

FPU register format (extended precision)FPU register format (extended precision)

s exp frac
063647879

FPU registersFPU registers
 8 registers
 Logically forms shallow

stack
 Top called %st(0)
 When push too many,

bottom values disappear

stack grows down
“Top” %st(0)

%st(1)
%st(2)
%st(3)

– 30 – 15-213, F’02

FPU instructionsFPU instructions

Large number of floating point instructions and formatsLarge number of floating point instructions and formats
 ~50 basic instruction types
 load, store, add, multiply
 sin, cos, tan, arctan, and log!

Sample instructions:Sample instructions:

Instruction Effect Description
fldz push 0.0 Load zero
flds Addr push M[Addr] Load single precision real
fmuls Addr %st(0) <- %st(0)*M[Addr] Multiply
faddp %st(1) <- %st(0)+%st(1); pop Add and pop

– 31 – 15-213, F’02

Floating Point Code ExampleFloating Point Code Example
Compute Inner ProductCompute Inner Product

of Two Vectorsof Two Vectors
 Single precision

arithmetic
 Common computation

float ipf (float x[],
 float y[],
 int n)
{
 int i;
 float result = 0.0;

 for (i = 0; i < n; i++) {
 result += x[i] * y[i];
 }
 return result;
}

 pushl %ebp # setup
 movl %esp,%ebp
 pushl %ebx

 movl 8(%ebp),%ebx # %ebx=&x
 movl 12(%ebp),%ecx # %ecx=&y
 movl 16(%ebp),%edx # %edx=n
 fldz # push +0.0
 xorl %eax,%eax # i=0
 cmpl %edx,%eax # if i>=n done
 jge .L3
.L5:
 flds (%ebx,%eax,4) # push x[i]
 fmuls (%ecx,%eax,4) # st(0)*=y[i]
 faddp # st(1)+=st(0); pop
 incl %eax # i++
 cmpl %edx,%eax # if i<n repeat
 jl .L5
.L3:
 movl -4(%ebp),%ebx # finish
 movl %ebp, %esp
 popl %ebp
 ret # st(0) = result

– 32 – 15-213, F’02

Inner Product Stack TraceInner Product Stack Trace
1. fldz

0.0 %st(0)

2. flds (%ebx,%eax,4)
0.0 %st(1)
x[0] %st(0)

3. fmuls (%ecx,%eax,4)
0.0 %st(1)

x[0]*y[0] %st(0)

4. faddp
0.0+x[0]*y[0] %st(0)

5. flds (%ebx,%eax,4)
x[0]*y[0] %st(1)

x[1] %st(0)

6. fmuls (%ecx,%eax,4)
x[0]*y[0] %st(1)
x[1]*y[1] %st(0)

7. faddp

%st(0)

x[0]*y[0]+x[1]*y[1]

Initialization

Iteration 0 Iteration 1

– 33 – 15-213, F’02

Final ObservationsFinal Observations

Memory LayoutMemory Layout
 OS/machine dependent (including kernel version)
 Basic partitioning: stack/data/text/heap/DLL found in most

machines

Type Declarations in CType Declarations in C
 Notation obscure, but very systematic

Working with Strange CodeWorking with Strange Code
 Important to analyze nonstandard cases

 E.g., what happens when stack corrupted due to buffer overflow
 Helps to step through with GDB

IA32 Floating PointIA32 Floating Point
 Strange “shallow stack” architecture

