CS:APP Chapter 4
Computer Architecture

Logic Design

Randal E. Bryant

Carnegie Mellon University

http://csapp.cs.cmu.edu

CS:APP



Overview of Logic Design

Fundamental Hardware Requirements

= Communication
e How to get values from one place to another

= Computation
m Storage

Bits are Our Friends
m Everything expressed in terms of values 0 and 1

= Communication
® Low or high voltage on wire

m Computation
e Compute Boolean functions

m Storage
® Store bits of information

CS:APP



Digital Signals
—0—]  k—1—f fe—o0—

Voltage

Time
m Use voltage thresholds to extract discrete values from

continuous signal

m Simplest version: 1-bit signal
e Either high range (1) or low range (0)
e With guard range between them

m Not strongly affected by noise or low quality circuit elements
e Can make circuits simple, small, and fast

-3- CS:APP



Computing with Logic Gates

And Or Not
a — d
h o — out bD out a—|>0-°Ut
out=assb out=a || b out='a

= Outputs are Boolean functions of inputs

m Respond continuously to changes in inputs

e With some, small delay
Rising Delay Falling Delay

Voltage

4 Time CS:APP



Combinational Circuits

Primary
Inputs

Acyclic Network

1 > -

> >

o
1>

Acyclic Network of Logic Gates

Primary
Outputs

m Continously responds to changes on primary inputs

m Primary outputs become (after some delay) Boolean
functions of primary inputs

CS:APP



Bit Equality

Bit equal
a —
-/ HCL Expression
) eq
Y TN L bool eq = (a&é&b) || ('a&&!b)
b '-Do-_/

m Generate 1 if a and b are equal

Hardware Control Language (HCL)

m Very simple hardware description language
® Boolean operations have syntax similar to C logical operations

m We’ll use it to describe control logic for processors

_6- CS:APP



Word Equality

Word-Level Representation

Pt Bit equal il > — Eq
dzy T | | -
byy —1 €030 A
Bit equal
dzo

HCL Representation

([ ([
— Eq bool Eq = (A == B)
([ ([

by — €q;
Bit equal ] ]

a, m 32-bit word size

by _ edp m HCL representation
Bit equal = i i

8y — ® Equality operation

® Generates Boolean value

_7_ CS:APP



Bit-Level Multiplexor

S * Bit MUX ]
z HCL Expression
bool out = (s&&a) || (!'s&é&b)

— out

m Control signal s
m Data signalsaand b
m Output a when s=1, b when s=0

- 8- CS:APP



Word Multiplexor

Word-Level Representation

4
v .
— B
D44 MUX Out
%31 HCL Representation
J
bso int Out = |
. — outs, s : A;
1l : B;
dzo 1,
. m Select input word A or B
o - .
o depending on control signal s
m HCL representation
b ® Case expression
0 o, @ Series of test : value pairs
e Output value for first
% successful test

CS:APP



HCL Word-Level Examples

Minimum of 3 Words

Min3

Y

C_

B MIN3

A_
__

S1 .......................
SO oo .
H H
DO —
D1 MUX4
D2 —
D3—
/

— Qut4

—10 -

int Min3 = |

A< B && ALK C : A;
B<A & B C : B;
1 : C;

1;

int Outd4 = |

1sl&é&!'sO0: DO;
Isl : D1;
1s0 : D2;
1 : D3;

1;

Find minimum of three
input words

HCL case expression

Final case guarantees
match

Select one of 4 inputs
based on two control
bits

HCL case expression
Simplify tests by
assuming sequential

matching
CS:APP



Arithmetic Logic Unit

m Combinational logic
e Continuously responding to inputs

m Control signal selects function computed
e Corresponding to 4 arithmetic/logical operations in Y86

m Also computes values for condition codes

—-11 -

CS:APP



Storing 1 Bit

—12—

Bistable Element

DC L Q+
>>C<’q Q-
q=0or1

Vin

CS:APP



Storing 1 Bit (cont.)

Bistable Element

—13—

Stable 0 —, |

9

q=0or1

Q+

>0
>{>C<!q Q-

—Vin
— V2

=/

etastable

Vin

i

Stable 1

CS:APP



e

Physical Analogy Stable 1

—Vin
— V2

=/

etastable

Stable 0 —, |

Vin
Metastable

Stable left Stable right

- B A >




Storing and Accessing 1 Bit

Bistable Element

R-S Latch
>>C< - a+ R Q+
>0 4 Q- s Q-
q=0or1
Resetting Setting Storing

1 1
R 0 R 1 R ' q
Q+ %ﬁm %ﬁm
0 T ~o0—— 1. 1 o 0 i
S ." Q ) Q S Q

—15— CS:APP



1-Bit Latch

D Latch
D
_._|>c R
Data
— Q+
c [ o
Clock S
Latching Storing
d p >°!d !cliq 'd d aD chd 0p
— Q+
1c Q- 0 ¢

_ 16— CS:APP



Transparent 1-Bit Latch

Latching Changing D

d p 'd 'd 'd d

o R C
—)

Time >

m When in latching mode, combinational propogation from D
to Q+ and Q-

m Value latched depends on value of D as C falls

17 - CS:APP



Edge-Triggered Latch

Data

>

) -

Trigger

D <
Q+

Time
—-18 —

Q+

m Only in latching mode
for brief period
® Rising clock edge

m Value latched depends
on data as clock rises

m Output remains stable at

all other times
CS:APP



Registers

Structure

i7 o Q+ 0,
Ig | o Q+ Og
i | o Q+ O;
!4 . g Q+ 0, I _» _> 0)
I3 | o Q+ 0,
i2 . g Q+ 0o, |
I e Qs o, Clock
Iy | o Q+ 0,

Clock

m Stores word of data
e Different from program registers seen in assembly code

m Collection of edge-triggered latches
m Loads input on rising edge of clock

-19 - CS:APP



Register Operation

—20-—

State = x
Input =y Output = x |:>
—Dix—>

m Stores data bits
m For most of time acts as barrier between input and output

m As clock rises, loads input

Rising
clock

=

State =y
Output =y
Y —>

CS:APP



State Machine Example

Comb. Logic

0

m Accumulator

1 circuit
L 0 Out m Load or

| U Mux > > accumulate on

In ) each cycle
;E_/
LOA e : |
Clock
Clock r
Load
In|_ % X % X X4 X
Out X, XoHXy | XgHX X, | Xg Xg#X, | Xg#X,+Xg

21—

CS:APP



Random-Access Memory

valA
B
SrcA A valw
—>
Register , [~ \\/..
Read ports ; astw  Write port
file —
valB
B —
srcB B
—>

—

Clock
m Stores multiple words of memory
® Address input specifies which word to read or write

m Register file
® Holds values of program registers
® %eax, $esp, etc.
® Register identifier serves as address
» |[D 8 implies no read or write performed

= Multiple Ports
e Can read and/or write multiple words in one cycle

- » Each has separate address and data input/output

CS:APP



Register File Timing

valA

srcA

srcB

2| x

A

Register
file

2| X

Register
file

23—

Clock

valW

y

dstW 2 E>

Reading
m Like combinational logic

m Output data generated based on
input address

e After some delay

Writing

m Like register
m Update only as clock rises

- 2|y
Rising valw
. e
C|oﬁ |:> Re]%l:ter W o
Clock

CS:APP



Hardware Control Language

m Very simple hardware description language

m Can only express limited aspects of hardware operation
e Parts we want to explore and modify

Data Types

m bool: Boolean
® a,b,c,...

m int: words
®ABGC,..
® Does not specify word size---bytes, 32-bit words, ...

Statements
B bool a = bool-expr ;

B int A = int-expr ;

—_ 24 — CS:APP



HCL Operations

m Classify by type of value returned

Boolean Expressions
m Logic Operations

® a && b,a || b,'a
m Word Comparisons
@A == B,A !'!= B,A < B,A <= B,A > B,A > B

m Set Membership
@ Ain { B, C, D }
» SameasA == B || A ==C || A ==1D

Word Expressions

m Case expressions
® [ a: A; b: B;, c¢c: C]]
e Evaluate test expressions a, b, ¢, ... in sequence

® Return word expression A, B, C, ... for first successful test
— 25— CS:APP



Summary

Computation
m Performed by combinational logic
m Computes Boolean functions
m Continuously reacts to input changes

Storage

m Registers
e Hold single words
® Loaded as clock rises

m Random-access memories
e Hold multiple words
® Possible multiple read or write ports
® Read word when address input changes
® Write word as clock rises

— 26 —

CS:APP



