15-213

“The course that gives CMU its Zip!”

System-Level I/O
Nov 14, 2002

Topics

class24 .ppt

= Unix I/O

m Robust reading and writing
m Reading file metadata

m Sharing files

m |/O redirection

m Standard I/O

A Typical Hardware System

CPU chip

register file

: ALU

: system bus memory bus

ic — 7 |
bus interface |< :> /0 < > main
bridge memory

l ‘ \ ‘ /O bus \ | Expansion slots for
other devices such

USB graphics disk as network adapters.
controller adapter controller

mouse keyboard monitor T

o m 15-213, F’02

Reading a Disk Sector: Step 1

CPU chip

register file

I1r

: ALU

bus interface

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller.

N
N—

K—

1T

main
memory

>

< I/0 bus
USB graphics disk
controller adapter controller
mouse keyboard monitor T

—_3—

15-213, F’02

Reading a Disk Sector: Step 2

CPU chip
_ _ Disk controller reads the sector and
register file

performs a direct memory access (DMA)
|::> ALU transfer into main memory.

L

bus interface <::::> l\,—/ mrenrzi:ry
ﬁ F /O bus >
LU J

USB graphics dic k
controller adapter contioller

1 :

mouse keyboard monitor
4 m 15-213, F’02

<

Reading a Disk Sector: Step 3

CPU chip

register file

L

a ALU

bus interface

When the DMA transfer completes, the
disk controller notifies the CPU with an

interrupt (i.e., asserts a special “interrupt”
pin on the CPU)

S

main
memory

ﬁ F VO bus >

usB
controller

1

mouse keyboard

—5—

<

graphics
adapter

:

monitor

<>

disk
controller

m 15-213, F’02

Unix Files

A Unix file is a sequence of m bytes:
»B,8B,..,8,...,B,,

All I/0 devices are represented as files:

m /dev/sda2 (/usr disk partition)
m /dev/tty2 (terminal)

Even the kernel is represented as a file:

m /dev/kmem (kernel memory image)
m /proc (kernel data structures)

15-213, F’02

Unix File Types

Regular file
m Binary or text file.
m Unix does not know the difference!

Directory file
m A file that contains the names and locations of other files.

Character special and block special files
m Terminals (character special) and disks (block special)

FIFO (named pipe)

m A file type used for interprocess comunication

Socket

m A file type used for network communication between
processes

7 15-213, F’02

Unix IO

The elegant mapping of files to devices allows kernel to
export simple interface called Unix I/O.

Key Unix idea: All input and output is handled in a
consistent and uniform way.

Basic Unix I/O operations (system calls):

m Opening and closing files
® open ()and close ()

m Changing the current file position (seek)
® lseek (not discussed)

m Reading and writing a file
® read () and write ()

-8 - 15-213, F’02

Opening Files

Opening a file informs the kernel that you are getting
ready to access that file.

int fd; /* file descriptor */

if ((fd = open(“/etc/hosts”, O RDONLY)) < 0) {
perror (“open”) ;
exit(1l);

Returns a small identifying integer file descriptor
m fd == -1 indicates that an error occurred

Each process created by a Unix shell begins life with
three open files associated with a terminal:

m 0: standard input
m 1: standard output

o ®m 2: standard error 15-213, F102

Closing Files

Closing a file informs the kernel that you are finished

accessing that file.

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror (“close”) ;
exit(1l);

}

Closing an already closed file is a recipe for disaster in

threaded programs (more on this later)

Moral: Always check return codes, even for seemingly

benign functions such as close ()

—10 -

15-213, F’02

Reading Files

Reading a file copies bytes from the current file

position to memory, and then updates file position.

char buf[512];

int fd; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

perror (“read”) ;
exit (1),

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

Returns number of bytes read from file £d into buf

m nbytes < 0 indicates that an error occurred.

m short counts (nbytes < sizeof (buf)) are possible and

are not errors!

—-11 -

15-213, F’02

Writing Files

Writing a file copies bytes from memory to the current file
position, and then updates current file position.

char buf[512];

int fd; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open the file fd */

/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
perror (“write”) ;
exit(1l);

}

Returns number of bytes written from buf to file £d.
m nbytes < 0 indicates that an error occurred.

m As with reads, short counts are possible and are not errors!

Transfers up to 512 bytes from address buf to file £d

12— 15-213, F’02

Unix I/O Example

Copying standard input to standard output one byte at a
time.

#include "csapp.h"

int main (void)
{

char c;

while (Read (STDIN FILENO, &c, 1) !'= 0)

Write (STDOUT_FILENO, &, 1),
exit (0) ;
}

Note the use of error handling wrappers for read and
write (Appendix B).

—13—

15-213, F’02

Dealing with Short Counts

Short counts can occur in these situations:
= Encountering (end-of-file) EOF on reads.
m Reading text lines from a terminal.
m Reading and writing network sockets or Unix pipes.

Short counts never occur in these situations:
m Reading from disk files (except for EOF)
m Writing to disk files.

How should you deal with short counts in your code?

m Use the RIO (Robust I/0) package from your textbook’s
csapp . c file (Appendix B).

14— 15-213, F’02

The RIO Package

RIO is a set of wrappers that provide efficient and robust I/0 in
applications such as network programs that are subject to short
counts.

RIO provides two different kinds of functions

m Unbuffered input and output of binary data
® rio readnand rio writen

m Buffered input of binary data and text lines
® rio readlineb and rio_ readnb
e Cleans up some problems with Stevens’s readline and readn functions.

e Unlike the Stevens routines, the buffered RIO routines are thread-safe and
can be interleaved arbitrarily on the same descriptor.

Download from
csapp.cs.cmu.edu/public/ics/code/src/csapp.c
csapp.cs.cmu.edu/public/ics/code/include/csapp.h

—15— 15-213, F’02

Unbuffered RIO Input and Output

Same interface as Unix read and write

Especially useful for transferring data on network
sockets

#include “csapp.h”

ssize t rio_readn(int fd, void *usrbuf, size t n);
ssize t rio writen(nt fd, void *usrbuf, size t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

m rio_readn returns short count only it encounters EOF.
m rio_writen never returns a short count.

m Calls to rio readn and rio writen can be interleaved
arbitrarily on the same descriptor.

_ 16— 15-213, F'02

Implementation of rio readn

/*
* rio readn - robustly read n bytes (unbuffered)
*/

ssize t rio readn(int fd, void *usrbuf, size t n)

{

size t nleft = n;
ssize t nread;

char *bufp = usrbuf;

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {
if (errno == EINTR) /* interrupted by sig
handler return */

nread = 0; /* and call read() again */

else
return -1; /* errno set by read() */
}
else if (nread == 0)
break; /* EOF */
nleft -= nread;

bufp += nread;
}

return (n - nleft); /* return >= 0 */

—17 -

15-213, F’02

Buffered RIO Input Functions

Efficiently read text lines and binary data from a file
partially cached in an internal memory buffer

#include “csapp.h”
void rio readinitb(rio_t *rp, int £d);

ssize t rio_readlineb(rio t *rp, void *usrbuf, size t maxlen);
ssize t rio readnb(rio t *rp, void *usrbuf, size t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

m rio readlineb reads a text line of up to maxlen bytes from
file £4 and stores the line in usrbuf.

e Especially useful for reading text lines from network sockets.
m rio readnb reads up to n bytes from file £d.

m Callsto rio readlineb and rio readnb can be interleaved
arbitrarily on the same descriptor.

e Warning: Don’t interleave with calls to rio readn
_ 18- 15-213, F'02

RIO Example

Copying the lines of a text file from standard input to

standard output.

#include "csapp.h"

int main(int argc, char **argv)
{
int n;
rio t rio;
char buf [MAXLINE] ;

Rio readinitb(&rio, STDIN FILENO) ;

while((n = Rio_readlineb(&rio, buf, MAXLINE))
Rio writen (STDOUT FILENO, buf, n);

exit (0) ;

1= 0)

—19—

15-213, F’02

File Metadata

Metadata is data about data, in this case file data.

Maintained by kernel, accessed by users with the stat
and fstat functions.

/* Metadata returned by the stat and fstat functions */

struct stat {

dev_t

ino_t

mode t
nlink t
uid t

gid t

dev_t

off t
unsigned long
unsigned long
time t

time t

time t

st _dev;

st _ino;

st _mode;
st nlink;
st _uid;

st _gid;

st _rdev;
st size;
st blksize;
st blocks;
st _atime;
st mtime;
st _ctime;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

device */

inode */

protection and file type */
number of hard links */

user ID of owner */

group ID of owner */

device type (if inode device) */
total size, in bytes */
blocksize for filesystem I/O */
number of blocks allocated */
time of last access */

time of last modification */
time of last change */

Example of Accessing File Metadata

/* statcheck.c - Querying and manipulating a file’s meta data */

#include "csapp.h"

int main (int argc, char **argv) bass> ./statcheck statcheck.c
{ type: regular, read: yes
struct stat stat: bass> chmod 000 statcheck.c
char *type, *readok; bass> ./statcheck statcheck.c
type: regular, read: no
Stat (argv[1l], &stat);
if (S_ISREG(stat.st mode)) /* file type*/
type = '"regular";
else if (S_ISDIR(stat.st mode))
type = '"directory";
else
type = "other";
if ((stat.st mode & S IRUSR)) /* OK to read?*/
readok = "yes";
else
readok = "no";
printf ("type: %s, read: %s\n", type, readok);
exit (0) ;
}
_29— 15-213, F’02

How the Unix Kernel Represents
Open Files

Two descriptors referencing two distinct open disk
files. Descriptor 1 (stdout) points to terminal, and
descriptor 4 points to open disk file.

Open file table v-node table
[shared by all processes] [shared by all processes]

Descriptor table
[one table per process]

File A (terminal)

\

stdin fd O — File access
stdout fd 1 - Fi : Info in
ile size
stderr fd 2 Al g : » stat
fd 3 refcnt=1 File type struct
fd 4 : :
J
_—"FFile access
File pos F-|Ie size
refcnt=1 File type
T, 15-213, F’02

File Sharing

Two distinct descriptors sharing the same disk file
through two distinct open file table entries

m E.g., Calling open twice with the same filename argument

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
File A
/’ H
fd 0 — File access
:: ; File pos File size
fd 3 refcnt=1 File type
File pos
refcnt=1
- 23 -] 15-213, F’02

How Processes Share Files

A child process inherits its parent’s open files. Here is
the situation immediately after a fork

— 24 —

Descriptor Open file table v-node table
tables (shared by (shared by
all processes) all processes)
Parent's table File A
fd 0 31— "File access
:g ; = File pos File size
fd 3 refcnt=2 File type
fd 4 ~ .
Child's table File B
id 0] __——"File access
:: ; . File pos E_"e =5
fd 3 refcnt=2 'Ie. type
fd 4

15-213, F’02

/0 Redirection

Question: How does a shell implement I/O redirection?

unix> ls > foo.txt

Answer: By calling the dup2 (o1dfd, newfd) function
m Copies (per-process) descriptor table entry o1dfd to entry

newfd

Descriptor table Descriptor table
before dup2 (4,1) after dup2(4,1)

fd O fd 0

fd 1 a fd 1 b

a2 > o

fd 3 fd 3

fd 4 b fd 4 b

_ o5 _ 15-213, F'02

I/0 Redirection Example

Before calling dup2 (4, 1), stdout (descriptor 1) points
to a terminal and descriptor 4 points to an open disk
file.

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
File A
stdin fd 0 31— "File access
stdout fd 1 = . . -
File size
stderr fd 2 AlG[eE .
fd 3 refent=1 File type
fd 4 ~
File access
File pos F-|Ie size
refcnt=1 File type
26— : 15-213, F'02

I/0 Redirection Example (cont)

After calling dup2 (4,1), stdout is now redirected to the
disk file pointed at by descriptor 4.

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
__FileA . e
fd 0 i S File access
o . File pos | _ File size |
fd 3 | refont=0 | . File type |
da| < N F
File access
File pos F-|Ie size
refcnt=2 File type

- 27 — 15-213, F’02

Standard 1/0 Functions

The C standard library (1ibc. a) contains a collection of

higher-level standard I/O functions
m Documented in Appendix B of K&R.

Examples of standard I/0 functions:

—_ 28—

m Opening and closing files (fopen and fclose)

m Reading and writing bytes (fread and fwrite)

m Reading and writing text lines (£Egets and fputs)

m Formatted reading and writing (Escanf and fprintf)

15-213, F’02

Standard 1/0 Streams

Standard I/0 models open files as sfreams
m Abstraction for a file descriptor and a buffer in memory.

C programs begin life with three open streams (defined

— 29—

in stdio.h)

m stdin (standard input)
m stdout (standard output)
m stderr (standard error)

#include <stdio.h>
extern FILE *stdin;

int main() {
fprintf (stdout,

}

extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

/* standard input (descriptor 0) */

“Hello, world\n”) ;

15-213, F’02

Buffering in Standard IO

Standard I/0 functions use buffered I/0

buf

—30-—

printf (“h”) ;

printf (“Ye”) ;
printf (“1”) ;

printf (“1”) ;
printf (Yo”) ;

> <

A 4
e

l printf (“\n”) ;
A 4 A 4 l

|l |]o|\n

fflush (stdout) ;

v

write(l, buf += 6, 6);

15-213, F’02

Standard I/0 Buffering in Action

You can see this buffering in action for yourself, using
the always fascinating Unix strace program:

#include <stdio.h>

int main ()

{
printf("h"); linux> strace ./hello
printf ("e"); execve ("./hello", ["hello"], [/* ... */]1).
printf ("1") ; L
printf("1"); write(l, "hello\n", 6...) = 6
printf("o") ; L
printf ("\n"); _exit(0) = ?
fflush (stdout) ;
exit (0) ;

3q 15-213, F'02

Unix I/0 vs. Standard 1/0 vs. RIO

Standard I/0 and RIO are implemented using low-level
Unix I/O.

fopen
fread
fscanf
sscanf
fgets
fflush
fclose

fdopen
fwrite
fprintf
sprintf
fputs
fseek

open

stat

read

write 1lseek

close

Which ones should you use in your programs?

—_32_

4.____

C application program

“| Standard /O RIO

functions functions

Unix I/O functions
(accessed via system calls)

rio readn
rio writen
rio readinitb
rio readlineb
rio readnb

15-213, F’02

Pros and Cons of Unix I/0

Pros

= Unix I/O is the most general and lowest overhead form of I/0.

e All other I/O packages are implemented using Unix I/O
functions.

m Unix I/O provides functions for accessing file metadata.

Cons
m Dealing with short counts is tricky and error prone.

m Efficient reading of text lines requires some form of
buffering, also tricky and error prone.

m Both of these issues are addressed by the standard I/0 and
RIO packages.

— 33— 15-213, F’02

Pros and Cons of Standard 1/0

Pros:

m Buffering increases efficiency by decreasing the number of
read and write system calls.

m Short counts are handled automatically.

Cons:
m Provides no function for accessing file metadata

m Standard I/O is not appropriate for input and output on
network sockets

m There are poorly documented restrictions on streams that
interact badly with restrictions on sockets

—34 - 15-213, F'02

Pros and Cons of Standard I/O (cont)

Restrictions on streams:

m Restriction 1: input function cannot follow output function
without intervening call to £f1ush, £seek, fsetpos, Or
rewind.

e Latter three functions all use 1seek to change file position.

m Restriction 2: output function cannot follow an input
function with intervening call to £seek, £setpos, Or rewind.

Restriction on sockets:
m You are not allowed to change the file position of a socket.

35 15-213, F'02

Pros and Cons of Standard I/O (cont)

Workaround for restriction 1:
m Flush stream after every output.

Workaround for restriction 2:

m Open two streams on the same descriptor, one for reading
and one for writing:

FILE *fpin, *fpout;

fpin = fdopen (sockfd, “r”);
fpout = fdopen (sockfd, “w”);

m However, this requires you to close the same descriptor
twice:

fclose (fpin) ;
fclose (fpout) ;

m Creates a deadly race in concurrent threaded programg!213 05
- 36— 213, F’

Choosing I/0 Functions

General rule: Use the highest-level I/O functions you
can.

m Many C programmers are able to do all of their work using
the standard I/O functions.

When to use standard 1/0?
m When working with disk or terminal files.

When to use raw Unix I/O
= When you need to fetch file metadata.
m In rare cases when you need absolute highest performance.

When to use RIO?
m When you are reading and writing network sockets or pipes.
m Never use standard I/0 or raw Unix I/O on sockets or pipes.

37 15-213, F'02

For Further Information

The Unix bible:

m W. Richard Stevens, Advanced Programming in the Unix
Environment, Addison Wesley, 1993.

m Somewhat dated, but still useful.

Stevens is arguably the best technical writer ever.
m Produced authoritative works in:
® Unix programming
e TCP/IP (the protocol that makes the Internet work)
® Unix network programming
® Unix IPC programming.

Tragically, Stevens died Sept 1, 1999.

— 38— 15-213, F’02

