

Rigid Body Simulation
Jeremy Ulrich

Advised by David Mount
Fall 2013

Overview

The project presented here is a real-time 3D rigid body physics engine, and is the result of an
Independent Study on collision detection and response in the context of rigid body dynamics. The
simulation produces realistic motion, collisions, friction and resting contact between multiple bodies.

This paper briefly discusses the spectrum of ideas and algorithms that were needed to implement
the engine.

• The engine works mostly with convex polyhedra, and employs several tools in order to
efficiently perform convexity-based queries and calculations. A few of these, such as the
Quickhull algorithm, are examined in the first section.

• The collision detection system consists of a broad phase and narrow phase. The broad phase
uses a uniform grid and bounding spheres, and the narrow phase includes the Separating Axis
Test for determining intersection between convex polyhedra. The second section deals with
collision detection.

• Finally, the dynamics system employs a velocity-based constraint model for contact and friction
constraints, resolves the constraints using an iterative Sequential Impulse solver, and calculates
the motion of the rigid bodies. These topics are covered in the third section.

About the Engine

 The project was implemented in C++ with Visual Studio 2010. The graphics uses OpenGL and
FreeGLUT, an open-source alternative to the GL Utility Toolkit. No other outside code or programs were
used. All algorithms and functionality in this paper are implemented as described, barring details or
efficiency-related improvements
not mentioned. The engine is
intended to be used as a
practical 3D physics engine in
upcoming projects, and will be
extended to support more
shapes and constraint types in
the near future.

1. Convex Polyhedra

A polyhedron is convex if every line segment between two points on its surface is entirely
contained in the polyhedron. This simple property makes convex polyhedra extremely useful in many
areas of real-time simulation. They are able to approximate any convex shape arbitrarily well, but still
allow for relatively efficient geometric queries and computations. For instance, finding a vertex that is
farthest in some given direction can be done in logarithmic time, rather than the expected linear time
from iterating over each vertex.

Every rigid body in the physics engine is a convex polyhedron. Each polyhedron is stored as a
Doubly Connected Edge List (DCEL), and is constructed from a point set using a 3D implementation of
Quickhull. The engine also implements several typical convex polyhedra-related algorithms, such as
testing for point containment, finding supporting vertices, and testing for intersection with primitives
such as rays and planes, although these topics are not discussed further here.

Doubly Connected Edge Lists

 Efficiently solving convexity-based problems requires a data structure that exploits the
connected nature of the polyhedron. The DCEL can represent general polygonal meshes, and is well-
suited for traversing the features of the mesh.

A general DCEL consists of three sets of structures – vertices, half-edges, and faces. Each edge
on the polyhedron is represented as two directed half-edges in the DCEL. A vertex structure contains its
coordinates, and a reference to some half-edge that is incident to it. A face structure contains a
reference to a half-edge bordering it, where the face is on the half-edge’s left. Finally, a half-edge
structure contains a reference to its origin vertex, its twin half-edge, the face to its left, and the next and
previous edges on that face’s border.

Using a DCEL, many convexity-based algorithms can be improved. The farthest vertex query
mentioned earlier, for example, can be found with a simple hill climbing algorithm, avoiding the need to
check many of the polyhedron’s vertices.

 The engine’s implementation sacrificed a bit of space for clarity of code by including a few more
references in the structures. The polyhedra always have triangular faces, primarily to simplify calculating
their inertia tensor. Therefore, each face holds a reference to all three of its edges and vertices. Each
face also stores its normal vector to reduce run-time computations.

Quickhull

 In order to construct a convex polyhedron from an arbitrary set of points, the engine computes
the convex hull of the set using the Quickhull algorithm. The central idea of the algorithm is that if a
point is the farthest point in some direction (it is an extreme point) then it must be on the convex hull.
Conversely, any point inside the current hull is certainly not on it, and can therefore be discarded.

The algorithm starts by selecting four extreme vertices from the input set, initializing the hull to
the tetrahedron defined by those points, and discarding any points inside. It then repeatedly extends
the polyhedron by finding an extreme point in some direction, adding it to the hull, and discarding any
points now contained in the hull. Once there are no points left outside the hull, it is returned.

 Extra care was needed when extending the 2D version of Quickhull into 3D. In the 2D version,
extreme points are found by iterating over the edges of the current hull. If an extreme point V is found
for some edge E, the hull is easily updated by replacing E with two edges from V to each of E’s vertices.
The same approach does not work in 3D – when an extreme point is added, multiple adjacent faces may
need to be deleted, and only the outer edges should be connected to the extreme point to form new
faces. The DCEL structure comes in handy here. It provides an easy way to both find all the faces that
need to be discarded, and construct a loop of the edges that need to be connected to the new extreme
point.

 One iteration of Quickhull is shown in Figure 1. The blue faces and red points make up the
current hull, and the white points are those still in the input list. The green point was found as the next
extreme vertex. The two faces in gray will be discarded, and the green triangles will become new faces.
Input points that were found to be inside the new hull and can be discarded are black.

Figure 1 - One iteration of Quickhull

2. Collision Detection

 The central task of a collision detection system is to find all intersecting pairs of objects in a
system. In order to avoid testing O(n2) object-pairs for intersection in a system of n bodies, most
collision systems split the process into a broad phase and narrow phase. The broad phase is responsible
for pruning the number of object-pairs that need to be tested, and makes use of various tools such as
spatial partitioning structures and bounding volumes in order to discard as many pairs as quickly as
possible. The narrow phase then tests each object pair, and generates contact information for any pair
of objects that are actually intersecting.

Broad phase – Bounding Spheres and Uniform Grids

 To efficiently find all intersecting object-pairs, the broad phase must minimize the number of
pairs that get tested in the narrow phase. There are two general strategies for this task. The first is to
construct simple bounding volumes for each object. A bounding volume can be any simple shape –
popular choices include boxes, spheres, cylinders, and capsules – that encloses a more complicated
object, and provides a very cheap approximate intersection test. Only if the bounding volumes of a
potential pair of objects are intersecting would the pair be passed on to the narrow phase for more
expensive tests.

 For this project, the convex polyhedra are enclosed in spheres, which are in many ways the
simplest bounding volume. They are defined only by a center and a radius. The spheres are somewhat
trivially calculated by using the centroid of the polyhedra as the center of the sphere, and the maximal
distance from any point on the polyhedra to its centroid as the radius. While spheres sometimes provide
poor fits for certain object shapes (thereby reducing the effectiveness of the bounding volume) they
have the cheapest intersection test. Two spheres intersect simply if their centers are closer together
than the sum of their radii.

 The second general broad phase strategy is to keep all the objects in a spatial partitioning data
structure that allows the system to quickly find all other objects that are near a given object. Again,
there are several popular structures, each with their pros and cons. Here, the collision system uses a
uniform grid. World space is split into a regular grid of 2D cells, and each cell contains a reference to
objects that overlap it. Adding an object to the grid requires adding it to each cell that it overlaps, and a
query for nearby objects returns the objects contained in all of those cells. The efficiency of these
operations is maximized by using a cell size at least as large as the largest object in the grid, but not
much larger. The lower bound ensures that an object only overlaps at most four cells, while the upper
bound minimizes the number of objects per cell.

 Uniform grids have extremely low time cost. Given a point in space, its corresponding grid cell
can be found in constant time with respect to the number of objects in the grid. Given a radius, the

neighboring cells that are overlapped can also be found in constant time. Because of this, insertion,
deletion, and queries for nearby objects can all be done in constant time. The drawback (at least in this
straightforward implementation) is the memory cost – a grid that splits space into n cells by n cells
stores n2 cells, even if many of them are empty. Very parse systems therefore would benefit from a
more dynamic partitioning, such as a quad-tree.

 Figure 2 illustrates the effectiveness of the broad phase. The 15 bodies in free fall would require
210 expensive convex-convex intersection tests with a brute force approach. Using bounding spheres,
the 210 approximate sphere-sphere tests lowered the number of expensive tests needed this frame to
only 22. Storing the bodies in a uniform grid, only 38 object pairs were close enough to require a sphere-
sphere test in the first place. A more spread out system of bodies would result in even greater savings.

Figure 2 - The broad phase reduces the number of convex tests needed here by almost 90%

Narrow phase – The Separating Axis Test

 Once two objects have been determined to be sufficiently close to each other, the collision
system must check if they actually intersect. The exact test used for intersection depends on the
combination of shapes being tested, resulting in a large number of possible tests for even a moderate
number of shapes. In fact, the wide variety of shapes supported by a commercial physics engine makes
collision dispatch, the task of finding the correct algorithm for a given object pair, a nontrivial problem.

The intersection test of interest here is the one for two convex polyhedra. The algorithm
implemented for this project is the Separating Axis Test (SAT). The SAT relies on another important

theorem regarding convex shapes – two convex shapes do not intersect if and only if there is a plane
that separates them. If a separating plane exists, its normal vector is called a separating axis, and so
finding whether two convex shapes intersect is equivalent to finding whether a separating axis exists
between the two shapes.

 A given axis can easily be tested to see if it is a separating axis. The projection of a convex
polyhedron onto an axis is a line segment, the endpoints of which are determined by the polyhedron’s
extreme vertices in each direction of the axis. If the projected segments of the two polyhedra do not
overlap, then the axis is a separating axis, and the test can return no intersection.

 The problem that remains is to find such an axis, if it exists. It turns out that there are only a
limited set of possible axes that need to be tested. If a separating axis exists, then either the normal
vector of one of the faces of one of the polyhedra will provide one, or the cross product of an edge
vector from one polyhedron with an edge vector of the other will. The SAT iterates through each
possible axis, and returns no intersection if a separating axis is found. If none of the axes work, then the
two polyhedra intersect.

 This algorithm is not very efficient for large polyhedra – it needs to check 2F + E2 axes. It is
possible to improve the running time by using the temporal coherence usually present in real-time
simulations. If a particular axis serves as a separating axis between two objects in one frame, it will very
likely still be a separating axis next frame. By caching the result of each SAT, and checking the cache
before testing a pair of objects from scratch, the test becomes much more efficient. This optimization
was not implemented, but the algorithm runs well at least for moderately small polyhedra.

Contact Manifold Generation

 Accurately handling the collision of two objects requires more than just the simple fact that they
are indeed colliding. The collision response system needs information about the contact between the
objects, including the points or areas of contact, and the penetration depth. The collision detection
system is responsible for producing this information – the contact manifold – for each pair of
intersecting objects.

 The implemented engine produces somewhat simplified contact manifolds. They contain a
reference to the two colliding objects, a normal vector for the contact, a list of contact points, and the
approximate penetration depth of the intersection. The SAT from the previous section is extended to
produce the manifold for intersecting objects.

 If two intersecting convex polyhedra are projected onto an axis, the amount of overlap of the
projections is the distance the two polyhedra would need to be pushed away from each other along that
axis to not be intersecting. As the SAT tests each axis for separation, it keeps track of the axis that has
the smallest overlap. If no separating axis is found, then the direction of the axis producing the minimal

overlap – the “contact axis” – is used as the contact normal. By convention, the contact normal in an
intersection between objects A and B is chosen to point towards A and away from B. The minimal
overlap is used as the penetration depth. The method for finding contact points depends on the type of
the contact axis. If it was formed from the cross product of two edges, the intersection of those edges is
used as the single contact point. Otherwise, the axis corresponds to a face on one of the polyhedra, and
the points are found by examining the “contact plane” defined by that face. Any vertex in one
polyhedron that is both within a small tolerance of the contact plane and a small tolerance of being
contained in the other polyhedron is included as a contact point. The tolerances serve to improve
performance in the physical simulation, by making the contact manifold more consistent from frame to
frame. Requiring exact intersection can cause points to count as intersecting one frame, not intersecting
the next, and so on, which leads to jitter.

 The current scheme for generating manifolds is possibly the weak link of the current collision
detection implementation. No matter how good an engine’s constraint solver is, inaccurate contacts
have a tendency to cause weird behavior. One possible improvement would be to give each contact
point its own penetration depth. Alternatively, rather than a set of points, a contact region could be
computed – a point, line segment, or polygon, depending on the configuration of the intersecting
polyhedra.

 Figures 3 and 4 depict the two types of contact points, shown as black points. On the left, the two
tetrahedrons were found to intersect along two edges, and the intersection of those edges is used as
the contact point. The figure on the right shows two manifolds resulting from face intersections – one
between the box and tetrahedron, and one between the box and the ground.

Figure 4 - Single edge-edge contact point Figure 3 - Multiple face contact points

3. Rigid Body Simulation

 The other half of the physics engine is concerned with the motion of the simulated bodies. Rigid
body dynamics can also be broken into two core components. First, the dynamics component
encapsulates the physical state of a rigid body, and governs how that state changes over time. At its
center is a set of equations of motion, relating the forces on an object to its change in position and
velocity.

 Second, the collision response component works to ensure that the current state of the system
is physically valid. The foremost restriction on rigid bodies is that they cannot penetrate each other.
Many other restrictions can be used to create various behaviors as well, for instance keeping two
objects a certain distance from each other, or only allowing a lever to rotate a certain amount. A
popular way to implement these restrictions in rigid body simulations is with a constraint model – each
restriction of the physical state of the system is enforced with a constraint, an equation on the variables
of the state. For example, if the function 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝, 𝑞𝑞) returns the distance between points 𝑝𝑝 and 𝑞𝑞, then
the equation 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝, 𝑞𝑞) = 𝑑𝑑 is a position constraint on 𝑝𝑝 and 𝑞𝑞. Enforcing the constraint results in
keeping 𝑝𝑝 and 𝑞𝑞 at a distance 𝑑𝑑 from each other. Constraints are enforced (at a conceptual level at least)
by applying internal forces, called constraint forces, to the constrained bodies. Non-penetration
constraints, for instance, produce the normal force between two objects. The engine currently supports
contact and friction constraints, and hopefully more types of constraints will be implemented soon.

Given a set of constraints, the simulation would then use a constraint solver to figure out the
constraint forces necessary to satisfy them. There are two main approaches to this problem – global
solvers and iterative solvers. Global solvers solve the entire system simultaneously, and while they
produce optimal answers, they are very slow. Iterative solvers adjust each constraint force locally,
looping over all the constraints repeatedly until some stopping criteria is met. Good iterative methods
do converge to a global solution, and therefore provide a fast approximation for the system of
constraint forces. The solver that this project uses, the Sequential Impulses method, is an iterative
solver.

Rigid Body Dynamics

The physical state of the rigid bodies in the engine consists of several variables. Each body has a
constant scalar mass 𝑚𝑚, and a constant (in body-space) 3x3 inertia tensor 𝐼𝐼. Its time dependent state is
described by its position 𝑥𝑥, linear velocity 𝑣𝑣, rotation 𝑅𝑅, and angular velocity 𝜔𝜔, where 𝑥𝑥, 𝑣𝑣, and 𝜔𝜔 are
3D vectors and 𝑅𝑅 is a 3x3 matrix. The change of these time-dependent variables can be expressed as
functions of each other, the applied force 𝐹𝐹 and torque 𝜏𝜏 on the object, and time, to form a set of
differential equations that drive the motion of the system:

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑡𝑡) = 𝐹𝐹(𝑡𝑡) 𝑚𝑚⁄ , 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑡𝑡) = 𝑣𝑣(𝑡𝑡) for linear motion, and

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑡𝑡) = 𝐼𝐼−1𝜏𝜏(𝑡𝑡), 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑡𝑡) = (𝜔𝜔(𝑡𝑡)∗)𝑅𝑅(𝑡𝑡) for angular motion, where the star operator is defined as

𝑎𝑎∗ = �
0 −𝑎𝑎𝑧𝑧 𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧 0 −𝑎𝑎𝑥𝑥
−𝑎𝑎𝑦𝑦 𝑥𝑥 0

�.

These equations are integrated using the symplectic Euler method. Given the current linear motion
state, applied force, and time step length ℎ, the following two equations produce the new linear state:

(1) 𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 + ℎ𝐹𝐹(𝑡𝑡)/𝑚𝑚
(2) 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 + ℎ𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛

The equations for angular motion are similar, although extra work needs to be done to address the fact
that the body’s inertia tensor is stored in body space.

Given these equations, the system of bodies are updated each frame in the following manner.
First, external forces and torques (such as gravity) are applied to each body. Next, using (1), the
velocities of each body are integrated. The constraint solver then corrects the velocities in order to
enforce all constraints (as described in the next two sections). Finally, (2) is used to integrate the new
positions.

Detailed explanations and derivations for the equations in this section can be found in Baraff[1].

Constraints

 For this project, contact and frictional constraints were implemented. A constraint of each type
is created for each contact point found in the collision detection step. The constraints are velocity-
based, in that they are constraints on the velocities of the two contacting objects.

The contact constraint requires that the relative velocities of the two objects parallel to the
contact normal must be greater than or equal to zero – that is, they cannot be moving towards each
other. The contact constraint force, or normal force (technically impulse, see next section), is applied
along the contact normal and in opposite directions in order to push the objects apart. Its magnitude is
limited to [0, ∞), so that it can only push the two objects away from each other, and will push as hard as
it needs to in order to enforce the constraint.

 The frictional constraint requires that the relative velocities of the two objects perpendicular to
the contact normal – i.e., along the contact plane – be zero. However, frictional forces are not unlimited.
In fact, they are limited by the normal force at that contact point: 𝐹𝐹𝑓𝑓 ≤ 𝜇𝜇𝐹𝐹𝑛𝑛, where 𝜇𝜇 is the friction
constant for the pair of contacting objects. Because of this, each time an impulse is applied to a certain
contact point’s normal constraint, the limit for its friction constraint must be updated.

Sequential Impulses

 The constraint solver chosen for this engine is a Sequential Impulse solver. Impulse is simply
change in momentum: 𝐽𝐽 = ∆𝑃𝑃 = 𝑚𝑚∆𝑣𝑣 . Rather than find a set of constraint forces, which technically
would need to be infinite in magnitude in order to produce an instantaneous change in velocity, the
solver attempts to find a set of impulses that will result in the desired post-collision relative velocities.

 The solver starts by building the constraints out of the given contact manifolds, each of which
keeps track of its current applied impulse (initialized to zero). It then runs for a fixed number of
iterations. In a given iteration, the solver loops over each constraint, calculates the additional impulse it
needs to apply given the constraint’s current applied impulse and velocities, and clamps the resulting
total impulse according to the limits in the previous section. Finally, the velocities of the rigid bodies are
updated based on the constraint impulses, and the simulation can safely continue, penetration-free.

 The precise relation between a velocity constraint and the impulse needed depends on the type
of constraint. See Catto[2] for details on the necessary equations for normal and frictional constraints. It
turns out though that solving the set of constraints comes down to solving a system of linear equations.
Because of this, applying the Sequential Impulses method is actually equivalent to solving the system of
equations with the Projected Gauss Seidel algorithm. Again, see Catto[2] for details.

 Because the simulation updates bodies in discrete time steps, small penetrations between
objects cannot be avoided, even with a good constraint solver. To fix this, the engine uses Baumgarte
stabilization – if the penetration depth at a contact point reaches a certain threshold, the velocity
constraint at that point is increased by an amount proportional to the depth. This serves to push
intersecting bodies away from each other a little harder to correct the penetration.

Sources

[1] David Baraff. Physically based modeling. SIGGRAPH 2001 Course Notes, 2001.

[2] Erin Catto. Iterative dynamics with temporal coherence. Technical Report, Crystal Dynamics, Menlo
Park, CA, 2005.

[3] Christopher Ericson. Real Time Collision Detection. Morgan Kaufmann, 2005.

[4] David Mount. Geometric Data Structures for Games: Meshes and Manifolds. CMSC425 Course Notes,
2013.

 [4] F. Tonon. Explicit exact formulas for the 3-D tetrahedron inertia tensor in terms of its vertex
coordinates. Journal of Mathematics and Statistics, 1:8-11, 2004.

[5] Advanced Micro Devices. Bullet Collision Detection and Physics Library [Computer program].
http://bulletphysics.org (Accessed 2014).

http://bulletphysics.org/

	Overview
	About the Engine
	1. Convex Polyhedra
	Doubly Connected Edge Lists
	Quickhull

	2. Collision Detection
	Broad phase – Bounding Spheres and Uniform Grids
	Narrow phase – The Separating Axis Test
	Contact Manifold Generation

	3. Rigid Body Simulation
	Rigid Body Dynamics
	Constraints
	Sequential Impulses
	Sources

