
Circular Trapezoidal Decomposition

William K. Mennell

Robert H. Smith School of Business
University of Maryland
College Park, MD 20742
wmennell@rhsmith.umd.edu

Summary. This technical note describes an implementation of the Mulmuley’s
randomized trapezoidal decomposition algorithm for circles instead of lines. It uses
a DAG to store trapezoids (it does not keep a history of all the DAGs built however).
It suffers from some of the numerical problems common in computational geometry
applications but still does well considering. Some more work is needed before I am
willing to put the executable and/or code online, though.
Key words: Directed acyclic graph; history DAG; trapezoidal decomposition; circle
decomposition.

1 Introduction

The computational geometry literature abounds with algorithms constrained
by provable performance bounds and based on convenient sets of assump-
tions. Actual implementation of the algorithms and adaptation to real-world
settings without all the tidy assumptions is a significant task in its own right,
however, and is not generally described except to perhaps briefly describe the
standard degeneracies and how to handle them. As a semester-long project
for an independent study of computational geometry, we implemented both
the standard trapezoidal decomposition algorithm for line segments without
almost any assumptions and a similarly generalized algorithm using circles
in place of segments. This technical note describes the implementation at a
moderate to high level and assumes a prior understanding of the Mulmuley
randomized trapezoidal decomposition algorithm (RTDA) and some standard
computational geometry terminology. Readers without this knowledge should
consult either [2] or [4], together which should suffice. Alternatively, [5] gives
a slightly more intuitive description.

The remainder of this note is organized as follows: Section 2 defines the
basic terminology used, while section 3 describes the data structures imple-
mented. Section 4 details the main implementation functions, while Section
5 describes the accompanying GUI. Finally, 6 discusses the remaining few is-
sues to fix along with possible resolutions and points out the major strengths



2 Mennell

and weaknesses of the implementation as it stands. The appendix catalogs
numerous small graphs of test cases and the difficulties each one addresses.

2 Terminology and Definitions

Consider a set, S, of lines in the plane. For our purposes, a trapezoid consists
of a top and bottom line segment from S of any orientation along with two
vertical “bullet paths” connecting the two structures. Slightly abusing the
terminology, in the case where a set, C, of circles replaces S, we say that a
trapezoid has a top and bottom arc together with the two bullet paths. Note
that each vertical segment may be degenerate in the sense that it will have
zero length. Figures 1 and 2 show some examples - pay special attention to
the circle trapezoids which at first glance may hardly look “trapezoidal”.

Fig. 1. A trapezoidal decomposition of 2 line segments. Because the two line seg-
ments share a common endpoint, one trapezoid has a degenerate right bullet path.

Fig. 2. A trapezoidal decomposition of 2 circles. The left and right-most trapezoids
for each circle have one degenerate bullet path each.



Circular Trapezoidal Decomposition 3

3 Data Structures

A directed acyclic graph (DAG) underlies any RTDA. A node in the DAG
can have an arbitrary number of parents pointing to it but only two children.
Because the end result of Mulmuley’s algorithm can be implemented such
that multiple copies of the DAG are maintained showing the “history” of its
evolution, we refer to it as a historyDAG or hDAG. Our implementation,
however, uses only one copy of the DAG since we have no need for knowing
the trapezoids created during the algorithm that are no longer extant. Inside
the basic data structure, three kinds of nodes are stored - x, y, and leaf nodes.
x nodes correspond to segment endpoints and are used to answer the query, “Is
the point I am looking for to the left of or to the right of this current point?” y
nodes correspond to line segment or circle objects and answer the same query,
only vertically, and leaf nodes correspond to actual trapezoids. Therefore,
every generic node in hDAG has a void pointer object called contents that is
dynamically cast as necessary. A node knows the type (x, y, or trapezoid) of
its contents and has access to it. Similarly, each contents knows its container
node (see 3.2) which comes in handy later on as we will see in 3.2.

3.1 Circles

When moving left-to-right along a line segment or circle arc, we must figure
out which trapezoid to enter next after leaving the current one. If exiting
the top or bottom, how are we to know which trapezoid to enter next? Since
the top and bottom parts of a trapezoid are line segments or circle arcs, this
suggests that by storing the leftmost trapezoid bordering each segment/arc
on both the top and on the bottom, we can then travel along this segment/arc
to find the correct one. Figure 3 shows how this looks. 1

Therefore, in both the linear and circular cases, it is necessary to store the
respective lines and circles as their own objects, with pointers to the leftmost
trapezoids above and below. With circles, we implicitly treat the upper half
of the circle separately from the lower half and so each half must know the
leftmost trapezoids above and below. In 3, the top half of circle X has A as
its aboveLeft trapezoid and X1 as its belowLeft whereas the bottom half of
X has X1 as its aboveLeft and B as its belowLeft. 2

Additionally, of course, we must also store the coordinates of each circle’s
origin.

1Although in some very dense cases it may be faster to simply query the hDAG
to find the next trapezoid, we think that because of the randomized nature of the
algorithm, in the expected case, the number of trapezoids to traverse will be less
than the depth of the hDAG, thereby making it more efficient. This would have to
be proved, but if we are wrong, it is a one-line code change to fix.

2The only time that the top half’s belowLeft is equal to the bottom half’s
aboveLeft occurs when an arc bisects a circle exactly through its leftmost point.



4 Mennell

Fig. 3. Imagine a convex arc traveling up from Y1 into X3. How does the algorithm
know to proceed to X3 next? Start at circle X’s furthest left trapezoid on the upper
half of its bottom arc - X1. Follow the arc through X2 until X3 is found using
bottom right neighbors described in 3.2.

3.2 Trapezoids

The trapezoidal representation is the most complicated data structure in the
implementation. We give a brief itemized list for important features of the
circular trapezoid; the linear version is essentially a subset of these.

• Left and Right Borders. a. Mulmuley’s RTDA for line segments only re-
quires storage of the left and right x coordinates of a given trapezoid and
does not explicitly store the y coordinates. This is because of the ease of
computation of upper and lower boundary points for each side of a trape-
zoid, and we follow his convention. It is worth noting that in both the line
segment and circle cases, it may be worth storing these coordinates given
that storage is not nearly as important in the speed vs. memory tradeoff
as it was when this algorithm was created. This is especially important in
the circle case where it is more more computationally expensive than in
the linear case, but in both cases, these y coordinates are used in finding
right neighbors, handling possible corner exits or entries and a few other
places, i.e. they are unnecessarily computed many, many times.

b. Left/Right neighbors. As in Mulmuley’s implementation, every trape-
zoid needs to know what borders its lower segment on the left and right
side and similarly for the top segment. This is necessary for ease of move-
ment between trapezoids instead of having to query the hDAG every time
a new trapezoid is needed. See [5] for definitions and pictures depicting left
and right neighbors. However, there are numerous cases where there is no
by-definition “neighbor” even though a contiguous trapezoid does exist or
there are more than two neighbors. We describe how many of these cases
are handled in 4.6. Figures 4 and 5 show the two of the typical cases.



Circular Trapezoidal Decomposition 5

Fig. 4. Trapezoid A has no top or bottom right neighbor, as they are defined in [5].

Fig. 5. Trapezoid A has an upper right neighbor, a lower right neighbor, and three
generalright neighbors. There is no easy an uninvolved algorithmic way to know
which is the next one entered so we query the hDAG to find the next one.

b. Container Node. Each node in the hDAG is a containernode for either
a trapezoid, an arc endpoint, or a circle as described earlier. Conversely,
every trapezoid, endpoint, and circle has a pointer to the node which
contains it in the hDAG. Once we access a trapezoid, we can simply use
its container node pointer to access the its location in the hDAG. 3

c. Top and Bottom Segments of Circles. Since every trapezoid’s top and
bottom segments are not bullet paths but rather parts of either a line
segment or a circle arc, we therefore need to know who these “originating
parent” segments/arcs are, where “originating” is based on each circle
having an origin. E.g. if we are exiting a trapezoid out of its top segment,
we then find the circle it belongs to, and travel from left to right along
the appropriate edge until we find the trapezoid we need - see earlier in
Figure 3.

3Nodes of the hDAG are pulled from a “freelist” implementation that signifi-
cantly decreases the number of times the new operator is called but potentially
wastes memory. We should also do this for trapezoids.



6 Mennell

d. Top vs. Bottom Half of a Circle. In the circle case, each trapezoid’s top
and bottom segment is part of either the bottom half of a circle or the top
half, see Figure 7. Knowing whether the top/bottom is convex or concave
is crucial to correctly compute circle 4 intersections along with many other
small but important calculations.

Fig. 6. Trapezoid A has concave top and bottom segments. B has a concave top and
convex bottom. C has convex top and bottom, and D has convex top and concave
bottom.

e. Merging Information. Frequently, when a new trapezoid is created, it
has the same top and bottom originating parents as one of its adjacent
neighbors. These two trapezoids then have to be merged. The adjacent
trapezoid, adj, to be combined with the new one cannot simply be plucked
from the hDAG as all of the nodes pointing to adj will then be left dan-
gling. Therefore, every time a trapezoid is merged with another, all nodes
pointing to it are added to the new trapezoid’s list of mergeparents, and
all necessary updates of neighbors, etc. are carried out. Figure

f. Degenerate Neighbors. Especially in the linear case, it is probably possi-
ble to deal with almost all degeneracies in a nice algorithmic way. Figures
4 and 5 previously depicted such cases where knowledge of a “general
right neighbor” would maintain the ease of navigation across trapezoids
present in non-degenerate cases. There are many cases where knowledge
of numerous general neighbors would be necessary but in our experience,
the amount and difficulty of properly updating and storing such a list for

4nice alliteration, huh?



Circular Trapezoidal Decomposition 7

Fig. 7. When segment s is added, note that trapezoid B’s left top neighbor is
the same as its left bottom neighbor. Therefore, A and B will be merged into one
trapezoid.

each trapezoid is not worth the effort. 5 In cases such as these, a query
of the hDAG returns the necessary trapezoid. As will be discussed below,
the complexity of degeneracies for the circle case seems to be significantly
higher and in order to keep the code from blowing up, and for correctness’
sake, we currently have shut off the algorithmic handling of degeneracies
for circles and simply use hDAG queries.

g. Degenerate Bullet Paths. When two segments/arcs intersect, the inter-
section forms a degenerate bullet path for one of the new trapezoids. When
entering or exiting a trapezoid at a corner point or searching for a general
right neighbor, knowledge of this is crucial. Occasionally, both the top and
bottom right neighbors of a trapezoid, t, will have degenerate left bullet
paths meaning that the elephant in the room (the true right neighbor for
t except in corner exits) is not stored by t and instead has to be found by
an hDAG query.

h. Unique Identifier. Every trapezoid is assigned a unique integer identifier
when it is created. This feature is a simple debugging tool very useful when
debugging issues in problem instances with thousands or even millions
of trapezoids. We can quickly zero in on exactly when the trapezoid in
question was created or used improperly in order to deduce the problem.

i. Radius. For now, every circle in the graph has the same fixed radius,
r. However, it will not be difficult to allow arbitrary radius for each circle
which will then necessitate this attribute.

5To be able to handle the multiple-right-neighbors case, every trapezoid would
have to maintain a dynamic list of all its general right neighbors. The updating
and other overhead required for maintaining algorithm correctness for just one such
neighbor proved so burdensome that the inelegant hDAG query becomes worth the
cost.



8 Mennell

j. Degree. This attribute stores the number of circles that a given trapezoid
lies within. For instance, if we have considered twenty circles so far, and
trapezoid t lies completely within five of them, then it has degree 5. Note
that by definition of the circle trapezoid, all points in a given trapezoid
have the same degree.

4 High Level Description

At the highest level the RTDA is summarized as follows. Repeat until no
circles remain to be considered:

a. Obtain next circle.

b. Choose the lower half arc, travel through all intersected trapezoids, itera-
tively creating the new ones.

c. Choose the upper half arc and do the same.

4.1 Data Input and Storage

It is of course well-known how machine representations of number can cause
numerous difficulties and affect behavior egregiously if not properly accounted
for. To allow maximum precision 6 all coordinates and computations based on
them are stored as long double. Frequently, therefore, a number such as 10.6
is stored as 10.599999999999 which can cause a point on the border of some
trapezoid to be considered outside the trapezoid. Or, a check of two numbers
for equality may be returned as false when in fact they are equal.

We rectify this situation in two ways:
1. All numbers are input as strings in scientific notation format. A simple

routine then converts them to long double format and for some reason, all val-
ues are now stored correctly - e.g. 0 is stored as 0 and not as 0.00000000000001.
All the built-in Borland C++ formatting routines do not achieve this for some
reason.

2. All mathematical operations and less-than/greater-than comparisons
are run through a black box that converts them to a form that compares one
number with zero. E.g. “if (i ¡ j)” is converted to “if (blackBox(i - j) ¡ 0)”. The
black box takes the input argument and compares it with its ceiling and floor
function values. If the absolute value of the difference between either is less
than epsilon (usually 1e-13) then the ceiling or floor is returned, respectively.
7

6and because our Close-Enough TSP implementation uses this
7Every single comparison or mathematical operation that does not use the black

box at some point has caused a bug in the program testing so we include it uni-
versally. This is at the great expense, however, in execution time. For users needing



Circular Trapezoidal Decomposition 9

Once all segments/circles have been read in, they are sorted in increasing
order by x coordinate. All ties are sorted in increasing order of y coordinate.

4.2 Choosing the Next Circle

The structure of the final hDAG is dependent on the order in which seg-
ments/circles were added. Therefore, to “prove” correctness, we incorporated
a randomized “hat” algorithm from [1] and simply pick segments/circles out
of the hat until there is none left. Numbers are chosen using a uniform dis-
tribution over the cardinality of the set of segments/circles. Using different
seeds, we can eventually ensure that all permutations of segments/circles have
been considered. Naturally, for problems larger than roughly ten, this becomes
intractable, but the option is at least available.

4.3 Traversing Trapezoids Along the Segment/Arc

The heart of the algorithm is the process of iteratively following the current
segment/arc through the trapezoids that it intersects, removing each one and
replacing it with the newly trapezoids created, see segment s in Figure 7.
We implemented a method called findIntersectedTraps to deal with this.
Its core function is to repeatedly find the next intersection point, create the
new trapezoids, and move to the next trapezoid, until we reach the end of
the current arc. Numerous small details make this not quite so simple a task
however. For instance, sometimes the starting point of an arc IS an intersec-
tion with another circle, see Figure 32. Or, frequently, the current trapezoid
contains the far right point, but we cannot quit yet because there are more
intersections in between, see Figure 27. Determining whether we exit the top,
right, or bottom of the current trapezoid is determined by comparing the y
value of the next intersection with the top and bottom y values of the current
trapezoid’s right bullet path. As described earlier, it is not computationally
cheap to repeatedly calculate these top and bottom y values, but for now,
we have not added them as attributes of each trapezoid since Mulmuley’s
algorithm for line segments does not.

We call method handleExit to take care of the actual exiting process - it
determines which new trapezoid we enter, calls the method that creates the
new trapezoids, segInOneTZoid, ensures that all neighbor relationships are
properly updated, and handles all possible merges.

4.4 Obtaining Intersection Coordinates

It is a simple matter to obtain both sets of intersection points, if they exist, of
two circles. It is a much more difficult matter, however, to know which is the

less numerical precision, floats could be used and the computational savings should
be more than significant, especially for larger problems.



10 Mennell

correct one to use. Each time an intersected trapezoid, t, is entered, we must
determine where the arc segment will exit it. There are two options: either we
exit at an intersection of one of t’s top or bottom origin circles with the current
arc, or we exit through the right bullet path. Therefore, separate functions are
created, called getCCIntersection and getCBIntersection, respectively, to
determine the next circle intersection and the next bullet path intersection and
then the correct one is chosen. To implement the circle intersection correctly,
knowledge of the relative angle between the two circles is needed, along with
which quadrants their points of intersection are in, and whether or not the
current arc is the top or bottom half of the current circle.

4.5 Does a Given Point Lie Within this Trapezoid?

It is frequently necessary to test whether or not a given (x,y) pair lies within
trapezoid t. Knowledge of t’s top and bottom segments, i.e. convex or concave,
is needed along with the upper and lower y-coordinates of the trapezoid at
this given x value. This computation is necessary at numerous points of the
algorithm and results in a great time expense given that each calculation
involves square and square root function calls.

Similarly, we often need to know if the furthest right point for the current
circle lies within the current trapezoid. This is not a trivial test, and function
isInTrap is implemented to determine this. Note that, as described earlier,
even when the answer is yes, this does not guarantee that there are not more
intersections to compute before we quit, as Figure 27 depicts.

4.6 Obtaining the Trapezoid to the Right of the Current One

When trapezoid t is exited through its right bullet path, we call a function
named getRtNghbrTrap to locate the correct one. Most of the time, this is
as simple as choosing between the right top and the right bottom neighbor.
However, when degenerate situations are allowed, as mentioned earlier, there
will not always be a right neighbor at all. Most of the linear cases can be
handled algorithmically using the generalrightneighbor construct, but in the
circle case, the degeneracies are significantly more subtle. E.g. what if both
top and bottom right neighbors exist but they both have degenerate left bul-
let paths? Then at least one trapezoid exists in the middle and we have to
choose the correct one, see Figure ??. For all of these cases, we use a function,
ptEpsilonRight, that moves epsilon distance to the right along the current
arc, and then queries the hDAG to locate the correct trapezoid. It is not a
perfect solution, of course, given that one might come up with geometric
proof of all possible degenerate cases and then plan for them, but based on
our experience, this quickly became a mess within the code and still was not
always correct.

Another subtle wrinkle to this problem occurs when we exit or enter at a
top or bottom corner of the new trapezoid. This is handled by a function called



Circular Trapezoidal Decomposition 11

Fig. 8. Trapezoid A’s upper right neighbor is B and its lower right neighbor is C.
Both have degenerate left bullet paths and so D is the right neighbor that typically
will be needed coming from A.

handleCorner which utilizes each circle object’s knowledge of its leftmost
trapezoids to then iterate from left to right until the correct trapezoid is
found. Even here, however, it is not just that simple. Sometimes we may be
exiting the corner of the far right trapezoid for a given circle and this trapezoid
may have no right neighbors. Here again, we use the ptEpsilonRight function
to locate the correct trapezoid, see Figure 9.

Fig. 9. Trapezoid A is the last trapezoid along the top segment of its bottom circle.
Any arc exiting it through its top right corner will have to then query the hDAG.



12 Mennell

5 How to Use the GUI

See Figure 10 to follow along with this description. To use the program, an
input file or string must be selected (random generation of data will be added
eventually). If the user wants to run of the 60 small test examples, uncheck
the box “Use Input File” and then select the input string desired from the
drop-down box captioned “Choose a Test Set”. If instead, an input file is
desired, choose one from the drop-down box captioned “Choose a Test File”.

Fig. 10. The GUI interface for the circle decomposition executable.

Pick any real-numbered radius greater than zero using the box titled “Cir-
cle Radius”. Bear in mind that a very large radius risks creating such a dense
problem that execution may take “a while” for large problems. The box enti-
tled “# of runs” allows the user to make multiple execution runs to verify that
the same results are produced for different random orderings of the input seg-
ments/circles. For each additional run, the initial random seed is incremented
by one. The initial random seed value is controlled by the “Initial Counter
Value” box. To run the program, simply click “Run”. Ignore the greyed-out
Button2 and its associated boxes as they are for testing and have not been
removed yet.

5.1 Options

The remaining checkboxes all provide various checks on algorithm correctness.
If “Randomized circle order” is left unchecked then the circles will be input in
order of storage (left to right by x value). “Verify tZoids have correct degree”
checks to see after all trapezoids have been created if they all have the correct
degree”. As discussed below, this is currently beside the point since the degree
for all trapezoids is computed at the end of the algorithm. “Check for deleted



Circular Trapezoidal Decomposition 13

trapezoids” checks through the entire hDAG each time new trapezoids are
added to see if the trapezoid from which they are created is still pointed to
anywhere within the hDAG. If it is, then once it is deleted, there will be
dangling pointers in the hDAG that will cause errors if accessed. “Check for
zero-width trapezoids” lets the user know if any trapezoids are about to be
added with width zero or even negative, i.e. the right end of the trapezoid
is to the left of the left end. The latter three options add significant time to
execution but the user is advised to use them until he is comfortable with
the correctness of the implementation. There are also a few code snippets
in certain parts of the code that will notify the user that wrong conditions
have been met and hang execution. Finally, the “Drawing Factor” is simply
a multiplier that makes the displayed graph smaller or larger. Our 8 grasp of
graphics is not very advanced and so graphs may not be perfectly contained or
centered. Using input data within the [0,100] x [0,100] window should result
in a reasonable display.

6 Issues

This section is not meant as quality prose but rather a compendium of various
strengths and weaknesses of the implementation.

6.1 Strengths

a. Numerical Stability. Circles as small as 10−13 are handled without error
and all numerical errors are avoided using the black box function added in
the code. Although it slows down computation, this important issue causes
way too many errors to ignore; almost every single computation where the
black box is not used has been the root cause of incorrect behavior in the
program.

b. Trapezoid Drawing. Although relatively minor, because each trapezoid can
be pointed to by multiple nodes in the hDAG, a traversal of the hDAG
can result in redundant redrawings of numerous trapezoids. Adding a flag
to each trapezoid that says if it has already been drawn prevents this
inefficiency from occurring.

c. Navigation Trick. Look at Figure 11. Note that A1’s bottom right neighbor
is A2 and not C. Not letting trapezoids such as C be neighbors saves time
in numerous cases and other difficulties, but it then poses the problem,
how do I find C if I need to? Figure 12 depicts such a case where segment
s needed to enter C but would instead find A2 initially. Once a test reveals
A2 is not the correct trapezoid a kind of ladder-climbing method is used.

8my



14 Mennell

A2’s top segment’s aboveLeft trapezoid is used to then move to the right
until either the correct trapezoid is found or we repeat the process. In this
case, C is A2’s top segment’s aboveLeft but often this is not the case.
When t extends further left, this is not as efficient and in fact there are
probably many highly contrived and degenerate cases where it will be more
efficient to simply query the hDAG but for most instances similar to this,
it provides a nice, quick method for finding the (usually one) trapezoid
inbetween A1 and A2.

Fig. 11. Trapezoid A1’s bottom right neighbor is defined as A2 here since C only
is a neighbor for exactly one point. Typically A2 will be the needed trapezoid; only
when a point intersects into C directly at the corner point does this become an issue.

Fig. 12. Here we see that A2’s top segment is t. Its aboveLeft trapezoid is C, and
so we are done.



Circular Trapezoidal Decomposition 15

d. Degeneracy Handling. The decomposition algorithm is not very difficult
or complicated with all the assumptions in the literature. Although there
are still cases to be correct, see below, a significant number of subtle and
difficult cases have already been handled; the circle case is rife with very
subtle ones that are difficult to see without being involved in program-
ming them, and we have not kept a meticulous record of every single case
encountered.

6.2 Weaknesses

a. Line Segment Decomposition. Aside from some fairly absurd degeneracies
such as when a segment completely overlays more than two other dis-
joint segments, there are two major cases to implement. 1. Multiple Right
Neighbors - a simple fix of adding a boolean when this is the case and then
calling ptEpsilonRt to find the correct one. 2. k lines intersect at point p
and an additional m segments have p as their left endpoint, see Figure 13.

Fig. 13. This does not work yet for most permutations of the input segments.

b. Circle Decomposition. We have not yet added the capability of recognizing
and handling the case where k ¿ 4 circles all intersect at some point p.
Although the odds of this happening randomly using long double precision
is extremely low, a user could define a cases with 100 or even more circles
all sharing one intersection.

c. Hanging Pointers. Some large input files for the circle decomposition still
produce cases of hanging pointers in the hDAG or trapezoids with ¡ 0
width, both of which imply errors. We do not know yet if these indicate



16 Mennell

still more degeneracies that have not been accounted for or if they are the
result of programming errors.

d. Random Generation. The user should be able to generate n random line
segments or circles (with n random radii if desired) to decompose allowing
the user to play with the algorithm and further prove its “correctness”.

e. Memory Management. We 9 have botched the memory-management as-
pects of the code, not withstanding a computer science background. Each
time all dynamically allocated objects are destroyed, much of the memory
is not returned to the heap, according to Windows Task Manager. We
must start from scratch and trace exactly where the memory is lost so
that we can create an executable truly stable across an arbitrary number
of runs. As it now stands, running an extremely large decomposition, i.e.
millions of trapezoids, would use up all RAM after about four iterations.

f. Storage of Corner Y Values. As discussed in the text, we should add top
left and right and bottom left and right y coordinate storage to the trape-
zoid object. Although Mulmuley specifically does not do this, the circle
decomposition calculates these values so often that it should be well worth
the extra storage to achieve noticeable speed gains.

g. No Black Box for Numerical Difficulties. It would be interesting to include
some sort of flag which redefines all functions and data as floats, instead
of long double, and then shut off the black box that prevents numerical
issues to see what the actual time difference is.

h. Trapezoid Degree Algorithm. As it currently stands, the algorithm finishes
calculating all trapezoids and then applies an O(kn) algorithm to deter-
mine each trapezoid’s degree, where k is the number of trapezoids and
n is the number of segments/circles. For large problems this inefficiency
becomes noticeable. So far, we have tried three different methods to calcu-
late the degree as the algorithm progresses but none works properly yet.
The first method tries to figure things out when each set of new trape-
zoids is created - very unlikely to work easily or be the best solution since
it requires foreknowledge of how certain things will end up. The second
and most promising, in our opinion, is to wait until circle c has been fin-
ished and then use a recursive algorithm to travel through all these new
trapezoids updating as needed. This quickly becomes inordinately complex
(some trapezoids involved with other circles may also need incrementing)
and liable to infinite loops (visiting the same trapezoid or set of trapezoids
in a loop without recognizing this). However, we think that an extremely
rigorous approach to the problem to determine all possible situations, com-
bined with judicious use of flags (the third method simply added use of

9I



Circular Trapezoidal Decomposition 17

flags) to determine if a trapezoid has already been visited, might result in
a correct algorithm.

i. Arbitrary Radius. The motivation for this project is my work on the Close-
Enough TSP where a relatively easy but important extension is to allow
each circle to have its own radius. Therefore, this capability also needs to
be added here. It should not take much as each trapezoid object has its
own radius but might involve working out a few kinks here and there in
the code.

j. Software Engineering. Although the code utilizes objects and compart-
mented functions well enough, there are some extremely ugly if statements
in findIntersectedTraps. Determining whether or not more intersections
need to be calculated even though the furthest right point lies in the cur-
rent trapezoid, see Figures 27 and Figure 28, is not easy but there must be
a more elegant and compact solution than the ugly if statements currently
used.

Acknowledgement

Thanks to Dr. David Mount for patience as I implemented this algorithm
up to its current state and for the helpful advice regarding the never ending
degeneracies and numerical issues to consider.

References

1. AngleWyrm. http://home.comcast.net/ anglewyrm/hat.h.htm //
2. K. Mulmuley. A Fast Planar Partitition Algorithm, I. Journal of Symbolic Com-

putation, 10:253–280, 1990.
3. K. Mulmuley. A Fast Planar Partitition Algorithm, II. Journal of the ACM,

38:74–103, 1991.
4. K. Mulmuley. Incremental Algorithms, Computational Geometry: An Introduc-

tion Through Randomized Algorithms, 84–93, Prentice Hall, 1994.
5. M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf. Point Loca-

tion. Computational Geometry: Algorithms and Applications, 121–144, Springer,
1998.



18 Mennell

7 Appendix

Fig. 14. 3 points share nearly the exact same intersection point.

Fig. 15. 2 circles share the same y value making a difficult case for future right
trapezoids.



Circular Trapezoidal Decomposition 19

Fig. 16. An 18-node example.

Fig. 17. Multiple vertical circles with both left and right side circle intersecting.



20 Mennell

Fig. 18. Illustration of having no right neighbors.

Fig. 19. The trapezoid with no right neighbors is intersecting exactly through the
midpoint on the right.



Circular Trapezoidal Decomposition 21

Fig. 20. Trapezoid with no right neighbors is intersected to get upper neighbor to
the right.

Fig. 21. Trapezoid with no right neighbors is intersected to get lower neighbor to
the right.



22 Mennell

Fig. 22. Multiple vertical circles with one left intersecting circle.

Fig. 23. Multiple vertical circles showing the numerous general right or left neigh-
bors cases and circles touching at exactly one point so bullet paths created get
merged.



Circular Trapezoidal Decomposition 23

Fig. 24. Multiple vertical circles with one intersecting above.

Fig. 25. Multiple vertical circles with one intersecting below.



24 Mennell

Fig. 26. Very nearly exactly vertical circles but not quite so - a few extremely thin
trapezoids.

Fig. 27. Here the right end point of one circle may be in the current trapezoid but
there are still more trapezoids to locate. This becomes much uglier when multiple
circles also intersect the lens-shaped region.



Circular Trapezoidal Decomposition 25

Fig. 28. Here the right end point of one circle may be in the current trapezoid but
there are still more trapezoids to locate.

Fig. 29. Two circles share the same y value but more complicated middle case.



26 Mennell

Fig. 30. Three circles are almost vertical - shows the narrow trapezoids created.

Fig. 31. THIS ONE HAS BECOME MESSED UP - MUST FIX!! Some trapezoids
here are 10̂-8th wide.



Circular Trapezoidal Decomposition 27

Fig. 32. The far left point of one circle IS an intersection - very difficult to handle.

Fig. 33. Four circles intersect at exactly the same spot. We still need to get k circles
to share same intersection and work.



28 Mennell

Fig. 34. Radius is 10̂-9th so 100 node problem looks like a barcode.

Fig. 35. Radius is just above machine epsilon for our purposes 10̂-12th, so 100 nodes
look like barcode.



Circular Trapezoidal Decomposition 29

Fig. 36. Same barcode effect but using a 1000-node problem.

Fig. 37. Dr. Golden’s 1000-node instance with radius 12 - produces 658469 trape-
zoids.



30 Mennell

Fig. 38. Dr. Golden’s 500-node instance with radius 27 - produces 460301 trape-
zoids.

Fig. 39. Dr. Golden’s 499-node instance with radius 2 - produces 17447 trapezoids.



Circular Trapezoidal Decomposition 31

Fig. 40. Dr. Golden’s 400-node instance with radius 5 - produces 21767 trapezoids.

Fig. 41. Dr. Golden’s 300-node instance with radius 7 - produces 27304 trapezoids.



32 Mennell

Fig. 42. Dr. Golden’s 200-node instance with radius 20 - produces 42543 trapezoids.

Fig. 43. Dr. Golden’s 100-node instance with radius 9 - produces 4049 trapezoids.



Circular Trapezoidal Decomposition 33

Fig. 44. Dr. Golden’s 100-node instance with radius 40 - produces 26279 trapezoids.

Fig. 45. Dr. Golden’s 100-node instance with radius 40 magnified - produces 26279
trapezoids.



34 Mennell

Fig. 46. TSPLIB’s kroD100 with radius 12 - produces 29501 trapezoids.

Fig. 47. TSPLIB’s rad195 with radius 40 - produces 113077 trapezoids.



Circular Trapezoidal Decomposition 35

Fig. 48. TSPLIB’s lin318 with radius 20 - produces 14597 trapezoids.

Fig. 49. TSPLIB’s lin318 with radius 20 - produces 14597 trapezoids.



36 Mennell

Fig. 50. TSPLIB’s rd400 with radius 10 - produces 51241 trapezoids.

Fig. 51. TSPLIB’s pcb442 with radius 25 - produces 14843 trapezoids.



Circular Trapezoidal Decomposition 37

Fig. 52. TSPLIB’s pcb442 with radius 4.346 - produces 94251 trapezoids. This is a
drilling problem from TSPLIB - these are definitely the most difficult to decompose
as degeneracies abound.

Fig. 53. TSPLIB’s pcb442 with radius 25 - produces 14843 trapezoids.



38 Mennell

Fig. 54. TSPLIB’s d493 with radius 40 - produces 725555 trapezoids.

Fig. 55. TSPLIB’s d493 with radius 15 - produces 725947 trapezoids.



Circular Trapezoidal Decomposition 39

Fig. 56. TSPLIB’s dsj1000 with radius 15 - produces 695120 trapezoids.

Fig. 57. TSPLIB’s dsj1000 with radius 40 - produces 2308090 trapezoids.



40 Mennell

Fig. 58. TSPLIB’s d493 with radius 2 - produces 171341 trapezoids.

Fig. 59. Allowing segments to have same x coordinate allows for multiple right
neighbors and no left neighbors.



Circular Trapezoidal Decomposition 41

Fig. 60. Here, two disjoint, vertical segments with same x coords, resulting in only
two trapezoids created.

Fig. 61. Intersecting line segments can cause problems.



42 Mennell

Fig. 62. There’s no degeneracy here, but an interesting pattern, nonetheless.

Fig. 63. Horizontal segments with same left and right x coordinates and a vertical
segment.



Circular Trapezoidal Decomposition 43

Fig. 64. 2 vertical segments (one overlaps a bullet path) interspersed in 8 segments.

Fig. 65. Four segments intersect at the same spot, but one of them is redundant
and so is dropped.



44 Mennell

Fig. 66. Four segments intersect at same point - the “vertical” segment is actually
as close to vertical as possible without being vertical so there are a few trapezoids
here too narrow to see, but they are there.

Fig. 67. The vertical line is a segment that extends slightly above the upper non-
vertical segment. Its bullet path finished the vertical line all the way to the top.



Circular Trapezoidal Decomposition 45

Fig. 68. A diamond figure has multiple same right and left x coordinates to deal
with.

Fig. 69. TSPLIB’s d493 with radius 2 - produces 171341 trapezoids.



46 Mennell

Fig. 70. Diamond shape with added horizontal lines with same x coords.

Fig. 71. Same as earlier example but both vertical segments are visible and both
have top y coordinate same as a horizontal segment.



Circular Trapezoidal Decomposition 47

Fig. 72. Same as earlier but the middle bullet path is also a vertical segment.

Fig. 73. This positive slope segment in the middle has to choose amongst multiple
general right neighbors.



48 Mennell

Fig. 74. Sometimes a segment ends right at its intersection with another line - can
be tricky.

Fig. 75. Multiple segments intersect in the same point, have the same left and right
x coordinates and have a vertical segment to contend with, addtionally.



Circular Trapezoidal Decomposition 49

Fig. 76. Same as Figure 13 but one segment has negative instead of positive slope.


