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Abstract

This paper explores the use of game theory to design an efficient algorithm for rout-
ing self-driving cars through intersections. Despite the discouraging exponential naive
solution to this problem, there are some efficient optimizations which are exposed.
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1 Introduction

Tesla’s 1 and Google’s 2 recent innovations in self-driving car technology have helped pull
the widespread use of autonomous vehicles into the not so distant future. With the tech-
nology advancing so quickly, it is natural to consider how these vehicles will make decisions
about their trajectories through various road networks. In particular, intersections are an
interesting place to begin these considerations. Will cars act purely independently to nav-
igate through intersections accident-free? It seems unlikely. It would be more effective to
allow vehicles to communicate with one another in such a way that promotes a balance
between social and individual benefits. This idea leads to the motivation of using the tools
of game theory for designing an efficient algorithm.

2 Background and Definitions

It will be useful to go over some basic concepts of game theory before continuing. The
content of this section was studied mainly from [3] and [2].

Oftentimes situations arise in which individual agents intend to compete against each
other to achieve personal objectives. Game theory is a mathematical field which models
these kinds of competitive situations and provides methods of calculating the asymptotic
tendencies of such systems as time progresses. A game can be formally described as
follows.

Definition 2.1. A game G = (n, S, U) is defined by n players labeled 1 through n, a set
S = S1 × S2 × . . .× Sn of strategy profiles where each Si is the set of strategies available
to player i, and a set U = {u1, u2, . . . , un} where each ui is a map from an n-tuple ŝ ∈ S
of strategy choices for all players to a real-valued utility for player i.

With this model, the players are placed in a context wherein they choose strategies
from their strategy sets and subsequently measure their personal gains through evaluating
their utility functions on the strategy choice vector containing all player decisions.

Within a game, it is necessary to define some sort of situation in which the players
are happy with their current choice of strategy. We wish to define a state of balance in a
given game that says when this occurs.

Definition 2.2. We are given a game G = (n, S, U) as defined in Definition 2.1. An
equilibrium is some kind of strategy recommendation to players that is self-enforcing ; i.e.,
no player i can improve the value of its utility by deviating from his recommendation.

This self-enforcing constraint takes on different interpretations depending on the equi-
libria in question. Pertinent to this paper is the correlated equilibria. Though for com-
pleteness, we start with the pure Nash equilibria.

Definition 2.3. A pure Nash equilibrium is an equilibrium that occurs when players are
recommended to deterministically play a single strategy all of the time.

1http://www.wired.com/2015/10/tesla-self-driving-over-air-update-live/
2https://www.google.com/selfdrivingcar/
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Given a strategy profile ŝ ∈ S, denote ŝ = (ŝ−i, si) where ŝ−i ∈ S−i = S1 × . . . Si−1 ×
Si+1 × . . .× Sn, the profile which omits the ith player’s strategy choice, and si ∈ Si. The
purpose of this notation will become clear in subsequent definitions. The following is the
formal representation of the self-enforcing principle in a pure Nash Equilibria. Given a
pure Nash equilibria ŝ = (ŝ−i, si) ∈ S,

∀i ∈ [1, n], ∀s′i ∈ Si : ui(ŝ−i, si) ≥ ui(ŝ−i, s′i). (2.1)

In other words, no player can improve his utility by unilaterally switching strategies
from the recommendation in ŝ. Pure Nash equilibria are simple to understand, though
often their restrictive nature makes them difficult to calculate. It is not necessary to
enforce that every player play a single strategy. It is often nice to relax this constraint
and recommend that each player pick from a subset of strategies under a probability
distribution. This kind of model leads to mixed Nash equilibria.

Definition 2.4. A mixed Nash equilibrium is a generalization of a pure Nash equilibrium.
It is the result of recommending a probability distribution pi over Si to each player i
that is independent from the probability distributions given to other players. Let pi(s)
denote the probability that player i should pick strategy s ∈ Si. Thus, pi is subject to the
following constraints. ∑

s∈Si

pi(s) = 1, and ∀s ∈ Si : pi(s) ≥ 0

In a two player game, let each player have a probability profile as in Definition 2.4.
Assume these profiles are independent from one another and call |S1| = m1, |S2| = m2.
Then, there is a natural induced probability matrix P that denotes the joint probability
of each of the m1 ·m2 outcomes. If S1 = {s1,1, . . . , s1,m1} and similarly for S2, then call
entry Pi,j = p1(s1,i) · p2(s2,j) the probability that player one picks strategy s1,i ∈ S1 and
that player two picks s2,j ∈ S2.

Example 2.1. Let S1 = S2 = {1, 2, 3} and p1(S1) = p2(S2) = 〈13 ,
2
9 ,

4
9〉 be the probability

distribution for both players one and two. Each player is recommended to pick strategy
one 1

3 of the time, strategy two 2
9 of the time, and strategy three 4

9 of the time. Then we
have the product matrix

P =

 1/9 2/27 4/27
2/27 4/81 8/81
4/27 8/81 16/81

 .

This two player joint probability matrix can be generalized to any number of players.
With n players and a recommendation profile pi for each player i, we have P (s1,j1 , s2,j2 , . . . , sn,jn) =∏n

i=1 pi(si,ji) as the joint probability that player one picks strategy s1,j1 , player two picks
strategy s2,j2 , etc.

Like pure Nash equilibria, mixed Nash equilibria have a self-enforcing constraint. For
mixed, it is essentially a condition on the expected payoff resulting from switching strate-
gies. For every nonzero probability pi(s) for player i and under the assumption that all
other player’s follow their probability recommendations, player i cannot improve his ex-
pected utility by switching strategies from s. A profile of probability recommendations
p̂ = (p1, . . . , pn) is self-enforcing if
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∀i ∈ [1, n], ∀si, s′i ∈ Si : pi(si) > 0⇒
∑

ŝ−i∈S−i

[
ui(ŝ−i, si)− ui(ŝ−i, s′i)

]
P (ŝ−i) ≥ 0.

(2.2)
Even though less restrictive to calculate than pure Nash equilibria, mixed Nash equi-

libria can still be hard. An even more general concept than both of these concepts is
correlated equilibria.

Definition 2.5. Given a game G = (n, S, U), a correlated equilibrium is determined by
a probability distribution P on S that is used by some external agent in recommending
strategy vectors to the players. P is not necessarily a product distribution (i.e., the players
need not act independently since there is an external agent involved). It is not in any of
the player’s best interest to deviate from the recommendation in a similar sense as a mixed
Nash equilibrium (Equation 2.2).

Correlated equilibria also have the self-enforcing property. The difference is that the
P probability matrix need not come from a product distribution as in a mixed Nash
equilibria. Though, it can be reasoned that both mixed and pure Nash equilibria fall under
the umbrella of correlated equilibria. Although, some correlated equilibria are outside the
realm of Nash equilibria, thus making correlated equilibria a natural generalization of
Nash. For correlated equilibria, we have the self-enforcing constraint as

∀i ∈ [1, n],∀si, s′i ∈ Si :
∑

ŝ−i∈S−i

[
ui(ŝ−i, si)− ui(ŝ−i, s′i)

]
P (ŝ−i, si) ≥ 0. (2.3)

3 Discretized Intersection Problem

Traffic systems, as with many physical systems, are often modeled using continuous func-
tions. This is quite natural, as the positions, velocity, accelerations, etc. of the vehicles in
the systems do not jump between largely-separated values instantaneously. Even so, it can
be instructive to begin discretizing our idea of traffic. Doing so allows us to analyze the
system from the perspective of game theory since we treat the vehicles’ physical parameters
as being chosen from a set of finite choices. Consider the following (slightly ambiguous,
but formalized throughout the section) description of the Discretized Intersection Problem
(DIP).

Discretized Intersection Problem We are given a grid of size 2r×2r where the union
of the (r−1)th and rth rows and columns represent two-way single lane roads meeting
at an intersection. Starting at time 0, we choose whether or not to inject cars at four
cells (1, r − 1), (r, 1), (2r, r), and (r − 1, 2r). Notice that this assumes cars drive on
the right side of the road. Now at time 1 (time is discrete as well), each car decides
whether it would like to move or not, and more cars possibly enter the system.
Continuing in this manner and assuming some central device can communicate with
the vehicles, can we efficiently route cars through the intersection?
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Take as an example the grid system in Figure 1. We will treat this grid as a vehicle
intersection with discrete positions, where the valid positions are marked with unit squares.
In this intersection, we can allow a car to occupy any valid position p = (r, c) where r is
the row and c is the column of the position. As well, a car will have an intended direction
d = (r, c) which determines the next adjacent square it would like to move to.

1 2 3 4 5 6

1

2

3

4

5

6

Figure 1: An intersection with discrete positions.

See Figure 2 for an example placement of players. This placement represents a snapshot
of our traffic system at a certain discrete time T . What happens when the system advances
to time T + 1? If all of the cars move in their intended direction, then there will be crash
at position (3, 3). In an intuitive sense, this should not be an allowable situation.
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Figure 2: A placement of four cars with intended directions into the intersection.

Instead, we would rather see the traffic configuration advance to the state shown
in Figure 3. When routing cars through an intersection, what kind of metrics should
determine whether a routing assignment is good? In essence, a driver simultaneously does
not want to have an accident and wants to avoid waiting to cross through the intersection.
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Figure 3: A valid advancement from the state shown in Figure 2.

This brings us motivation to use a game-theoretic description of this system. Let
there be n drivers each with a label in D = [1, n]. Define the ith driver as a 3-tuple
di = (pi, vi, wi). pi is the driver’s position in the intersection. vi is the driver’s intended
direction represented as a vector (e.g. (vi = (1, 0) means that driver i intends to move
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down one row on the next step). wi counts the number of times that the driver has decided
to wait before proceeding forward.

Consider a game G = (n, {0, 1}n, C) where {0, 1} is the set of strategies that any driver
may choose from when moving from time T to time T +1. Here, 0 is defined to mean that
the driver decides to stay in its current position and 1 is defined as moving forward in its
intended direction. C is a set of cost functions ci for each player 1 ≤ i ≤ n that is a map
ci : {0, 1}n → R satisfying

ci(ŝ) =

{
∞, ŝ results in a crash involving i

(1− si)(wi + 1), otherwise
(3.1)

Upon inspection, this function encompasses both the idea that crashes are undesirable
by the drivers yet moving through the intersection with as few delays as possible is desir-
able. Checking the existence of a crash is possible in O(n2) time, at least in a naive way
wherein for every pair of drivers di = (pi, vi, ti) and dj = (pj , vj , tj), we check if pi = pj .
If true, there is a crash.

We can search for an equilibrium for G which minimizes the sum of the individual
costs. This action would take place for each time step, where the new game formed at
time T is dependent upon the decisions made during time T − 1.

4 Complexity of Naive Solution

The simplest method of finding a correlated equilibrium can be attained by a linear pro-
gram which simply enumerates the constraints specified by Definition 2.5. This linear
program will have size Θ(n2n) since each vehicle will have an exponential number of con-
straints to satisfy as seen in the definition. This is far from efficient, even for relatively
small values of n. It seems that we’ll need to do a bit more work to achieve an efficient
solution.

5 Improvement upon Naive Solution

In order to move towards a more efficient solution to DIP, let us consider a few nice
properties that arise as a result of the problem statement.

Crash Locality Notice that the value of each player’s cost function is dependent on
whether or not the inputted strategy profile (vector of stop / go decisions for each
vehicle) results in a crash. When considering if two vehicles i and j could crash on
the next time step, are there any conditions on i and j? If not, then we are out
of luck in improving cost calculations. Fortunately there is indeed a nice structural
property that is necessary for a crash. Namely, if (xi, yi) is vehicle i’s current position
and similarly (xj , yj) for vehicle j, then we must have

|xi − xj | ≤ 1 and |yi − yj | ≤ 1.

Since each player can move at most one grid cell at one time step, two cars can only
crash if they are at least one grid cell away from each other. Thus, consider the
dependency graph in Figure 4. In this graph, there is an edge between a node at
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position pi and another at position pj if and only if there exists a configuration for a
vehicle i at pi and another j at pj (moving in directions consistent with U.S. traffic
laws) such that it is possible for i and j to crash after the next time step.
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Figure 4: A dependency graph for the grid given in Figure 1.

This graph will prove to be essential for the upcoming connected components dis-
cussion, so let’s look at a few examples of the definition.

As in the figure, let there be a vehicle u at position (4, 2) moving right and another
vehicle v at position (3, 3) moving down. u and v have an edge between them in the
dependency graph, so can they collide on the next time step? The answer is yes,
if both u and v decide to move forward in their respective directions. This can be
thought of as a side-impact collision.

Next example. Let there be a vehicle u at position (1, 4) and another v at (2, 4) both
moving downwards. They can both crash on the next step if u decides to move and
v decides to stop. In this case, we have a rear-end collision.

Connected Components We have seen that the naive solution builds a linear program
of size Θ(n2n), but motivated by the dependency graph given above we can make a
reasonably effective improvement.

For a given grid and placement of vehicles, we can construct of subgraph of the
general dependency graph wherein there is a vertex at position p if and only if there
is a driver at position v. Further, there is an edge between u and v if only if they
can crash on the next step. We call this graph the minimal dependency graph.

Given a minimal dependency graph, the claim is that we can independently solve
each connected component as its own instance of DIP, then concatenate the subre-
sults. In fact, this is essentially Theorem 5.1. First, we prove a smaller result.

Fix a strategy profile ŝ and two vehicles i and j. Further, let δk(ŝ) denote the
strategy profile which results from changing the kth entry of ŝ. We have

Claim 5.1. If i and j are part of different connected components in their minimal
dependency graph, then ci(ŝ) = ci(δj(ŝ)) and cj(ŝ) = cj(δi(ŝ)).

Proof. Suppose that i and j are two vehicles in different connected components. It
follows that there is no edge between i and j. Assume that ci(ŝ) 6= ci(δj(ŝ)) or
cj(ŝ) 6= cj(δi(ŝ

′)). By definition of the cost function, this means that either δj(ŝ) or
δi(ŝ) changed the crash status between i and j. But this is a contradiction, since
there is no edge between i and j and we defined an edge in the minimal dependency
graph to represent the possibility of a crash. So the claim holds.
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This claim immediately implies the very useful result

Lemma 5.1. We are given a vehicle i and a strategy vector ŝ. If ŝi is the strategy
vector that involves only the choices of the vehicles in i’s connected component, then
ci(ŝ) = ci(ŝi).

Proof. By Claim 5.1, only the decisions of vehicles within i’s connected component
effect its cost function. So the lemma is true.

Knowing this lemma will prove to be essential in justifying Theorem 5.1, the main
theorem of this section, but hold your breath – we look at a few more pieces of nota-
tion and another lemma that will be useful in succinctly maneuvering the theorem.

For two distributions e1 and e2 representing recommendation probabilities for the
strategies of disjoint sets of vehicles V1 and V2, let e1e2 be the concatenation of e1
and e2 into a joint probability distribution for V1

⋃
V2. It will be defined in the

usual sense that if ŝ is some strategy vector for all vehicles in V1
⋃
V2, ŝ can be

split into two separate vectors ŝ1 over V1’s choices and ŝ2 over V2’s choices. Then,
e1e2(ŝ) = e1(ŝ1)e2(ŝ2).

Notice that the connected components of an undirected graph G define equivalence
classes on G. So given a minimal dependency graph D for DIP, we can express D
as the disjoint union D1

⋃
D2
⋃
. . .
⋃
Dk where each Di is a connected component

of D and |Di| = ni. Write opti as the optimal correlated equilibrium for Di (with
the global cost as sum of the individual costs).

Lemma 5.2. P =
∏k

i=1 opti defines a correlated equilibrium for D.

Proof. In order to show P is a correlated equilibrium for D, we need to verify that a
vehicle cannot not deviate from the distribution specified by P to improve its cost.
Checking that the following cases do not occur is sufficient.

1. P recommends a crash. Since a crash results in infinite cost, an optimal
equilibrium will never choose to include such a strategy (stopping all cars has
a smaller cost). But each potential crash is contained in each connected com-
ponent and every opti is optimal, so this case does not occur.

2. P favors some car stopping when it could instead move safely. If a
car could move forward safely, that means that it could move forward without
a crash thus improving its cost. But some opti would recognize that this crash
would not occur, since all crash information is contained in each connected
component. Since opti is optimal, it will have already moved cars that can do
so safely. So this case does not occur, either.

Therefore, P is a correlated equilibrium.

Finally, we are ready to prove the main theorem!

Theorem 5.1. opt =
∏k

i=1 opti is an optimal correlated equilibrium.
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Proof. We have already seen in Lemma 5.2 that the product of the opti’s is a cor-
related equilibrium. We now show it is optimal. Note that, by definition, each opti
results in a minimal expected global cost within Di. We have

ζi =

ni∑
j=1

∑
ŝ∈{0,1}ni

cj(ŝ)opti(ŝ)

is minimal. Also, we will write opt−i to mean
∏k

j=1,j 6=i optj which implies the nice
expression opt = (opti)(opt−i). We’ll abuse notation so that for a vehicle j, optj will
be the appropriate correlated equilibrium for j’s connected component. Observe
that the global expected cost for the product distribution is

n∑
j=1

∑
ŝ∈{0,1}n

cj(ŝ)opt(ŝ) (5.1)

=
n∑

j=1

∑
(ŝj ,ŝ−j)∈{0,1}n

cj(ŝj , ŝ−j)optj(ŝj)opt−j(ŝ−j) (5.2)

=
n∑

j=1

∑
(ŝj ,ŝ−j)∈{0,1}n

cj(ŝj)optj(ŝj)opt−j(ŝ−j) (5.3)

=
n∑

j=1

 ∑
ŝj∈{0,1}nj

cj(ŝj)optj(ŝj)

 ∑
ŝ−j∈{0,1}n−nj

opt−j(ŝ−j)

 (5.4)

=
n∑

j=1

∑
ŝj∈{0,1}nj

cj(ŝj)optj(ŝj) (5.5)

=
k∑

i=1

ζi (5.6)

(5.3) is true due to Lemma 5.1, and (5.5) is true since the right hand sum in (5.4)
ranges over all of the probabilities in the distribution opt−j . Since each ζi is minimal
and can only take on nonnegative values (due to individual cost function being
nonnegative), (5.6) is also minimal. The theorem is proved.

As promised in the beginning of the section, we now have a means to say that we
can construct a better linear program in some cases. In fact, by the theorem we see
that we can create k different linear programs and solve each of them independently
to achieve the optimal correlated equilibrium. In the best case, we solve n linear
programs each of size Θ(1) when each connected component consists of a single
vehicle. Though in the worst case, we are back in the previous situation with a
linear program of size Θ(n2n). Still, this is some improvement.

6 Implication Graph

With the properties exploited in the previous section, we now will discuss a promising
idea for constructing a polynomial-sized linear program for DIP. The algorithm will be
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introduced, though no proof of correctness will be given at this time.
Notice that a correlated equilibrium will never choose a nonzero probability for recom-

mending a strategy profile which dictates a crash to occur. A crash between two vehicles
results in an infinite individual cost for those two vehicles and resultingly an infinite global
cost. The correlated equilibrium could trivially find an equilibrium with smaller global
cost by telling all vehicles to stop. Additionally, many of the strategies vectors which
we consider contain crashes, so perhaps we could prune these vectors out of our linear
program.

It also helps to notice that if a car u is trailing another car v and if v is not in the
intersection, then u will always benefit from moving if v decides to move. What we see
here is that we have some decision-based implications between players. We saw in the last
section what was referred to as the dependency graph of an intersection, but not consider
the interesting implication graph.

The implication graph of an instance of DIP will be a directed – possibly cyclic – graph
representing decision-induced dependencies between vehicles. There will be two vertices
for each vehicle i: xi which represents the decision for i to move and the other x̄i for i
to stop. Then there will be a directed edge between nodes x and x′ when the decision
dictated by x requires the decision dictated by x′ (otherwise a crash). Since we saw in
the previous section that each connected component can be solved independently, we can
assume that this implication graph is weakly connected.

”go” variables ”stop” variables

x(2,3)

x(3,4)

x(4,4)

x̄(2,3)

x̄(3,4)

x̄(4,4)

Figure 5: An implication graph for the three vehicle connected component from Figure 2.

This implication graph is reminiscent of the skew-symmetric graphs created when
solving 2-SAT instances with the method of Aspvall, Plass & Tarjan [1]. Our algorithm
will be inspired by this, but since 2-SAT is only concerned with finding a single satisfying
assignment and here we wish to find a specific set of assignments, there will be some major
differences. Without further ado, here is the outline for the algorithm.

1. Create implication graph as above.

2. Condense the implication graph by treating each strongly-connected component as
a vertex itself. The resulting graph will be acyclic.

3. For each vertex v in the condensed graph with indegree 1, do a breadth first search
rooted at v to find out if it implies any contradictions. v implies a contradiction if
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its BFS tree includes both xi and x̄i for some i. If so, then delete all the variables
in the tree which imply the contradiction, and all edges coming out of them as well.

4. For each vertex v with indegree 1 in the modified condensed graph, there will be a
distinct assignment of decisions. Find all of these.

5. From the sets of decisions found in the previous step, use these as the valid strategy
profiles for computing a correlated equilibria in the DIP instance.

Concretely, we see in Figure 5 that there are two strategy profiles to consider. One is
where the vehicles at (3, 4) and (4, 4) move and the vehicle at (2, 3) waits. The other is
where the vehicle at (2, 3) moves and the others wait.

The claim here is that there will be at most four nodes with indegree of 1 in the
implication graph of each subinstance of DIP. Therefore, we have can create a linear
program over these strategy profiles to find the optimal corrrelated equilibrium with size
Θ(n). This is true for each connected component in the dependency graph, so for k
connected components we have k linearly sized linear programs.

7 Future Work

Through this paper, we have seen that it is possible to efficiently solve DIP at each time
step. But, there are many questions left unanswered.

• Does finding an optimal correlated equilibrium for each time step perform optimally
from a global perspective? In other words, is it safe to assume that performing
optimally at time T without regard to the future does not negatively effect future
cost evaluations?

• Can we allow more than two choices for each vehicle? In other words, can we more
realistically model the speeds of a car besides a binary ’stop’ and ’go’ while still
maintaining efficiency?

• Can we expand the model to incorporate large road networks, which would essentially
be joining together multiple intersections?

These questions will serve as a basis for continuing this research next semester.
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