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Language-based editors have been thoroughly studied over the 
last 10 years and have been found to be less effective than orig- 
inally thought. The paper reviews some relevant aspects of such 
editors, describes experiences with one such editor (Support), 
and then describes two current projects that extend the syntax- 
editing paradigm to the specifications and design phases of  the 
sol?ware life-cycle. 
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S Y N T A X  E D I T O R S  

Syntax-editing (or alternatively language-based editing) 
is a technique that had its beginning about 20 years ago 
(e.g., Emily I) and blossomed into a major research 
activity 10 years later (e.g., Mentor% CPS3).. During the 
mid-1980s, major conferences were often dominated by 
syntax-editing techniques 4,s. Many of  these projects, 
however, have since been terminated or have taken a 
much lower profile. There are few widely used commer- 
cial products that use this technology. Why? 

This paper briefly introduces the concept of syntax 
editing, describes one particular editor, and explains 
some experiences in using it. It is then shown how the 
syntax-editing paradigm is powerful but perhaps misap- 
plied in the domain of source-program generation. 

Just using a syntax editor for source-code production 
does not result in significantly higher productivity. By 
integrating specification generation with this source-code 
production, however, the author believes that increased 
productivity can be provided by making more of  the life- 
cycle visible to the programmer. Two extensions to the 
current environment are described that apply syntax 
editing within a specifications environment to provide 
additional functionality over that of standard syntax 
editors. 

With a conventional editor, the user may insert an 
arbitrary string of characters at any point in a file, and a 
later compilation phase will determine if there are any 
errors. With a syntax editor, however, only those choices 
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permitted by the language grammar can be inserted, and 
the generation of  source program and the processing of 
the program's syntax are intertwined operations. For  
example, for the statement nonterminal < stmt > ,  there 
are only a limited set of statement types that are permit- 
ted and only those legal strings can be entered by the user 
in response to that nonterminal on the screen. 

The user interface is a major component of syntax 
editors. Depending on editor design, syntactic constructs 
can be specified via a mouse and pull-down menus, func- 
tion keys on the keyboard, or special editing prompt 
commands. If the cursor is pointing to the < s t m t >  
syntactic unit and the user specifies the if statement, then 
the text 

if < expr > then 
< stmt > 

else < stmt > 

will replace <s t ru t>  on the screen. Each nonterminal 
< . . . >  is considered as a single editing character and 
syntactic constructs must be added or deleted in their 
entirety. In essence, the programmer is building the 
source-program parse tree in a top-down manner. 

Pure syntax-editing is a simple macro-like substitu- 
tion, and such macro substitutions exist in several con- 
ventional editors. For example, Emacs and Digital's 
LBE (Language Based Editor) both permit such substi- 
tutions anywhere in a program. Here, however, editors 
that go beyond simple substitution are being considered. 
Screen layout is often specified (e.g, unparsing the pro- 
gram tree to a 'pretty-printed' display), semantic infor- 
mation is usually checked (e.g., variable declarations, 
mixed types), and often the editor is part of an integrated 
package or environment of editor, interpreter, and 
debugging and testing tools. 

Early on, many advantages of a syntax editor were 
stated: 

• Source-program generation would be efficient as a 
single mouse or function key click would generate an 
entire construct. 

• Productivity would increase as numerous errors such 
as missing begin cnd pairs could not occur and mixed 
mode expressions would immediately be found by the 
editor at the point of insertion. Users could more 
easily use an unfamiliar language. 

• Screen layout would be predefined, providing a 
uniform structure to all programs. 
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,, The integrated package of  tools enables testing and 
debugging to proceed more rapidly. 

As shall be seen, the last of these reasons does indeed 
seem to be true; each of  the others, however, seems to 
have a serious drawback as well as the supposed benefit. 

As an example, the Support environment, designed by 
the author, is briefly described as an instance of  the 
integrated syntax-editing genre 6. It has many of  the 
features implemented in such tools and is the basis for 
the extensions to specifications described later. 

Support design 

Support is an integrated environment built to process the 
CF-PASCAL subset of  PASCAL and was used for three 
years (until the course contents changed) as the program- 
ming tool in the introductory programming course at the 
University of  Maryland. It runs on both Berkeley Unix 
and IBM PC systems. 

Design 
Major features of  Support include the following. 
Text input Support uses both the command and func- 
tion key mechanisms for input. If the cursor (represented 
by reverse video) covers the < strut > unit, a menu at the 
bottom of  the screen gives the available choices. For  
example, to insert an if statement, either a response of  .2 
or depressing function key 2 (on the PC keyboard) will 
insert the if construct. 

Support also permits textual substitution for any syn- 
tactic unit. A user can type in an arbitrary line of  char- 
acters, and an internal LALR parser builds the subtree 
for that construct. If the root of  that subtree is permitted 
by the current cursor position, then it is attached to the 
program tree at that cursor position. 

Using either input mechanisms, invalid syntax can 
never be entered. Using the menu for input permits only 
correct responses, and, for textual input, if the parser 
cannot resolve the typed-in text to a correct syntactic 
unit, an error is displayed and the program is not modi- 
fied. 
Windows Horizontal windows dividing the CRT screen 
are the major interface with the user. Each tool within 
Support controls its own window, and from two to four 
windows will typically be displayed at any one time. 
Tools Various tools within Support aid in program 
design and development. The relationship among pro- 
cedures in a program is handled by the Design window; 
an interpreter executes partially developed programs and 
includes features such as variable and statement tracing 
and breakdown monitoring. Statement trace and state- 
ment coverage windows are part of  this structure. Data 
are displayed via the variable trace and the run-time 
display windows. 

As an extension to the textual input mode, a small (i.e., 
size of  screen) text editor called the Character Oriented 
EDitor (or COED) was implemented. Users insert or 
modify arbitrary sequences of  characters in this window, 
have the text processed by the LALR parser mentioned 

Table 1. Background of students 

Semester 1 Semester 2 

First university computer course (%) 73 82 
Took this course previously (%) 12 9 
Took high-school course (%) 59 55 
Never previously used computer (%) 26 24 
Own microcomputer (%) 49 51 

above, and then have the text inserted into the program 
tree at the appropriate place in the program. The user 
can also pull an arbitrary section of  program text into 
this window for modification. This also gave an easy cut- 
and-paste feature and the ability to move sections of  
code around in the program as a means to address some 
of  the syntax-editing deficiencies that turned up. 
Language and screen displays The grammar processed 
by Support (e.g., CF-PASCAL) is defined via an external 
data file that defines the syntax, some semantics, and 
screen layout. This feature turned out to be a major 
factor in allowing Support to be extended for other 
applications. 

Experiences 
Support was used from 1986 until 1989 in Computer 
Science I by approximately 200 to 300 students each 
semester. During the first two semesters data were 
collected from the 543 students that enrolled in the 
course. The background of  the students is summarized in 
Table 1. As shown, about 75% had previous experience 
with programming and about half own their own 
computer. 

Based on a 1 to 5 rating scale (1 = poor), students who 
owned their own computer (and presumably had more 
experience in programming) rated satisfaction with Sup- 
port lower than those without their own computer (2.8 to 
3.2). More revealing, students rated Support's text-edit- 
ing capabilities much lower than those of an IBM main- 
frame also used during the semester (2.7 versus 3.7 for 
one semester, 3.3 versus 3.8 for the other). The author 
believes that users with experience with general text 
editors felt more restricted by the syntax-editing para- 
digm. On the other hand, novices with no previous 
experience felt aided by such restrictions. 

Students using Support rates its debugging capabilities 
higher than those available on the IBM mainframe (3.8 
versus 3.1 for one semester, 3.0 versus 2.9 for the other). 
The PC system was also rated as more available com- 
pared with the mainframe (3.9 versus 2.8 for one semes- 
ter, 3.0 versus 2.9 for the other). Other results are pre- 
sented elsewhere 7. 

In summary, syntax editing seems to be viewed as a 
restriction on program development, but the integrated 
development and testing environment appears to be 
desired. A tool that simply develops source text does not 
seem to produce a large productivity increase. The 
results here are comparable to those found with other 
editing environments. 
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Retrospective 

After several years of  use and several redesigns and 
enhancements based on user needs and experiences, the 
four advantages claimed for such editors can be 
addressed more clearly. As shall be seen, for most  of  the 
advantages, there are some serious problems to over- 
come. 

Efficient generation of source programs 
For entering much of  the text of  a program, this is true, 
but unfortunately there are enough complications to 
slow down experienced programmers.  For example, the 
PASCAL if statement has an optional else clause. Should 
the editor automatically insert the else and have the 
programmer  delete it if not desired, or should it not be 
included with the corresponding need to add it if wanted? 
Support  chose the latter model, but in either case the 
editor will be wrong about  half of the time. 

In Support 's  case, the screen displays no information 
about  optional syntactic units, so the user needs to know 
where such units are located. There are two modes of 
moving forward through a program: the --* key moves to 
the next syntactic unit displayed on the screen, while the 
enter key is similar but will insert any optional phrases 
between displayed syntactic units as it moves. In POE's  
case s the opposite occurs. All optional units are dis- 
played initially, and the user must delete them if not 
specifically wanted. 

A more serious consequence is that syntactic units are 
added top-down, but programmers  usually think of 
algorithms as sequential actions. For adding new state- 
ments, there is not much difference between sequential 
insertion and top-down development of  the BNF: 

< s t m t l i s t >  ::= < s t r u t > ;  < s t m t l i s t >  I 
< strut > 

as both generate statements in a left-to-right manner.  
Insertion of expressions such as A + B * C ,  however, 
essentially means to build the tree in postfix order (e.g., 
..... ", "A" ,  "*",  "'B", "C") ,  which is not the natural 
sequence. 

In some environments, such as C M U ' s  Ganda l f  s, this 
top-down linking to the program's  parse tree is embed- 
ded in the user interface; in Support 's  case, however, the 
LALR parser mentioned earlier was added. Straight text 
will be parsed and entered in its true infix format. The 
COED editor within Support  was a valuable extension 
that permitted programmers  to add small sections of  
program text (up to 22 lines of  input) without violating 
the basic top-down nature of  program generation in a 
syntax editor. 

Early detection of syntax and semantic errors 
While true, this is not much of a benefit if its conse- 
quences are considered. Experienced programmers  
generally do not make many syntax errors as they enter 
text, although novices do. (This might explain Support 's  
greater popularity among non-programmers  than among 
programmers.)  

There are cases where this supposed benefit is actually 
a hindrance. I f  an experienced programmer  thinks of  a 
sequence of code to enter and makes an error in input, a 
standard editor will ignore the error and continue enter- 
ing data. After finishing entering code, the programmer  
can fix the earlier problem. With a syntax editor, how- 
ever, only correct syntax can be entered. The system will 
usually halt and beep until corrective action is taken. 
Thus there is a disruption in a train of  thought where 
some deep semantic issue needs to be put aside (and 
forgotten?) to fix some simple syntax. 

Looking at both of  these reasons, as languages get 
more complex (e.g., ADA) syntax editing might make 
more sense, but in relatively simple languages, like PAS- 
CAL and C, there seems to be few benefits. There is little 
experience with such editors for complex languages. Arc- 
turus l° is a prototype of an ADA editor, but it was not 
made commercially available. 

Screen layout is predefined 
This is also true, but again the predefined layout might 
not be what the programmer  wants in all cases. It cer- 
tainly helps the novice generate nicely indented listings, 
but as the programming task grows more complex, the 
number of  special cases increases. 

The placement of comments  seems to pose a problem 
with all such editors. Comments  are generally outside the 
language's defining BNF. Where do they appear in the 
listing? In Support  they are tagged before the defining 
nonterminal. This works in some cases, but not all. 

Uniform debugging and testing tools 
This again is true, but a syntax editor is not needed for 
this feature. An integrated framework and data reposit- 
ory are needed for a source program. The current interest 
in CASE (computer-aided software engineering) tools 
exemplifies this, and Support  is simply a CASE tool with 
a syntax editor for a base. 

In summary,  the experiences with Support  are by no 
means unique and closely mimic experiences others have 
had with syntax editors. For example, Mentor,  initially 
developed about  eight years earlier at INR1A, has had a 
similar pattern of development and use t~. Similar to 
experiences with Support: 

• Novices used menus but experienced programmers  
rarely did. 

• Experienced programmers  wanted the full-screen 
Emacs editor for textual input and modification (pro- 
viding functionality similar to the C O E D  editor des- 
cribed here) using automatic parsing and unparsing of 
the Mentor  input. 

t Switching between Mentor and Emacs was difficult 
due to the inherent problems in placement of  
comments.  On the other hand, Mentor  was a powerful 
source-code maintenance system due to the integ- 
ration of many program analysis tools for obtaining 
semantic information about  a program. But just as in 
Support 's  case, such tools are mostly a function of 
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Mentor being an integrated environment and not 
simply an editor. 

In conclusion, the drawbacks seem to be as serious as the 
advantage in syntax editing, which probably explains 
their lack of growth and popularity since the early '80s. 
As a final comment, source-code development is often 
stated as 15% of total life-cycle costs. Even if the editor 
reduced coding time to zero, that would still mean a 
productivity improvement of only 15%. Industry is look- 
ing for more than that. 

S P E C I F I C A T I O N S  

The previous discussion indicates that while syntax edit- 
ing of source programs is a powerful technique, it proba- 
bly has minimal effect on programmer productivity. As 
requirements, specification and coding take up to 75% of 
the costs to develop a system, however, improving those 
phases of the life-cycle might have a more dramatic 
impact on productivity. In addition, a mechanism to 
improve the flow between specifications to design to code 
would probably lead to fewer interface errors, hence 
decreasing the effort needed in testing and further 
increasing improved productivity. 

For coding source programs, there are several pro- 
gramming techniques: procedural languages (e.g., PAS- 
CAL, C, ADA, COBOL), applicative languages (e.g., LISP, 
PROLOG), object-oriented programming (e.g., SMALL- 
TALK, C+ +), etc. Their relative strengths and weak- 
nesses for specific applications are fairly well established. 
For specification of a program, there are also several 
models (e.g., axiomatic, denotational, algebraic, func- 
tional); however, as yet there is no clear consensus as to 
which is most effective and how each applies to different 
application domains. This is still very much an open 
research question, with many ongoing projects studying 
various specification strategies. 

Given the powerful syntax editing paradigm and its 
relative inability at improving source-code generation, 
the author decided to investigate it within a specification 
domain. After all, most specification languages have a 
syntax and semantics more complex than most program- 
ming languages, and some anecdotal data do seem to 
indicate that programmers would prefer syntax editors 
for sufficiently complex languages. 

As stated previously, Support processes a language 
defined by an external grammar file, and it is constructed 
as a set of  independent tools, each writing to virtual 
windows that are mapped to the actual computer screen. 
By modifying this grammar and by adding new support 
tools, Support becomes an interface 'shell' for a series of 
integrated environments. It can be used as a language 
processing meta-environment by providing the capabili- 
ties to read input, parse text, build parse trees, and 
manipulate multiple windows simultaneously. Using 
Support, two such extensions were developed that are 
described here: AS* (based on algebraic specifications) 
and FSQ (based on functional specifications). 

(I) sort  sequence/sort something/is 
(2) constructor 
(8} epsilon; 
(4) cons : something, sequence; 
(5) operation head : sequence -~ something is axiom 
(6) head(epsilonJ =---- f; 
(7) headCeons(X, r)) = =  X,. 
(8) operation count : sequence -~ integer is axiom 
(9) count(epsilon) - ~ -  O; 
(lo) count( ons(X, Y)) = =  I +count(r); 
(11) end; 

Figure 1. Example of  sequence specification 

AS* for executable  specifications 

An algebraic specification is a series of axioms that link 
together the operations that can be applied to an abstract 
data type. As an extension to the Support environment, a 
specifications extension based on these algebraic axioms 
has been defined. 

An AS* specification contains three features: 

• a set of sort names that define new abstract objects and 
their constructors 

• a signature, which defines a set of defined operations 
for manipulating the abstract objects 

• a set of oriented equations (or axioms) that relate the 
defined operations and constructors to each other 

Figure 1 gives a simple example of  a specification for a 
sequence. Line (l) specifies that a class of objects of sort 
(i.e., type) 'sequence' is being defined and indicates that 
the new object will require as a parameter a sort 'some- 
thing' that will be specified in a later binding. A generic 
class of sequences that will be instantiated by this later 
binding to 'something' is being defined. Lines (2)--(4) 
define the two constructors needed to create an object of 
this sort: 'epsilon' to return the empty object of  sort 
'sequence' and 'cons', which takes an element and a 
sequence and returns a new sequence with the element in 
it. The functionality of each constructor is given after its 
name with the sort name 'sequence' implied as last (e.g., 
'epsilon' returns an empty 'sequence' and 'cons' requires 
a 'something' and a 'sequence' and returns a 'sequence'.) 
'Epsilon' initializes objects of this sort and 'cons' creates 
new complex objects. 

This object is manipulated by means of a set of defined 
operations. In this simple example, operations 'head' and 
'count' are given with their signatures on lines (5) and 
(8). They are defined by the rewrite rules (axioms) on 
lines (6)--(10). 'Head' says to return the element last 
included into the sequence by the 'cons' function, while 
'count' returns 0 for 'epsilon' (i.e., an empty list) or l plus 
the size of any non-null list with the first element 
removed. As can be seen, the formal definitions of each 
function includes recursive algorithms for computing its 
value by reducing any complex object to a finite set of  
applications of the constructor functions. The '?' on line 
(6) is equivalent to an error condition, and the implemen- 
tation stops execution and issues an error message when 
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this occurs. (That is, it is illegal to take the 'head' of an 
empty list.) 

For  example, the list < X , Y , Z >  is created by the 
construction: 

cons(X,cons(Y,cons(Z,epsilon))) 

and the operation 'count '  uses this construction, as in: 

count (<  X,Y,Z > ) = 
1 + count( < Y,Z > ) --- 
1 + 1 + c o u n t ( <  Z > )  = 
I + i + 1 + count( < epsilon > ) = 
! + 1 + 1 + 0  = 
3 

The use of the Knuth--Bendix  algorithm ~2 defines a 
proof  of  adequacy of  the resulting algebraic equations by 
showing the equivalence of  supposedly equal terms to the 
same ground (i.e., constant) terms. As the Knuth--Ben-  
dix algorithm is based on an ordering transformation 
from one term to a 'simpler' term, however, the algor- 
ithm defines an operation that can be 'executed' and 
proven to terminate. Therefore, any set of  axioms that is 
'Knuth--Bendix '  can be transformed mechanically into 
a series of  transformations that can be executed in some 
programming language, in this case PASCAL. 

Similar to Larch and Larch/CLU ~3, AS* specifications 
are independent of  the underlying programming lan- 
guage and must be defined relative to any concrete lan- 
guage. Libraries of  generic specifications can be used to 
form the basis of  a reuse methodology where the generic 
specification is refined to an explicit specification in a 
specific programming language by binding the generic 
sorts to specific programming language types. In this 
case PASCAL is considered as the implementation vehicle, 
so to create ASPascal, the extension to PASCAL that 
contains AS* specifications, a link between a PASCAL 
object and an AS* sort must be indicated. 

An explicit specification is created by a refinement of  a 
generic specification via the use clause, as in: 

sort intsequence is 
use sequence [integer] 

end; 

which refines the generic sort 'sequence' given earlier and 
indicates that a new sort 'intsequence' is created by 
modifying 'sequence' with a binding of PASCAL integers 
to the free sort 'something' of  Figure I. The operations 
'head' and 'count '  in 'sequence' become 'intsequence_ 
head' and intsequence_count' in the new sort, although 
the actual mapping to their new names is handled auto- 
matically and of no concern to the programmer. 

The interface assumption is made that an explicit sort 
specification 

sort newsort is ... 

is equivalent to the PASCAL type declaration 

[ AS/Support ~ d s  ~ ~ p i l e s  

I c,,,s \ / / \ 

Specification PASCAL source Executable 
file file file 

Figure 2. AS* toolset 

type newsort = ... 

The primitive PASCAL scalar types (char, Boolean, 
integer, real) may all be used in abstract sort definitions, 
and any explicit sort may also be used in a refinement. 
Thus 

var A: intsequence; 

simply creates a PASCAL variable A, which is of  type 
'intsequence'. 

The power of  this system is in alternative bindings. For  
example, real sequences could be created as 

sort realsequence is use sequence [real] end; 

Similarly, a sort such as a 'book'  could be used to create 
a type 'library' as 

sort library is use sequence [book] end; 

As stated earlier, syntax editors might have greater use 
with more complex source languages, and the integrated 
tool set forms an effective basis for a CASE tool. There- 
fore, a prototype AS* system was built on top of  the 
existing Support environment. Figure 2 represents this 
initial system that has been constructed. The four com- 
ponents are as follows. 

AS/Supgort  
AS/Support is a modification to the Support environ- 
ment described earlier, which provides text-editing capa- 
bilities for creating specifications. It is also the control 
module that invokes the verification tool. AS/Support 
first checks axioms within operations for syntactic 
consistency. Because of the language-based design of the 
underlying environment, only syntactically correct 
axioms with the syntax 

operation_name( < expression_list > ) = = < expres- 
sion > 

can be entered by the user. After the user builds a sort, 
AS/Support formats the sort syntax into an appropriate 
format suitable for PROLOG and invokes AS/Verifier as a 
subprocess. AS/Verifier reads these axioms and checks 
executability. After passing all executability checks 
through AS/Verifier, the user may save the ASPascal 
program in a library for later translation by AS/PC or 
for later incorporation into another ASPascal program. 
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In case of  failure, the causing axiom, if it can be deter- 
mined, is highlighted to allow the user an interactive 
mechanism to change the specifications. 

AS/Verifier 
AS/Verifier, a PROLOG program, is called by AS/Support 
and verifies the set of  axioms via the Knuth--Bendix 
algorithm. In general the axioms need to be a noetherian 
term rewriting system, and, if possible, AS/Verifier 
makes this determination. Of  course, as the general 
problem is undecidable, in some cases the results are 
inconclusive. In any case, after one pass through the 
axioms, AS/Verifier will either succeed or indicate which 
axiom is currently failing so that the user may modify the 
definition and try again. As stated previously, if any 
error is found, an appropriate message is relayed back to 
AS/Support and displayed to the user. 

For  example, the 'sequence' definition of  Figure l will 
be converted to the following clauses and passed to AS/ 
Verifier: 

a s~so r t  (sequence, [epsilon, cons, head, count]). 
function (1, epsilon, [], sequence). 
function (2, cons, [something, sequence], sequence). 
function (3, head, [sequence], something). 
function (4, count, [sequence], integer). 
axiom (5, head (epsilon), "?"). 
axiom (6, head (cons(x,y)),x). 
axiom (7, count (epsilon),0). 
axiom (8, count (cons(x,y)), 1 + count(y)). 

(as*--sort is the internal name for a new 'sort'.) The 
Knuth--Bendix  algorithm either shows convergence of  
the axioms or indicates additional axioms that are 
needed; it may not indicate, however, when sufficient 
axioms have been added in the case of  not converging 
rapidly enough (the usual problem with undecidability 
results). In this case, AS/Verifier does a single pass over 
the axioms and then terminates, indicating where the 
problem is with the axioms. 

AS/PC 
AS/PC is the translator, written in YACC, that converts 
specifications into standard PASCAL source programs. 
The code generally consists of a sequence of  if state- 
ments, each checking the validity of  the left-hand side of 
the axiom before executing the Knuth--Bendix  reduc- 
tion. 

PC 
PC is the standard system PASCAL compiler. At this 
point, the specifications have been converted to standard 
PASCAL, and any comparable compiler can be used for 
compilation and execution. 

Specifications appear in programs as function calls in the 
host programming language. To translate such calls, it is 
necessary to determine, for each function reference, 
which explicit specification is being used. Thus a refer- 
ence to 'head(thing)' where 'thing' is an 'intsequence' is 

translated to a call to 'intsequence_head(thing)', while 
'head(realthing)' will result in 'realsequence_head(real- 
thing)' for variable 'realthing' of sort 'realsequence'. 
(The details of  the AS* implementation appear else- 
wherel4.) 

It should be clear that this translation does not result 
in a particularly efficient implementation; as a specifica- 
tions or prototyping tool, however, efficiency is not its 
overriding purpose. The goal is to provide easily a cor- 
rect extension to an existing system and to provide a 
verification tool, e.g., an oracle, that can be used as a test 
against an eventual efficient solution to the problem. 

F S Q  for software reuse 

In the previous section, AS* was described as an environ- 
ment based on an algebraic specification model for pro- 
gram specifications. Support is also being applied using 
the functional correctness model 15. In this model, both a 
program and a specification are viewed as functions, and 
techniques have been developed to determine if both 
represent the same transformation of  the data. This 
model of program development is briefly summarized 
and how Support is modified to aid in this process is then 
demonstrated. 

Functional correctness 
A specificationfis a function. A box notation [...] is used 
to signify the function that a given string of text 
implements. If  character string ct represents a source 
program that implements exactly f ,  then [ct] -- f ,  and it is 
stated that ct is a solution tof .  

Sequential program execution is modelled by function 
composition. If a sequence of statements s = s~;s2; ... s,, 
then Is/ = [sj]o ... o [sn] = [s,] ( ... )[sj])) ... ). Using 
techniques from denotational semantics, each statement 
s is a function from a program state to another state. 
Each program state is a function from variables to values 
and represents the abstract notion of  data storage. Sym- 
bolic trace tables are used to derive the state functions 
for if, while, and assignment statements. 

Program design is accomplished by converting a speci- 
fication function f,  written in a LiSP-like notation, into a 
source program at, and then showing that [~] -- f .  The 
specification f is called the abstract function and the 
program at the concrete design. Given this functional 
model, the basic theorem for functional correctness ~6 can 
then be proved. Program p is correct with respect to 
specification func t ion f i f  and only i f f ~  [p]. 

This model can be applied to three separate activities: 

• Program verification. I f f  is a function and if p is a 
program, determine if they are the same function, i.e., 
[p] = f ,  or more g e n e r a l l y f ~  [p]. 

• Program design. If f is a function, then develop a 
program p such that [p] = f.  

• Reverse engineering. If p is a program, then find a 
function f such that [p] = f 
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' x '  < ' y '  ->a:='x'~b:='y';c:='x'; 
n o t ( ' x '  < ' y ' )  - > a : = ' x ' ; b : = ' y ' ; c : = ' y ' ;  

, i .  

Statement  I F u n c t i o n a l  s p e c i f i c a t i o n  

a :---- ~ X  ~ • • 

b := ' y ' . .  
i f  a < b t h e . .  

IT->a:='x '  
iT->b:= 'y  ' 
[a < b ->c:=a;  
i n o t ( a  < b) ->c:=b;  

I I I l l  

begin 

d - ' =  c 

end. 

Figure 3. FSQ derived meaning for program,fragment 

F S Q  extensions 
The use of  existing program fragments when developing 
a new program is one technique being studied for 
improving programmer  productivity. Often, however, it 
is first necessary to determine exactly what these pro- 
gram fragments or procedures do. As formal specifica- 
tions are rarely used, and documentation is generally 
quite inadequate, programmers  are reluctant to use an 
existing procedure written by another f r o m  some pre- 
vious project since the mental effort to truly understand 
that procedure is quite high. 

To study this problem, the Support  environment was 
extended with a new tool, Function Specification Quali- 
fier (FSQ), to aid this process of  determining the specifi- 
cations for an existing component  of  a system. FSQ- I, a 
first prototype of this tool, is described. 

FSQ is an additional tool to the basic CF-PASCAL 
programming environment in Support  and works as 
follows: 

• A programmer  either builds a program using Support  
(and hence uses FSQ as a verification tool) or else 
reads one from the file system using the LALR parser 
internal to Support  to build the parse tree (making 
FSQ a reverse engineering tool). 

• The cursor is moved over the section of  program that 
needs to be verified and FSQ is invoked via the com- 
mand fsq. 

• FSQ symbolically executes each statement and deter- 
mines its meaning. This is relayed back to the user, 
who either accepts this meaning (e.g., its specification) 
or manually simplifies it to another meaning. 

• The derived meaning is stored in the Support  syntax 
tree. If  any part of  a program is symbolically executed 
and already has a derived meaning, then that meaning 
will be used without further analysis. This meaning 
can then be carried along as part  of  the file system 
repository information on that object. Future users of  
that object will not have to derive the meaning again. 

Over time, more and more procedures in the system. 
repository will have such derived meanings, making it 
more efficient to reuse such objects frequently. 

Figure 3 shows a sample execution of FSQ. The top 
meaning window shows the desired result from the 
execution, the middle program trace window indicates 
each partial result, and the bot tom window highlights the 
section of the source program that is under study. 

FSQ executes over the covered portion of  Figure 3 as 
follows: 

• (1) For a: = 'x'  the system derives the conditional T 
a: = 'x ' .  (This is similar to the LISP ' cond'  and means 
'True implies a: = 'x ' . ' )  

• (2) For b: = 'y '  the system derives the conditional T --. 
b: = 'y'. 

• (3) For c: = a the system derives the conditional T --, 
C." = a .  

• (4) For  c: = b the system derives the conditional T 
C." ~ b .  

• (5) For  the if statement, FSQ combines steps (3) and 
(4) to produce: 

not (a < b) --, c: = b; 
( a < b ) ~  c : = a  

• (6) Finally, for the entire sequence, FSQ combines the 
results from steps (1) through (5) to produce the func- 
tion described in Figure 3. 

Note that this process is simpler than general program 
verification (and potentially less accurate) as the pro- 
grammer can override the system and insert arbitrary 
definitions. For  example, in the program of Figure 3, the 
user, in the process of  deriving the meaning of the if 
statement at step (5), could have either substituted the 
correct simplification 

c: = min (a,b) 
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or any other correct or incorrect expression for the if. 
Thus the user must trade off between 'absolute' but 
extremely difficult correctness using a verifier and a 
system like FSQ, which performs efficient, but possibly 
imperfect, verification. The tool is truly interactive, with 
FSQ performing all the tedious bookkeeping procedures, 
and by having the user required provide for the creative 
program derivation activities. This avoids the general 
undecidability issues of general verifiers and permits the 
data-intensive functional verification mechanism to be 
used practically. 

C O N C L U S I O N S  

In this paper the basic features of syntax-directed editors 
have been described and possible reasons why such 
editors have not become more popular outlined. The 
author believes that their benefits do not increase pro- 
ductivity sufficiently to compensate for their deficiencies. 
Source-code generation, although labour intensive, is not 
a major cost factor in system development. 

However, syntax editors can provide a consistent 
interface when system specification is integrated with 
source-code generation. To experiment with this, two 
specification projects have been described as extensions 
to an existing PASCAL development environment. In 
these extensions both algebraic specifications and func- 
tional correctness models of development were applied 
as extensions of automated tool support. Further work is 
needed to test the eventual applicability of this form of 
environment. 
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