Last update: 3:25 PM, March 10, 2022

Chapter 1

Introduction

Dana S. Nau University of Maryland

Automated Planning and Acting

Malik Ghallab, Dana Nau and Paolo Traverso

http://www.laas.fr/planning

Motivation

- *Actor*: agent that performs actions
- Deliberation functions
 - Planning
 What actions to perform
 - Acting
 - *How* to perform them

Planning

- Relies on *prediction* + *search*
- Uses *descriptive models* of the actions
 - Predict *what* the actions will do
 - Don't tell how to do them
- Search over *predicted states* and possible organizations of feasible actions

 $s \xrightarrow{a} s' = \gamma(s, a)$

- Different types of actions \Rightarrow
 - Different predictive models
 - Different planning problems and techniques
 - Motion and manipulation planning
 - Perception planning
 - Navigation planning
 - Communication planning
 - Task planning
 Most Al planning

Acting

- Traditional "AI planning" view:
 - Carrying out an action is just execution
 - Can ignore how it's done
- *Sometimes* that's OK
 - If the environment has been engineered to make actions predictable
 - Example on next slide
- Usually acting is more complicated
 - Example later

Acting as Execution

Video: https://www.cs.umd.edu/~nau/apa/kiva.mp4

Deliberative Acting

Video: <u>https://www.cs.umd.edu/~nau/apa/crow.mov</u>

Deliberative Acting

- Actor is in a dynamic unpredictable environment
 - Adapt actions to current context
 - React to events
- Relies on
 - *Operational models* telling *how* to perform the actions
 - Observations of *current state*

Planning and Acting

- Multiple levels of abstraction
 - Actors are organized into physical subsystems
 - Deliberation reflects this
- Heterogeneous reasoning
 - Different techniques
 - at different levels
 - different subsystems at same level
- *Continual online planning*
 - Can't plan everything in advance
 - Plans are abstract and partial until more detail is needed

Bremen Harbor

Example: Harbor Management

Example: Service Robot

- Multiple levels of abstraction
 - Higher levels: more planning
 - Lower levels: more acting
- Continual online planning
 - What room is **o7** in?
 - What route?
 - What kind of door?
 - Close enough to door handle?
- Heterogeneous reasoning
 - planning abstract tasks
 - path planning
 - reactive (e.g., open door)

Outline of Book

- 1: Introduction (this lecture)
- 2: Deterministic models
 - Conventional (*classical*) AI planning
 - Integrating it with acting
- 3: Refinement methods
 - Acting and planning by refining abstract activities into less-abstract activities
- 4: Temporal models
 - Reasoning about time constraints
- 5: Nondeterministic models
 - Actions with multiple possible outcomes
- 6: *Probabilistic models*
 - Multiple possible outcomes, with probabilities
- 7: *Other*:
 - perceiving, monitoring, goal reasoning, learning, hybrid models, ontologies

Automated Planning and Acting

Malik Ghallab, Dana Nau and Paolo Traverso

Cover image: *The Conjuror*. Hieronymus Bosch (c.1450–1516)