Chapter 2
Deliberation with Deterministic Models

2.1: State-Variable Representation
2.2: Forward Search
2.6: Planning and Acting

Dana S. Nau
University of Maryland
Motivation and Outline

- How to model a complex environment?
 - Generally need simplifying assumptions

- **Classical planning**
 - Finite, static world, just one actor
 - No concurrent actions, no explicit time
 - Determinism, no uncertainty
 - Sequence of states and actions \(\langle s_0, a_1, s_1, a_2, s_2, \ldots \rangle \)

- Avoids many complications

- Most real-world environments don’t satisfy the assumptions
 \(\Rightarrow \) Errors in prediction

- OK if they’re infrequent and don’t have severe consequences

Outline

2.1 State-variable representation
 - state variables, states, actions, plans

2.2 Forward state-space search

2.3 Heuristic functions

2.4 Backward search

2.5 Plan-space search

2.6 Incorporating planning into an actor
Domain Model

State-transition system
or classical planning domain:

- \(\Sigma = (S,A,\gamma,\text{cost}) \) or \((S,A,\gamma) \)
 - \(S \) - finite set of states
 - \(A \) - finite set of actions
 - \(\gamma: S \times A \rightarrow S \)
 - prediction (or state-transition) function
 - partial function
 - defined only when \(a \) is applicable in \(s \)
 - Domain(\(a \)) = \{s \in S \mid a \text{ is applicable in } s\}
 = \{s \in S \mid \gamma(s,a) \text{ is defined}\}
 - Range(\(a \)) = \{\gamma(s,a) \mid s \in \text{Domain}(a)\}
 - cost: \(S \times A \rightarrow \mathbb{R}^+ \) or cost: \(A \rightarrow \mathbb{R}^+ \)
 - optional; default is cost(\(a \)) = 1
 - money, time, something else

- plan:
 - a sequence of actions \(\pi = \langle a_1, \ldots, a_n \rangle \)
 - \(\pi \) is applicable in \(s_0 \) if the actions are applicable in the order given
 - \(\gamma(s_0, a_1) = s_1 \)
 - \(\gamma(s_1, a_2) = s_2 \)
 - \(\ldots \)
 - \(\gamma(s_{n-1}, a_n) = s_n \)
 - In this case define \(\gamma(s_0, \pi) = s_n \)

- Classical planning problem:
 - \(P = (\Sigma, s_0, S_g) \)
 - planning domain, initial state, set of goal states

- Solution for \(P \):
 - a plan \(\pi \) such that that \(\gamma(s_0, \pi) \in S_g \)
Representing Σ

- If S and A are small enough
 - Give each state and action a name
 - For each s and a, store $\gamma(s,a)$ in a lookup table

- In larger domains, don’t represent all states explicitly
 - Language for describing properties of states
 - Language for describing how each action changes those properties
 - Start with initial state
 - Use actions to produce other states

$$\begin{align*}
 s_0 &\xrightarrow{a_1} s_1 = \gamma(s_0,a_1) \\
 s_1 &\xrightarrow{a_1'} s_1' = \gamma(s_0,a_1')
\end{align*}$$
Domain-Specific Representation

- Made to order for a specific environment

- State: arbitrary data structure

- Action: (head, preconditions, effects, cost)
 - head: name and parameter list
 - Get actions by instantiating the parameters
 - preconditions:
 - Computational tests to predict whether an action can be performed
 - Should be necessary/sufficient for the action to run without error
 - effects:
 - Procedures that modify the current state
 - cost: procedure that returns a number
 - Can be omitted, default is cost ≡ 1
Example

- Drilling holes in a metal workpiece
 - A state
 - annotated geometric model of the workpiece
 - capabilities and status of drilling machine and drill bit
 - Several actions
 - put workpiece onto the drilling machine
 - clamp it
 - load a drill bit
 - drill

- Name and parameters:
 - drill-hole(machine, drill-bit, workpiece, geometry, machining-tolerances)

- Preconditions
 - Capabilities: can the machine and drill bit produce a hole with the desired geometry and machining tolerances?
 - Current state: Is the drill bit installed? Is the workpiece clamped onto the table? Etc.

- Effects
 - annotated geometric model of modified workpiece

- Cost
 - estimate of time or monetary cost
Discussion

● Advantage of domain-specific representation:
 ▶ use whatever works best for that particular domain

● Disadvantage:
 ▶ for each new domain, need new representation and deliberation algorithms

● Alternative: *domain-independent* representation
 ▶ Try to create a “standard format” that can be used for many different planning domains
 ▶ Deliberation algorithms that work for anything in this format

● *State-variable* representation
 ▶ Simple formats for describing states and actions
 ▶ Limited representational capability
 • But easy to compute, easy to reason about
 ▶ Domain-independent search algorithms and heuristic functions that can be used in all state-variable planning problems
State-Variable Representation

- E: environment that we want to represent
- B: set of symbols called objects
 - names for objects in E, mathematical constants, …

Example
 - $B = \text{Robots} \cup \text{Containers} \cup \text{Locs} \cup \{\text{nil}\}$
 - $\text{Robots} = \{r_1\}$
 - $\text{Containers} = \{c_1, c_2\}$
 - $\text{Locs} = \{d_1, d_2, d_3\}$

- B only needs to include objects that matter at the current level of abstraction
- Can omit lots of details
 - physical characteristics of robots, containers, loading docks, roads, …
Properties of Objects

- Define ways to represent properties of objects
 - Two kinds of properties: *rigid* and *varying*

- *Rigid* property: stays the same in every state
 - Two equivalent notations:
 - A mathematical relation
 \[\text{adjacent} = \{ (d1,d2), (d2,d1), (d1,d3), (d3,d1) \} \]
 - A set of *ground atoms*
 \[\text{adjacent}(d1,d2), \text{adjacent}(d2,d1), \text{adjacent}(d1,d3), \text{adjacent}(d3,d1) \]

- Terminology from first-order logic:
 - *ground*: fully instantiated, no variable symbols
 - *atom* ≡ *atomic formula* ≡ *positive literal* ≡ predicate symbol with list of arguments
 - *negative literal* ≡ *negated atom* ≡ atom with a negation sign in front of it
Varying Properties

- *Varying* property (or *fluent*): may differ in different states
 - Represent it using a *state variable* that we can assign a value to

- Set of state variables
 \[X = \{ \text{loc}(r1), \text{loc}(c1), \text{loc}(c2), \text{cargo}(r1) \} \]

- Each state variable \(x \in X \) has a *range* = \{all values that can be assigned to \(x \)\}
 - \(\text{Range} (\text{loc}(r1)) = \text{Locs} \)
 - \(\text{Range} (\text{loc}(c1)) = \text{Range} (\text{loc}(c2)) = \text{Robots} \cup \text{Locs} \)
 - \(\text{Range} (\text{cargo}(r1)) = \text{Containers} \cup \{\text{nil}\} \)

Instead of "domain", to avoid confusion with planning domains.
States as Functions

- Represent each state as a *variable-assignment function*
 - Function that maps each \(x \in X \) to a value in \(\text{Range}(x) \)

\[
\begin{align*}
 s_1(\text{loc}(r_1)) &= d_1, & s_1(\text{cargo}(r_1)) &= \text{nil}, \\
 s_1(\text{loc}(c_1)) &= d_1, & s_1(\text{loc}(c_2)) &= d_2
\end{align*}
\]

- Mathematically, a function is a set of ordered pairs
 \[
 s_1 = \{ \text{loc}(r_1), d_1, \text{cargo}(r_1), \text{nil}, \text{loc}(c_1), d_1, \text{loc}(c_2), d_2 \}
 \]

- Write it as a set of *ground positive literals* (or *ground atoms*):
 \[
 s_1 = \{ \text{loc}(r_1) = d_1, \text{cargo}(r_1) = \text{nil}, \text{loc}(c_1) = d_1, \text{loc}(c_2) = d_2 \}
 \]
Action Templates

- Action template: a parameterized set of actions
 \[\alpha = (\text{head}(\alpha), \text{pre}(\alpha), \text{eff}(\alpha), \text{cost}(\alpha)) \]

- head(\alpha): name, parameters
 Each parameter has a range \(\subseteq B \)

- pre(\alpha): precondition literals
 \[\text{rel}(t_1, \ldots, t_k), \quad \text{var}(t_1, \ldots, t_k) = t_0, \]
 \[-\text{rel}(t_1, \ldots, t_k), -\text{var}(t_1, \ldots, t_k) = t_0 \]
 - Each \(t_i \) is a parameter or an element of \(B \)

- eff(\alpha): effect literals
 \[\text{var}(t_1, \ldots, t_k) \leftarrow t_0 \]

- cost(\alpha): a number
 - Optional, default is 1

\[\text{move}(r,l,m) \]
 pre: \(\text{loc}(r)=l, \text{adjacent}(l,m) \)
 eff: \(\text{loc}(r) \leftarrow m \)

\[\text{take}(r,l,c) \]
 pre: \(\text{cargo}(r)=\text{nil}, \text{loc}(r)=l, \text{loc}(c)=l \)
 eff: \(\text{cargo}(r) \leftarrow c, \text{loc}(c) \leftarrow r \)

\[\text{put}(r,l,c) \]
 pre: \(\text{loc}(r)=l, \text{loc}(c)=r \)
 eff: \(\text{cargo}(r) \leftarrow \text{nil}, \text{loc}(c) \leftarrow l \)

Range(\(r \)) = \textit{Robots} = \{r1\}
Range(\(l \)) = Range(\(m \)) = \textit{Locs} = \{d1,d2,d3\}
Range(\(c \)) = \textit{Containers} = \{c1,c2\}
Actions

- \mathcal{A} = set of action templates

 move(r,l,m)

 \[\text{pre: } \text{loc}(r) = l, \text{adjacent}(l, m)\]

 \[\text{eff: } \text{loc}(r) \leftarrow m\]

 take(r,l,c)

 \[\text{pre: } \text{cargo}(r) = \text{nil}, \text{loc}(r) = l, \text{loc}(c) = l\]

 \[\text{eff: } \text{cargo}(r) \leftarrow c, \text{loc}(c) \leftarrow r\]

 put(r,l,c)

 \[\text{pre: } \text{loc}(r) = l, \text{loc}(c) = r\]

 \[\text{eff: } \text{cargo}(r) \leftarrow \text{nil}, \text{loc}(c) \leftarrow l\]

 Range(r) = Robots = \{r1\}

 Range(l) = Range(m) = Locs = \{d1,d2,d3\}

 Range(c) = Containers = \{c1,c2\}

- Action: *ground instance* of an $\alpha \in \mathcal{A}$

 - replace each parameter with something in its range

 - \mathcal{A} = \{all actions we can get from \mathcal{A}\}

 = \{all ground instances of members of \mathcal{A}\}

 move($r1,d1,d2$)

 \[\text{pre: } \text{loc}(r1) = d1, \text{adjacent}(d1,d2)\]

 \[\text{eff: } \text{loc}(r1) \leftarrow d2\]
Actions

- \(A = \text{set of action templates} \)

\[
\text{move}(r,l,m) \\
\begin{align*}
p\text{re}: & \quad \text{loc}(r)=l, \text{adjacent}(l,m) \\
\text{ef}: & \quad \text{loc}(r) \leftarrow m
\end{align*}
\]

\[
\text{take}(r,l,c) \\
\begin{align*}
p\text{re}: & \quad \text{cargo}(r)=\text{nil}, \text{loc}(r)=l, \text{loc}(c)=l \\
\text{ef}: & \quad \text{cargo}(r) \leftarrow c, \text{loc}(c) \leftarrow r
\end{align*}
\]

\[
\text{put}(r,l,c) \\
\begin{align*}
p\text{re}: & \quad \text{loc}(r)=l, \text{loc}(c)=r \\
\text{ef}: & \quad \text{cargo}(r) \leftarrow \text{nil}, \text{loc}(c) \leftarrow l
\end{align*}
\]

- \(\text{Range}(r) = \text{Robots} = \{r1\} \)
- \(\text{Range}(l) = \text{Range}(m) = \text{Locs} = \{d1,d2,d3\} \)
- \(\text{Range}(c) = \text{Containers} = \{c1,c2\} \)

- \(\text{Action: ground instance of an } a \in A \)
 - replace each parameter with something in its range

- \(A = \{\text{all actions we can get from } A\} \)
 = \{\text{all ground instances of members of } A\}

Poll: Let \(A = \{\text{the action templates on this page}\}. \) How many move actions in \(A? \)

1: 1
2: 2
3: 3
4: 4
5: 6
6: 9
7: something else
Applicability

- a is applicable in s if
 - for every positive literal $l \in \text{pre}(a)$, $l \in s$ or l is in one of the rigid relations
 - for every negative literal $\neg l \in \text{pre}(a)$, $l \notin s$ and l isn’t in any of the rigid relations

- Rigid relation
 \[\text{adjacent} = \{(d1,d2), (d2,d1), (d1,d3), (d3,d1)\} \]

- State
 \[s_1 = \{\text{loc}(r1)=d1, \text{cargo}(r1)=\text{nil, loc}(c1)=d1\} \]

- Action template
 \[\text{move}(r,l,m) \]
 \[\text{pre: loc}(r) = l, \text{adjacent}(l, m) \]
 \[\text{eff: } \text{loc}(r) \leftarrow m \]
 \[\text{Range}(r) = \text{Robots} \]
 \[\text{Range}(l) = \text{Range}(m) = \text{Locs} \]

- Applicable:
 \[\text{move}(r1,d1,d2) \]
 \[\text{pre: loc}(r1)=d1, \text{adjacent}(d1,d2) \]
 \[\text{eff: loc}(r1) \leftarrow d2 \]

- Not applicable:
 \[\text{move}(r1,d2,d1) \]
 \[\text{pre: loc}(r1)=d2, \text{adjacent}(d2,d1) \]
 \[\text{eff: loc}(r1) \leftarrow d1 \]

Poll: In s_1, how many applicable move actions?

1. 1 5. 5
2. 2 6. 6
3. 3 7. 7
4. 4 8. other
Computing γ

• If a is applicable in s:

 \[
 \gamma(s,a) = \{(x,w) \mid \text{"x ← w" is in eff(a)}\}
 \cup \{(x,w) \in s \mid x \text{ isn’t the target of anything in eff(a)}\}
 \]

• $s_2 = \{\text{loc(r1)=d2, cargo(r1)=nil, loc(c1)=d1, loc(c2)=d2}\}$

• take(r1,d2,c2)

 \[
 \text{pre: cargo(r1)=nil, loc(r1)=d2, loc(c2)=d2}
 \]

 \[
 \text{eff: cargo(r1) ← c2, loc(c2) ← r1}
 \]

• $\gamma(s_2, \text{take(r1,d2,c2)}) = \{\text{loc(r1)=d2, cargo(r1)=c2, loc(c1)=d1, loc(c2)=r1}\}$
State-Variable Planning Domain

- Let

 \(B = \) finite set of objects

 \(R = \) finite set of rigid relations over \(B \)

 \(X = \) finite set of state variables

 - for every state variable \(x \), \(\text{Range}(x) \subseteq B \)

 \(S = \) state space over \(X \)

 - \(S = \) \{all variable-assignment functions that have sensible interpretations\}

 \(A = \) finite set of action templates

 - for every parameter \(y \), \(\text{Range}(y) \subseteq B \)

 \(A = \) \{all ground instances of action templates in \(A \)\}

 \(\gamma(s,a) = \{(x,w) \mid \text{eff}(a) \text{ contains the effect } x \leftarrow w\} \)

 \(\cup \{(x,w) \in S \mid x \text{ isn’t the target of any effect in } \text{eff}(a)\} \)

- Then \(\Sigma = (S,A,\gamma) \) is a state-variable planning domain
Interpretations

- Let s be a variable-assignment function
 - s is a state only if the values make sense in the environment we’re trying to represent
 - relation to model theory
- Can $\text{loc}(c1) = r1$ if $\text{cargo}(r1) = \text{nil}$?
 - Not in our intended interpretation
 - Mapping of symbols to what they represent
- Can both $\text{loc}(c1) = r1$ and $\text{loc}(c2) = r1$?
 - In our intended interpretation, can a robot carry more than one object at a time?

- How to enforce the intended interpretation?
 - Explicitly
 - Mathematical axioms
 - Integrity constraints
 - Implicitly
 - Write an initial state s_0 that satisfies the interpretation
 - Write the actions in such a way that whenever s satisfies the interpretation, $\gamma(s,a)$ will too

\[s_0 = \{ \text{loc}(r1) = d2, \text{cargo}(r1) = \text{nil}, \text{loc}(c1) = d1, \text{loc}(c2) = d2 \} \]
Plans

- **Plan**: sequence of actions $\pi = \langle a_1, a_2, \ldots, a_n \rangle$
 - $\text{cost}(\pi) = \sum_i \text{cost}(a_i)$
- π is *applicable* in s_0 if the actions can be applied in the order given, i.e., there are states s_1, s_2, \ldots, s_n such that $\gamma(s_0, a_1) = s_1$, $\gamma(s_1, a_2) = s_2$, \ldots, $\gamma(s_{n-1}, a_n) = s_n$
 - If so, then $\gamma(s_0, \pi) = s_n$

- $\pi = \langle \text{move}(r_1, d_3, d_1), \text{take}(r_1, d_1, c_1), \text{move}(r_1, d_1, d_3) \rangle$
- $\text{cost}(\pi) = 3$

\[s_3 = \{ \text{loc}(r_1) = d_3, \text{cargo}(r_1) = \text{nil}, \text{loc}(c_1) = d_1, \text{loc}(c_2) = d_2 \} \]

\[\gamma(s_3, \pi) = \{ \text{loc}(r_1) = d_3, \text{cargo}(r_1) = c_1, \text{loc}(c_1) = r_1, \text{loc}(c_2) = d_2 \} \]
State Space

- Directed graph
 - Nodes = states of the world
 - Directed edges: γ

- If $\pi = \langle a_1, a_2, \ldots, a_n \rangle$ is applicable in s_0, it produces a path $\langle s_0, s_1, s_2, \ldots, s_n \rangle$

\[
\begin{align*}
\gamma(s_0, a_1) &= s_1, \\
\gamma(s_1, a_2) &= s_2, \\
\vdots \\
\gamma(s_{n-1}, a_n) &= s_n
\end{align*}
\]
Planning Problems

- **State-variable planning problem** $P = (\Sigma, s_0, g)$
 - state-variable representation of a classical planning problem
 - $\Sigma = (S, A, \gamma)$ is a state-variable planning domain
 - $s_0 \in S$ is the initial state
 - g is a set of ground literals called the goal

- $S_g = \{\text{all states in } S \text{ that satisfy } g\}$
 - $= \{s \in S \mid s \cup R \text{ contains every positive literal in } g, \text{ and none of the negative literals in } g\}$

- If $\gamma(s_0, \pi) \in S_g$ then π is a solution for P

$$
adjacent = \{(d1,d2), (d2,d1), (d1,d3), (d3,d1)\}
$$

$$
s_0 = \{\text{loc}(r1)=d2, \text{cargo}(r1)=\text{nil}, \text{loc}(c1)=d1\}
$$

$$
g = \{\text{cargo}(r1)=c1\}
$$

$$
\pi = \langle \text{move}(r1,d2,d1), \text{take}(r1,d1,c1) \rangle
$$

Poll: How many solutions of length 3?
1. 1 5. 5
2. 2 6. 6
3. 3 7. 7
4. 4 8. other
Classical Representation

- **Motivation**
 - The field of AI planning started out as automated theorem proving
 - It still uses a lot of that notation
- **Classical representation is equivalent to state-variable representation**
 - Represents both rigid and varying properties using logical predicates
 - `adjacent(l,m)` - location `l` is adjacent to `m`
 - `loc(r) = l → loc(r,l)` - robot `r` is at location `l`
 - `loc(c) = r → loc(c,r)` - container `c` is on robot `r`
 - `cargo(r) = c → loaded(r)` - there’s a container on `r`

- **State `s` = a set of ground atoms**
 - Atom `a` is true in `s` iff `a ∈ s`

Poll: Should `s_0` also contain `¬loaded(r1)`?
1: yes 2: no
Classical planning operators

- Action templates

 move(r,l,m)
 - pre: $\text{loc}(r)=l$, $\text{adjacent}(l, m)$
 - eff: $\text{loc}(r) \leftarrow m$

 take(r,l,c)
 - pre: $\text{cargo}(r)=\text{nil}$, $\text{loc}(r)=l$, $\text{loc}(c)=l$
 - eff: $\text{cargo}(r) \leftarrow c$, $\text{loc}(c) \leftarrow r$

 put(r,l,c)
 - pre: $\text{loc}(r)=l$, $\text{loc}(c)=r$
 - eff: $\text{cargo}(r) \leftarrow \text{nil}$, $\text{loc}(c) \leftarrow l$

Range(r) = Robots = \{r1\}
Range(l) = Range(m) = Locs = \{d1,d2,d3\}
Range(c) = Containers = \{c1,c2\}

- Classical planning operators

 move(r,l,m)
 - pre: $\text{loc}(r,l)$, $\text{adjacent}(l, m)$
 - eff: $\neg \text{loc}(r,l)$, $\text{loc}(r,m)$

 take(r,l,c)
 - pre: $\neg \text{loaded}(r)$, $\text{loc}(r,l)$, $\text{loc}(c,l)$
 - eff: $\text{loaded}(r)$, $\neg \text{loc}(c,l)$, $\text{loc}(c,r)$

 put(r,l,c)
 - pre: $\text{loc}(r,l)$, $\text{loc}(c,r)$
 - eff: $\neg \text{loaded}(r)$, $\text{loc}(c,l)$
Actions

- Planning operator:

 \(o: \ move(r,l,m) \)

 pre: \(\text{loc}(r,l), \text{adjacent}(l,m) \)

 eff: \(\neg\text{loc}(r,l), \text{loc}(r,m) \)

- Action:

 \(a_1: \ move(r_1,d_2,d_1) \)

 pre: \(\text{loc}(r_1,d_2), \text{adjacent}(d_2,d_1) \)

 eff: \(\neg\text{loc}(r_1,d_2), \text{loc}(r_1,d_1) \)

- Let

 \(\gamma(s,a) = (s \setminus \text{eff}^{-}(a)) \cup \text{eff}^{+}(a) \)

\(s_0 = \{\text{adjacent}(d_1,d_2), \text{adjacent}(d_2,d_1), \text{adjacent}(d_1,d_3), \text{adjacent}(d_3,d_1), \text{loc}(c_1,d_1), \text{loc}(r_1,d_2)\} \)

\(\gamma(s_0, a_1) = \{\text{adjacent}(d_1,d_2), \text{adjacent}(d_2,d_1), \text{adjacent}(d_1,d_3), \text{adjacent}(d_3,d_1), \text{loc}(c_1,d_1), \text{loc}(r_1,d_1)\} \)

\(s \cap \text{pre}^{-}(a) = \emptyset \) and \(\text{pre}^{+}(a) \subseteq s \)

\(a \) is applicable in state \(s \) iff

- meaning?
Discussion

- Equivalent expressive power
 - Each can be converted to the other in linear time and space

- Classical representation
 - More natural for logicians
 - Don’t require single-valued functions

- State variables
 - More natural for engineers and computer programmers
 - When changing a value, don’t have to explicitly delete the old one

- Historically, classical representation has been more widely used
 - That’s starting to change

\[x(b_1, \ldots, b_{n-1}) = b_n \] becomes \[P_x(b_1, \ldots, b_{n-1}, b_n) \]

\[P(b_1, \ldots, b_k) \] becomes \[x_P(b_1, \ldots, b_k) = 1 \]

Poll: Could we instead use \[x_P(b_1, \ldots, b_{k-1}) = b_k \]?

1: yes 2: no
PDDL

- Language for defining planning domains and problems
- Original version ≈ 1996
 - Just classical planning
- Multiple revisions and extensions
 - Different subsets accommodate different kinds of planning

- We’ll discuss the classical-planning subset
 - Chapter 2 of the PDDL book
Example domain

Classical actions:

move\((r,l,m) \)
Precond: \(\text{loc}(r,l), \text{adjacent}(l,m) \)
Effects: \(\neg \text{loc}(r,l), \text{loc}(r,m) \)

take\((r,l,c) \)
Precond: \(\text{loc}(r,l), \text{loc}(c,l), \neg \text{loaded}(r) \)
Effects: \(\text{loc}(c,r), \neg \text{loc}(c,l), \text{loaded}(r) \)

put\((r,l,c) \)
Precond: \(\text{loc}(r,l), \text{loc}(c,r) \)
Effects: \(\text{loc}(c,l), \neg \text{loc}(c,r), \neg \text{loaded}(r) \)

(define (domain example-domain-1)
 (requirements :negative-preconditions)
 (:action move
 :parameters (?r ?l ?m)
 :precondition (and (loc ?r ?l)
 (adjacent ?l ?m))
 :effect (and (not (loc ?r ?l))
 (loc ?r ?m)))
 (:action take
 :parameters (?r ?l ?c)
 :precondition (and (loc ?r ?l)
 (loc ?c ?l)
 (not (loaded ?r)))
 :effect (and (not (loc ?r ?l))
 (loc ?r ?m)))
 (:action put
 :parameters (?r ?l ?c)
 :precondition (and (loc ?c ?l)
 (loc ?c ?r))
 :effect (and (loc ?c ?l)
 (not (loc ?c ?r))
 (not (loaded ?r))))
)
Example problem

\[s_0 = \{ \text{adjacent}(d1,d2), \text{adjacent}(d2,d1), \text{adjacent}(d1,d3), \text{adjacent}(d3,d1), \text{loc}(c1,d1), \text{loc}(r1,d2) \} \]

\[g = \{ \text{loc}(c1,r1) \} \]

\[
\text{(define (problem example-problem-1)}
\hspace{1cm} (:domain example-domain-1))
\]

\[
(:\text{init}
\hspace{1cm} (\text{adjacent} \ d1 \ d2)
\hspace{1cm} (\text{adjacent} \ d2 \ d1)
\hspace{1cm} (\text{adjacent} \ d1 \ d3)
\hspace{1cm} (\text{adjacent} \ d3 \ d1)
\hspace{1cm} (\text{loc} \ c1 \ d1)
\hspace{1cm} (\text{loc} \ r1 \ d2)
\]

\[
(:\text{goal} \ (\text{loc} \ c1 \ r1))
\]
Example typed domain

(define (domain example-domain-2)
 (:requirements
 :negative-preconditions
 :typing)
 (:types
 location movable-obj object
 robot container movable-obj)
 (:predicates
 (loc ?r - movable-obj
 ?l - location)
 (load ?r - robot)
 (adjacent ?l ?m - location))

(:action move
 :parameters (?r - robot
 ?l ?m - location)
 :precondition (and (loc ?r ?l)
 (adjacent ?l ?m))
 :effect (and (not (loc ?r ?l))
 (loc ?r ?m)))

(:action take
 :parameters (?r - robot
 ?l - location
 ?c - container)
 :precondition (and (loc ?r ?l)
 (loc ?c ?l)
 (not (loaded ?r)))
 :effect (and (not (loc ?r ?l))
 (loc ?r ?m)))

(:action put
 :parameters (?r - robot
 ?l - location
 ?c - container)
 :precondition (and (loc ?r ?l)
 (loc ?c ?r))
 :effect (and (loc ?c ?l)
 (not (loc ?c ?r))
 (not (loaded ?r))))
Example typed problem

\[s_0 = \{\text{adjacent}(d1,d2), \text{adjacent}(d2,d1), \text{adjacent}(d1,d3), \text{adjacent}(d3,d1), \text{loc}(c1,d1), \text{loc}(r1,d2)\} \]

\[g = \{\text{loc}(c1,r1)\} \]

(define (problem example-problem-2)
 (:domain example-domain-2)
 (:objects
 r1 - robot
 c1 - container
 d1 d2 d3 - location)
 (:init
 (adjacent d1 d2)
 (adjacent d2 d1)
 (adjacent d1 d3)
 (adjacent d3 d1)
 (loc c1 d1)
 (loc r1 d2)
)
 (:goal (loc c1 r1)))
Summary

2.1 State-Variable Representation
- State-transition systems, classical planning assumptions
- Classical planning problems, plans, solutions
- Objects, rigid properties
- Varying properties, state variables, states as functions
- Action templates, actions, applicability, γ
- State-variable planning domains, plans, problems, solutions
- Comparison with classical representation

Classical fragment of PDDL
- Planning domains, planning problems
- untyped, typed
Outline

2.1 State-variable representation

2.2 Forward state-space search
 ▶ Start at initial state, search toward goal

2.6 Incorporating planning into an actor
2.3 Heuristic functions
2.4 Backward search
2.5 Plan-space search
Planning as Search

- Nearly all planning procedures are search procedures
 - *Search tree*: the data structure the procedure uses to keep track of which paths it has explored

Search-Tree Terminology

- **Node**: a pair \(v = (\pi, s) \), where \(s = \gamma(s_0, \pi) \)
 - In practice, \(v \) may contain other things
 - pointer to parent, cost(\(\pi \)), …
 - \(\pi \) not always stored explicitly, can be computed from the parent pointers
- **children** of \(v = \{ (\pi.a, \gamma(s,a)) \mid a \text{ is applicable in } s \} \)
- **successors** or **descendants** of \(v \):
 - children, children of children, etc.
- **ancestors** of \(v \)
 - = \{nodes that have \(v \) as a successor\}
- **initial** or **starting** node: \(v_0 \)
 - = (\{\}, \(s_0 \)) root of the search tree
- **path** in the search space: sequence of nodes \(\langle v_0, v_1, \ldots, v_n \rangle \) such that each \(v_i \) is a child of \(v_{i-1} \)
- **height** of search space
 - = length of longest acyclic path from \(v_0 \)
- **depth** of \(v \)
 - = length(\(\pi \)) = length of path from \(v_0 \) to \(v \)
- **branching factor** of \(v \)
 - = number of children of \(v \)
- **branching factor** of search tree
 - = max branching factor of the nodes
- **expand** \(v \): generate all children
Forward Search

Forward-search \((\Sigma, s_0, g)\)

\[
\begin{align*}
s & \leftarrow s_0; \\
\pi & \leftarrow \langle \rangle \\
\text{loop} & \\
\text{if } s \text{ satisfies } g & \text{ then return } \pi \\
A' & \leftarrow \{ a \in A \mid a \text{ is applicable in } s \} \\
\text{if } A' = \emptyset & \text{ then return failure} \\
\text{nondeterministically choose } a & \in A' \\
s & \leftarrow \gamma(s,a); \\
\pi & \leftarrow \pi.a
\end{align*}
\]

- Nondeterministic algorithm
 - *Sound*: if an execution trace returns a plan \(\pi\), it’s a solution
 - *Complete*: if the planning problem is solvable, at least one of the possible execution traces will return a solution

- Represents a class of deterministic search algorithms
 - Depends on how you implement the nondeterministic choice
 - Which leaf node to expand next, which nodes to prune
 - Won’t necessarily be complete
Deterministic Version

Deterministic-Search(Σ, s_0, g)

$\text{Frontier} \leftarrow \{(\langle \rangle, s_0)\}$

$\text{Expanded} \leftarrow \emptyset$

while $\text{Frontier} \neq \emptyset$ do

select a node $\nu = (\pi, s) \in \text{Frontier}$ \hspace{1em} (i)

remove ν from Frontier

add ν to Expanded

if s satisfies g then return π \hspace{1em} (ii)

$\text{Children} \leftarrow \{(\pi.a, \gamma(s,a)) \mid s \text{ satisfies } \text{pre}(a)\}$

prune 0 or more nodes from $\text{Children, Frontier, Expanded}$ \hspace{1em} (iii)

$\text{Frontier} \leftarrow \text{Frontier} \cup \text{Children}$

return failure

- Special cases:
 - depth-first, breath-first, A*, many others

- Classify by
 - how they select nodes (i)
 - how they prune nodes (iii)

- Pruning often includes cycle-checking:
 - Remove from Children every node (π,s) that has an ancestor (π',s') such that $s' = s$

- In classical planning problems, S is finite
 - Cycle-checking will guarantee termination
Breadth-First Search (BFS)

\[
\text{Deterministic-Search}(\Sigma, s_0, g)
\]

\[
\text{Frontier} \leftarrow \{ (\langle \rangle, s_0) \}
\]

\[
\text{Expanded} \leftarrow \emptyset
\]

\[
\text{while } \text{Frontier} \neq \emptyset \text{ do}
\]

\[
\text{select a node } \nu = (\pi, s) \in \text{Frontier} \quad (i)
\]

\[
\text{remove } \nu \text{ from } \text{Frontier}
\]

\[
\text{add } \nu \text{ to } \text{Expanded}
\]

\[
\text{if } s \text{ satisfies } g \text{ then return } \pi \quad (ii)
\]

\[
\text{Children} \leftarrow \{(\pi.a, \gamma(s,a)) \mid s \text{ satisfies pre}(a)\}
\]

\[
\text{prune 0 or more nodes from}
\]

\[
\text{Children, Frontier, Expanded} \quad (iii)
\]

\[
\text{Frontier} \leftarrow \text{Frontier} \cup \text{Children}
\]

\[
\text{return failure}
\]

(i): select \((\pi, s) \in \text{Frontier}\)

- with smallest length(\(\pi\))
 - tie-breaking rule: select oldest

(iii): remove every \((\pi, s) \in \text{Children} \cup \text{Frontier}\)

- such that \(s\) is in \(\text{Expanded}\)
 - Thus expand states at most once

- Properties
 - Terminates
 - Returns solution if one exists
 - shortest, but not least-cost
 - Worst-case complexity:
 - memory \(O(|S|)\)
 - running time \(O(b|S|)\)
 - Where
 - \(b = \text{max branching factor}\)
 - \(|S| = \text{number of states in } S\)
Depth-First Search (DFS)

Deterministic-Search(\(\Sigma, s_0, g\))

\[
\text{Frontier} \leftarrow \{() \} \\
\text{Expanded} \leftarrow \emptyset \\
\text{while} \ \text{Frontier} \neq \emptyset \ \text{do} \\
\quad \text{select a node } v = (\pi, s) \in \text{Frontier} \quad (i) \\
\quad \text{remove } v \text{ from } \text{Frontier} \\
\quad \text{add } v \text{ to } \text{Expanded} \\
\quad \text{if } s \text{ satisfies } g \text{ then return } \pi \quad (ii) \\
\quad \text{Children} \leftarrow \\
\quad \quad \{ (\pi.a, \gamma(s,a)) \mid s \text{ satisfies } \text{pre}(a) \} \\
\quad \text{prune 0 or more nodes from} \\
\quad \text{Children, Frontier, Expanded} \quad (iii) \\
\quad \text{Frontier} \leftarrow \text{Frontier} \cup \text{Children} \\
\text{return failure}
\]

\((i) \): Select \((\pi, s) \in \text{Children}\) that has largest length(\(\pi\))

- Possible tie-breaking rules:
 - left-to-right, smallest \(h(s)\)

\((iii) \): do cycle-checking, then prune all nodes that recursive depth-first search would discard

- Repeatedly remove from \(\text{Expanded}\) any node that has no children in \(\text{Children} \cup \text{Frontier} \cup \text{Expanded}\)

- Properties
 - Terminates
 - Returns solution if there is one
 - No guarantees on quality
 - Worst-case running time \(O(b^l)\)
 - Worst-case memory \(O(bl)\)
 - \(b = \text{max branching factor}\)
 - \(l = \text{max depth of any node}\)
Uniform-Cost Search

Deterministic-Search(Σ, s_0, g)

1. $\text{Frontier} \leftarrow \{(), s_0\}$
2. $\text{Expanded} \leftarrow \emptyset$
3. while $\text{Frontier} \neq \emptyset$ do
 1. select a node $\nu = (\pi, s) \in \text{Frontier}$ (i)
 2. remove ν from Frontier
 3. add ν to Expanded
 4. if s satisfies g then return π (ii)
4. $\text{Children} \leftarrow \{(\pi.a, g(s,a)) \mid s \text{ satisfies } \text{pre}(a)\}$
5. prune 0 or more nodes from Children, Frontier, Expanded (iii)
6. $\text{Frontier} \leftarrow \text{Frontier} \cup \text{Children}$
7. return failure

(i): Select $(\pi, s) \in \text{Children}$ that has smallest cost(π)

(iii): Prune every $(\pi, s) \in \text{Children} \cup \text{Frontier}$ such that Expanded already contains a node (π', s)

- Properties
 - Terminates
 - Finds optimal solution if one exists
 - Worst-case time $O(b|S|)$
 - Worst-case memory $O(|S|)$

Poll: If node ν is expanded before node ν', then how are cost(ν) and cost(ν') related?
1. $\text{cost}(\nu) < \text{cost}(\nu')$
2. $\text{cost}(\nu) \leq \text{cost}(\nu')$
3. $\text{cost}(\nu) > \text{cost}(\nu')$
4. $\text{cost}(\nu) \geq \text{cost}(\nu')$
5. None of the above
Heuristic Functions

- Idea: estimate the cost of getting from a state \(s \) to a goal

- Let \(h^*(s) = \min \{ \text{cost}(\pi) \mid \gamma(s,\pi) \in S_g \} \)
 - Note that \(h^*(s) \geq 0 \) for all \(s \)

- heuristic function \(h(s) \):
 - Returns estimate of \(h^*(s) \)
 - Require \(h(s) \geq 0 \) for all \(s \)

- Example:
 - \(s \) = the city you’re in
 - Action: follow road from \(s \) to a neighboring city
 - \(h^*(s) = \) smallest distance by road from \(s \) to Bucharest
 - \(h(s) = \) straight-line distance from \(s \) to Bucharest

from Russell & Norvig, Artificial Intelligence: A Modern Approach
Greedy Best-First Search (GBFS)

Deterministic-Search(Σ, s_0, g)

1. $Frontier \leftarrow \{(\emptyset, s_0)\}$
2. $Expanded \leftarrow \emptyset$

while $Frontier \neq \emptyset$ do

1. select a node $\nu = (\pi, s) \in Frontier$
2. remove ν from $Frontier$
3. add ν to $Expanded$
4. if s satisfies g then return π
5. $Children \leftarrow \{(\pi.a, \gamma(s,a)) \mid s \text{ satisfies } \text{pre}(a)\}$
6. prune 0 or more nodes from $Children, Frontier, Expanded$
7. $Frontier \leftarrow Frontier \cup Children$

return failure

- Idea: choose a node that’s likely to be close to a goal
- Node selection
 - Select a node $\nu = (\pi, s) \in Frontier$ for which $h(s)$ is smallest
- Pruning: for every node $\nu = (\pi, s)$ in $Children$:
 - If $Children \cup Frontier \cup Expanded$ contains another node with the same state s, then we’ve found multiple paths from s_0 to s
 - Keep only the one with the lowest cost
 - If more than one such node, keep the oldest
- Properties
 - Terminates; returns a solution if one exists
 - Often near-optimal
 - will usually find it quickly

Poll: Have you seen GBFS before?

1. yes
2. no
3. yes, but I don’t remember it very well
- generates 10 nodes
- solution cost 450
Deterministic-Search(Σ, s_0, g)

$\text{Frontier} \leftarrow \{(\emptyset, s_0)\}$
$\text{Expanded} \leftarrow \emptyset$

while $\text{Frontier} \neq \emptyset$ do

select a node $\nu = (\pi, s) \in \text{Frontier}$ (i)
remove ν from Frontier
add ν to Expanded

if s satisfies g then return π (ii)

$\text{Children} \leftarrow \{(\pi.a, \gamma(s,a)) \mid s \text{ satisfies } \text{pre}(a)\}$
prune 0 or more nodes from $\text{Children, Frontier, Expanded}$ (iii)

$\text{Frontier} \leftarrow \text{Frontier} \cup \text{Children}$
return failure

A*

- **Idea:** try to choose a node on an optimal path from s_0 to goal
- **Node selection**
 - Select a node $v = (\pi, s)$ in Frontier that has smallest value of $f(v) = \text{cost}(\pi) + h(s)$
 - Tie-breaking rule: choose oldest
- **Pruning:** same as in GBFS
 - for every node $v = (\pi,s)$ in Children:
 - If $\text{Children} \cup \text{Frontier} \cup \text{Expanded}$ contains another node with the same state s, then we’ve found multiple paths to s
 - Keep only the one with the lowest cost
 - If more than one such node, keep the oldest
- **Properties**
 - Terminates; returns a solution if one exists
 - Under certain conditions (I’ll discuss later), can guarantee optimality

Poll: Have you seen A* before?
1. yes
2. no
3. yes, but I don’t remember it very well
\[f(s) = g(s) + h(s) \]

- generates 16 nodes
- solution cost 418
Admissibility

- Notation:
 - \(v = (\pi, s) \), where \(\pi \) is the plan for going from \(s_0 \) to \(s \)
 - \(h^*(s) = \min \{ \text{cost}(\pi') | \gamma(s, \pi') \text{ satisfies } g \} \)
 - \(f^*(v) = \text{cost}(\pi) + h^*(s) \)
 - \(f(v) = \text{cost}(\pi) + h(s) \)

- Definition: \(h \) is **admissible** if for every \(s \), \(h(s) \leq h^*(s) \)

Poll: If \(h(s) = \) straight-line distance from \(s \) to Bucharest, is \(h \) admissible?
1. Yes
2. No
3. I’m not sure
Admissibility

- **Notation:**
 - $v = (\pi, s)$, where π is the plan for going from s_0 to s
 - $h^*(s) = \min \{ \text{cost}(\pi') \mid \gamma(s, \pi') \text{ satisfies } g \}$
 - $f^*(v) = \text{cost}(\pi) + h^*(s)$
 - $f(v) = \text{cost}(\pi) + h(s)$

- **Definition:** h is admissible if for every s, $h(s) \leq h^*(s)$

Poll: If h is admissible, does it follow that $f(v) \leq f^*(v)$ for every node v?
1. Yes
2. No
3. I’m not sure
Dominance

- Definition:
 - Let h_1, h_2 be heuristic functions
 - h_2 dominates h_1 if $\forall s$, $h_1(s) \leq h_2(s) \leq h^*(s)$

Poll: Let $h_1(s) = 0$ and $h_2(s)$ = straight-line distance from s to Bucharest. Does h_2 dominate h_1?
1. Yes
2. No
3. Not sure
Properties of A*

- In classical planning problems,
 - *Termination:* A* will always terminate
 - *Completeness:* if the problem is solvable, A* will return a solution
 - *Optimality:* if h is admissible then the solution will be optimal (least cost)

- If h_2 dominates h_1 then (assuming A* always resolves ties in favor of the same node)
 - A* with h_2 will never expand more nodes than A* with h_1
 - In most cases, A* with h_2 will expand fewer nodes than A* with h_1

- A* needs to store every node it visits
 - Running time and memory both $O(b|S|)$ in worst case
 - With good heuristic function, usually much smaller

- The book discusses additional properties
Comparison

- If h is admissible, A* will return optimal solutions
 - But running time and memory requirement grow exponentially in b and d

- GBFS returns the first solution it finds
 - There are cases where GBFS takes more time and memory than A*
 - But with a good heuristic function, such cases are rare
 - On classical planning problems with a good heuristic function
 - GBFS usually near-optimal solutions
 - GBFS does very little backtracking
 - Running time and memory requirement usually much less than A*
 - GBFS is used by most classical planners nowadays
Depth-First Branch and Bound (DFBB)

Deterministic-Search(Σ, s_0, g)

- $\textit{Frontier} \leftarrow \{(\langle \rangle, s_0)\}$
- $\textit{Expanded} \leftarrow \emptyset$
- $c^* \leftarrow \infty$; $\pi^* \leftarrow \text{failure}$

while $\textit{Frontier} \neq \emptyset$ do

- select a node $\nu = (\pi, s) \in \textit{Frontier}$ (i)
- remove ν from $\textit{Frontier}$ and add it to $\textit{Expanded}$
- if s satisfies g then return π (ii)
- if s satisfies g and $\text{cost}(\pi) < c^*$ then
 - $c^* \leftarrow \text{cost}(\pi)$; $\pi^* \leftarrow \pi$
- else if $f(\nu) < c^*$ then
 - $\textit{Children} \leftarrow \{(\pi.a, \gamma(s,a)) \mid s \text{ satisfies } \text{pre}(a)\}$
 - prune 0 or more nodes from $\textit{Children}, \textit{Frontier}, \textit{Expanded}$ (iii)

Frontier $\leftarrow \textit{Frontier} \cup \textit{Children}$

return failure π^*

- **Node (step i) selection like DFS:**
 - Select $\nu = (\pi,s) \in \textit{Children}$ that has largest $\text{length}(\pi)$
 - Tie-breaking: smallest $h(s)$

- **Pruning (step iii)**
 - Like DFS, do cycle-checking and prune what recursive depth-first search would discard

- **Additional pruning during node expansion:**
 - If $f(\nu) \geq c^*$ then discard ν

- **Properties**
 - Termination, completeness, optimality same as A*
 - Comparison to A*:
 - Usually less memory, more time
 - Worst-case is like DFS:
 $O(bl)$ memory, $O(b^l)$ time

Poll: Have you seen DFBB before?

1. yes
2. no
3. yes, but I don’t remember it very well

Basic ideas:

- depth-first search, guided by h
- $\pi^* =$ best solution so far
- $c^* =$ cost(π^*)
- prune ν if $\text{cost}(\nu) \geq c^*$
- when frontier is empty, return π^*

- Node (step i) selection like DFS:
 - Select $\nu = (\pi,s) \in \textit{Children}$ that has largest $\text{length}(\pi)$
 - Tie-breaking: smallest $h(s)$

- Pruning (step iii)
 - Like DFS, do cycle-checking and prune what recursive depth-first search would discard

- Additional pruning during node expansion:
 - If $f(\nu) \geq c^*$ then discard ν

- Properties
 - Termination, completeness, optimality same as A*
 - Comparison to A*:
 - Usually less memory, more time
 - Worst-case is like DFS:
 - $O(bl)$ memory, $O(b^l)$ time
Basic ideas:
- depth-first search, guided by h
- $\pi^* = \text{best solution so far}$
- $c^* = \text{cost}(\pi^*)$
- prune v if $\text{cost}(v) \geq c^*$
- when frontier is empty, return π^*

straight-line dist. from s to Bucharest

<table>
<thead>
<tr>
<th>Location</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Dobreta</td>
<td>242</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>100</td>
</tr>
<tr>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>

$\pi^* = \text{failure}$
$c^* = \infty$
Basic ideas:
- depth-first search, guided by h
- π^* = best solution so far
- c^* = cost(π^*)
- prune v if $\text{cost}(v) \geq c^*$
- when frontier is empty, return π^*

π^* = $< AS, SR, RP, PB >$
c^* = 418

straight-line dist. from s to Bucharest

<table>
<thead>
<tr>
<th>City</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Dobreta</td>
<td>242</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamț</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>100</td>
</tr>
<tr>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Basic ideas:

- depth-first search, guided by h
- $\pi^* =$ best solution so far
- $c^* =$ cost(π^*)
- prune ν if cost(ν) $\geq c^*$
- when frontier is empty, return π^*

$\pi^* = \langle \text{AS, SR, RP, PB} \rangle$

$c^* = 418$

- generates 16 nodes
- solution cost 418
Comparisons

- If h is admissible, both A* and DFBB will return optimal solutions
 - Usually DFBB generates more nodes, but A* takes more memory
 - DFBB does badly in highly connected graphs (many paths to each state)
 - Can have exponentially worse running time than A* (generates nodes exponentially many times)
 - DFBB best in problems where S is a tree of uniform height, all solutions at the bottom (e.g., constraint satisfaction)
 - DFBB and A* have similar running time
 - A* can take exponentially more memory than DFBB

- DFS returns the first solution it finds
 - can take much less time than DFBB
 - but solution can be very far from optimal
Iterative Deepening (IDS)

\[\text{IDS}(\Sigma, s_0, g) \]

for \(k = 1 \) to \(\infty \) do

- do a depth-first search, backtracking at every node of depth \(k \)
- if the search found a solution then return it
- if the search generated no nodes of depth \(k \) then return failure

- Nodes generated:
 - \(a \)
 - \(a, b, c \)
 - \(a, b, c, d, e, f, g \)
 - \(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o \)

- Solution path \(\langle a, c, g, o \rangle \)

- Total number of nodes generated:
 \[1 + 3 + 7 + 15 = 26 \]

- If goal is at depth \(d \) and branching factor is 2:
 \[\sum_{i=1}^{d} (2^i - 1) = \sum_{i=1}^{d} 2^i - \sum_{i=1}^{d} 1 = (2^{d+1} - 2) - d = O(2^d) \]

Poll: Have you seen Iterative Deepening before?

1. yes
2. no
3. yes, but I don’t remember it very well

Poll: How many nodes generated if branching factor is \(b \) instead of 2?

1. \(O(b2^d) \)
2. \(O(b^d) \)
3. \(O(b^{d+1}) \)
4. something else
Iterative Deepening (IDS)

IDS(Σ, s_0, g)
for $k = 1$ to ∞
do a depth-first search, backtracking at every node of depth k
if the search found a solution then return it
if the search generated no nodes of depth k then return failure

- Nodes generated:

 a
 a,b,c
 a,b,c,d,e,f,g
 $a,b,c,d,e,f,g,h,i,j,k,l,m,n,o$

- Solution path $\langle a,c,g,o \rangle$
- Total number of nodes generated:

 $1 + 3 + 7 + 15 = 26$

- If goal is at depth d and branching factor is 2:

 $\sum_1^d (2^i-1) = \sum_1^d 2^i - \sum_1^d 1 = (2^{d+1} - 2) - d = O(2^d)$

Properties:

- Termination, completeness, optimality
 - same as BFS
- Memory (worst case): $O(bd)$
 - vs. $O(b^d)$ for BFS
- If the number of nodes grows exponentially with d:
 - worst-case running time $O(b^d)$, vs. $O(b^l)$ for DFS
 - $b = \text{max branching factor}$
 - $l = \text{max depth of any node}$
 - $d = \text{min solution depth if there is one, otherwise } l$
Summary

- 2.2 Forward State-Space Search
 - Forward-search, Deterministic-Search
 - cycle-checking
 - Breadth-first, depth-first, uniform-cost search
 - A*, GBFS, DFBB, IDS

Outline

2.1 State-variable representation
2.2 Forward state-space search

2.6 Incorporating planning into an actor
 Online lookahead, unexpected events

2.3 Heuristic functions
2.4 Backward search
2.5 Plan-space search
2.6 Incorporating Planning into an Actor

The best laid plans of mice and men oft go astray

–Robert Burns
(translated from Scots dialect)
Service Robot

\[s_0 = \{ \text{loc}(r1) = \text{room3}, \text{loc}(o7) = \text{room1}, \text{cargo}(r1) = \text{nil} \} \]
\[g = \{ \text{loc}(o7) = \text{room2} \} \]
\[\pi = \langle a_1, a_2, a_3, a_4, a_5 \rangle \]

\[a_1 = \text{go}(r1, \text{room3}, \text{hall}) \]
\[a_2 = \text{navigate}(r1, \text{hall}, \text{room1}) \]
\[a_3 = \text{take}(r1, \text{room1}, o7) \]
\[a_4 = \text{navigate}(r1, \text{room1}, \text{room2}) \]
\[a_5 = \text{put}(r1, \text{room2}, o7) \]
- **Execution failures**
 - locked door
 - robot battery goes dead

- **Unexpected events**
 - class ends, hallway gets crowded
 - someone puts an object onto r1

- **Incorrect info**
 - navigation error, go to wrong place

- **Missing information**
 - where is loc(o7)?

\[s_0 = \{\text{loc}(r1)=\text{room3}, \text{loc}(o7)=\text{room1}, \text{cargo}(r1)=\text{nil}\} \]

\[g = \{\text{loc}(o7)=\text{room2}\} \]

\[\pi = \{a_1, a_2, a_3, a_4, a_5\} \]

\[a_1 = \text{go}(r1,\text{room3},\text{hall}) \]

\[a_2 = \text{navigate}(r1,\text{hall},\text{room1}) \]

\[a_3 = \text{take}(r1,\text{room1},o7) \]

\[a_4 = \text{navigate}(r1,\text{room1},\text{room2}) \]

\[a_5 = \text{put}(r1,\text{room2},o7) \]
Using Planning in Acting

Run-Lookahead(Σ, g)
while ($s \leftarrow$ abstraction of observed state $\xi) \not= g$ do
 $\pi \leftarrow$ Lookahead(Σ, s, g)
 if $\pi =$ failure then return failure
 $a \leftarrow$ pop-first-action(π); perform(a)

- Lookahead is the planner
- Receding horizon:
 - Call Lookahead, obtain π, perform 1st action, call Lookahead again …
 - Like game-tree search (chess, checkers, etc.)
- Useful when unpredictable things are likely to happen
 - Replans immediately
- Potential problem:
 - May pause repeatedly while waiting for Lookahead to return
 - What if ξ changes during the wait?
Using Planning in Acting

Run-Lazy-Lookahead(Σ, g)
\[
s \leftarrow \text{abstraction of observed state } \xi \\
\text{while } s \not\equiv g \text{ do} \\
\quad \pi \leftarrow \text{Lookahead}(\Sigma, s, g) \\
\quad \text{if } \pi = \text{failure} \text{ then return failure} \\
\quad \text{while } \pi \not\equiv \langle \rangle \text{ and } s \not\equiv g \text{ and } \text{Simulate}(\Sigma, s, g, \pi) \neq \text{failure} \text{ do} \\
\quad \quad a \leftarrow \text{pop-first-action}(\pi); \ \text{perform}(a) \\
\quad s \leftarrow \text{abstraction of observed state } \xi
\]

- Call Lookahead, execute the plan as far as possible, don’t call Lookahead again unless necessary
- Simulate tests whether the plan will execute correctly
 - Could just compute $\gamma(s, \pi)$, or could do something more detailed
 - lower-level refinement, physics-based simulation
- Potential problems
 - may miss opportunities to replace π with a better plan
 - without Simulate, may not detect problems until it’s too late
Using Planning in Acting

Run-Concurrent-Lookahead(\(\Sigma, g\))

\[
\pi \leftarrow \langle \rangle; \quad s \leftarrow \text{abstraction of observed state } \xi
\]
thread 1: // threads 1 and 2 run concurrently

loop

\[
\pi \leftarrow \text{Lookahead}(\Sigma, s, g)
\]

thread 2:

loop

if \(s \models g\) then return success
else if \(\pi = \text{failure}\) then return failure;
else if \(\pi \neq \langle \rangle\) and Simulate(\(\Sigma, s, g, \pi\)) \neq \text{failure}\) then

\[
a \leftarrow \text{pop-first-action}(\pi); \quad \text{perform}(a)
\]

\[
s \leftarrow \text{abstraction of observed state } \xi
\]

- May detect opportunities earlier than Run-Lazy-Lookahead
 - But may miss some that Run-Lookahead would find
- Without Simulate, may fail to detect problems until it’s too late
 - Not as bad at this as Run-Lazy-Lookahead
 - Possible work-around: restart Lookahead each time \(s\) changes
How to do Lookahead

- **Subgoaling**
 - Instead of planning for g, plan for a subgoal g'
 - Once g' is achieved, plan for next subgoal

- **Receding horizon**
 - Return a plan that goes just part-way to g'
 - *E.g.*, cut off search at
 - every plan whose cost exceeds some value c_{max}
 - or whose length exceeds some value l_{max}
 - or when no time is left
Receding-Horizon Search

Deterministic-Search(Σ, s_0, g)

$\begin{align*}
\text{Frontier} &\leftarrow \{(), s_0\} \\
\text{Expanded} &\leftarrow \emptyset \\
\text{while} \ \text{Frontier} \neq \emptyset \ \text{do} \\
\quad &\text{select a node } v = (\pi, s) \in \text{Frontier} \\
\quad &\text{remove } v \text{ from } \text{Frontier} \\
\quad &\text{add } v \text{ to } \text{Expanded} \\
\quad &\text{if } s \text{ satisfies } g \text{ then return } \pi \\
\quad &\text{Children} \leftarrow \\
\quad &\quad \{ (\pi.a, \gamma(s,a)) \mid s \text{ satisfies } \text{pre}(a) \} \\
\quad &\text{prune 0 or more nodes from } \\
\quad &\text{Children, Frontier, Expanded} \\
\quad &\text{Frontier} \leftarrow \text{Frontier} \cup \text{Children} \\
\quad &\text{return failure}
\end{align*}$

- Before line (i), put something like one of these:
 - cost-based cutoff:
 - if $\text{cost}(\pi) + h(s) > c_{\text{max}}$ then return π
 - length-based cutoff:
 - if $|\pi| > l_{\text{max}}$ then return π
 - time-based cutoff:
 - if $\text{time-left}() = 0$ then return π
Partial or Non-Optimal Plans

- Sampling
 - Planner is a modified version of greedy algorithm
 - Make randomized choice in line 4
 - Run several times, get several solutions
 - Return best one
 - Actor calls the planner repeatedly as it acts
 - An analogous technique is used in the game of go

Greedy($\Sigma, s, g, Visited$)
1. if s satisfies g then return π
2. $Act \leftarrow \{a \in A \mid s$ satisfies $pre(a)$ and $\gamma(s,a) \not\in Visited\}$
3. if $Act = \emptyset$ then return failure
4. $a \leftarrow \arg\min_{a \in Act} h(\gamma(s,a))$
5. $\pi \leftarrow \text{Greedy}(\Sigma, \gamma(s,a), g, Visited \cup \{s\})$
6. if $\pi \neq \text{failure}$ then return $a.\pi$
7. return failure
Example

- **Killzone 2**
 - “First-person shooter” game
 - ≈ 2009

- Special-purpose AI planner
 - Plans enemy actions at the squad level
 - Subproblems; solution plans are maybe 4–6 actions long
 - Different planning algorithm than what we’ve discussed so far
 - Hierarchical refinement as in Chapter 3
 - Quickly generates a plan for a subgoal
 - Replans several times per second as the world changes

- Why it worked:
 - Don’t want to get the best possible plan
 - Need actions that appear believable and consistent to human users
 - Need them very quickly
Summary

- 2.6 Incorporating Planning into an actor
 - Things that can go wrong while acting
 - Algorithms
 - Run-Lookahead,
 - Run-Lazy-Lookahead,
 - Run-Concurrent-Lookahead
 - Lookahead
 - subgoaling
 - receding-horizon search
 - sampling