
1Nau – Lecture slides for Automated Planning and Acting

Automated Planning
and Acting

Malik Ghallab, Dana Nau
and Paolo Traverso

http://www.laas.fr/planning

Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Last update: 3:25 PM, March 10, 2022

Chapter 2
Deliberation with Deterministic Models

Sections 2.1, 2.2, 2.6

Dana Nau
University of Maryland

http://www.laas.fr/planning
http://creativecommons.org/licenses/by-nc-sa/4.0/

2Nau – Lecture slides for Automated Planning and Acting

Motivation Outline

● How to model a complex environment?
▸ Generally need simplifying assumptions

● Classical planning
• Finite, static world, just one actor
• No concurrent actions, no explicit time
• Determinism, no uncertainty

▸ Sequence of states and actions ⟨s0, a1, s1, a2, s2, …⟩

● Avoids many complications

● Most real-world environments don’t satisfy the assumptions
⇒ Errors in prediction

● OK if they’re infrequent and don’t have severe consequences

Chapter 2, part a (chap2a.pdf):
2.1 State-variable representation
–– Comparison with PDDL
2.2 Forward state-space search
2.6 Incorporating planning into an actor

–––

Chapter 2, part b (chap2b.pdf):
2.3 Heuristic functions
2.7.7 HTN planning

–––

Chapter 2, part c (chap2c.pdf):
2.4 Backward search
2.5 Plan-space search

–––

Additional slides:
2.7.8 LTL_planning.pdf

Next ⟶

3Nau – Lecture slides for Automated Planning and Acting

Domain Model
State-transition system or classical planning domain:

● Σ = (S,A,γ,cost) or (S,A,γ)

▸ S - finite set of states
▸ A - finite set of actions
▸ γ: S×A → S

prediction (or state-transition) function
• partial function: γ(s,a) is not necessarily

defined for every (s,a)
▸ a is applicable in s iff γ(s,a) is defined
▸ Domain(a) = {s ∈ S | a is applicable in s}
▸ Range(a) = {γ(s,a) | s ∈ Domain(a)}

▸ cost: S×A → ℝ+ or cost: A → ℝ+

• optional; default is cost(a) ≡ 1
• money, time, something else

● plan:
▸ a sequence of actions π = ⟨a1, …, an⟩

● π is applicable in s0 if the actions are applicable in
the order given

γ(s0, a1) = s1

γ(s1, a2) = s2

…
γ(sn–1, an) = sn

▸ In this case define γ(s0, π) = sn

● Classical planning problem:
▸ P = (Σ, s0, Sg)
▸ planning domain, initial state, set of goal states

● Solution for P:
▸ a plan π such that that γ(s0,π) ∈ Sg

4Nau – Lecture slides for Automated Planning and Acting

Representing Σ
● If S and A are small enough

▸ Give each state and action a name
▸ For each s and a, store γ(s,a) in a lookup table

● In larger domains, don’t represent all states
explicitly
▸ Language for describing properties of states
▸ Language for describing how each action

changes those properties
▸ Start with initial state, use actions to

produce other states

loc1

loc3

loc2

loc6

loc5
loc4 loc7

loc8

loc0

x

y

4

3

2

1

1 2 3 4 5 60

loc9

a1′

…
s0

a1 s1 = γ(s0,a1)

s1′ = γ(s0,a1′) …

5Nau – Lecture slides for Automated Planning and Acting

Domain-Specific Representation

● Tailor-made for a specific environment

● State: arbitrary data structure

● Action: (head, preconditions, effects, cost)
▸head: name and parameter list

• Get actions by instantiating the parameters
▸preconditions:

• Computational tests to predict whether an action can be performed
• Should be necessary/sufficient for the action to run without error

▸effects:
• Procedures that modify the current state

▸cost: procedure that returns a number
• Can be omitted, default is cost ≡ 1

6Nau – Lecture slides for Automated Planning and Acting

Example
● Drilling holes in a metal workpiece

▸ A state
• geometric model of the workpiece
▸ annotated with dimensions, tolerances, etc.

• capabilities and status of
drilling machine and drill bit

▸ Several actions
• clamp the workpiece onto the drilling machine
• load a drill bit into the machine
• drill a hole

● Name: drill-hole

● Arguments:
▸ ID codes for the machine and drill bit
▸ annotated geometric model of the workpiece
▸ description of the hole to be drilled

● Preconditions
▸ Capabilities: can the machine and drill bit

produce the desired hole?
▸ Current state: Is the drill bit installed? Is the

workpiece clamped onto the table? Etc.

● Effects
▸ annotated geometric model of modified

workpiece

● Cost
▸ estimate of time or monetary cost

7Nau – Lecture slides for Automated Planning and Acting

Discussion
● Advantage of domain-specific representation:

▸ use whatever works best for that particular
domain

● Disadvantage:
▸ for each new domain, need new representation

and deliberation algorithms

● Alternative: domain-independent representation
▸ Try to create a “standard format” that can be

used for many different planning domains
▸ Deliberation algorithms that work for anything

in this format

● State-variable representation
▸ Simple formats for describing states and actions
▸ Limited representational capability

• But easy to compute, easy to reason about
▸Domain-independent search algorithms and

heuristic functions that can be used in all state-
variable planning problems

8Nau – Lecture slides for Automated Planning and Acting

State-Variable Representation
● E: environment that we want to represent
● B: set of symbols called objects

▸names for objects in E, mathematical constants, …

● Example
▸B = Robots ∪ Containers ∪ Locs ∪ {nil}

• Robots = {r1}
• Containers = {c1, c2}
• Locs = {d1, d2, d3}

● B only needs to include objects that matter at the current level of abstraction
● Can omit lots of details

▸physical characteristics of robots, containers, loading docks, roads, …

d2d1

d3

r1
c1 c2

9Nau – Lecture slides for Automated Planning and Acting

d2d1

d3

r1
c1 c2

Rigid Properties

● Objects have two kinds of properties
▸ rigid and varying

● Rigid: stays the same in every state
▸ Can be described as a mathematical relation

adjacent = {(d1,d2), (d2,d1), (d1,d3), (d3,d1)}
▸ Or equivalently, a set of ground atoms

adjacent(d1,d2), adjacent(d2,d1),
adjacent(d1,d3), adjacent(d3,d1)

▸ I’ll use the two notations interchangeably

● Terminology from first-order logic:
▸ atom ≡ atomic formula ≡ positive literal

≡ predicate symbol with list of arguments
• e.g., adjacent(x,d2)

▸ an atom is ground (or fully instantiated) if it
contains no variable symbols
• e.g., adjacent(d1,d2)

▸ negative literal ≡ negated atom ≡ atom with a
negation sign in front of it
• e.g., ¬ adjacent(x,d2)

10Nau – Lecture slides for Automated Planning and Acting

d2d1

d3

r1
c1 c2

Varying Properties
● Varying property (or fluent):

• a property that may differ in different states

● Represent it using a state variable
▸a term that we can assign a value to

• e.g., loc(r1)

● Let X = {all state variables in the environment}
e.g., X = {loc(r1), loc(c1), loc(c2), cargo(r1)}

● Each state variable x ∈ X has a range
= {all values that can be assigned to x}

• Range(loc(r1)) = Locs
• Range(loc(c1)) = Range(loc(c2)) = Robots ∪ Locs
• Range(cargo(r1)) = Containers ∪ {nil}

● To abbreviate the “range” notation often I’ll just say things like
▸ loc(r1) ∈ Locs
▸ loc(c1), loc(c2) ∈ Robots ∪ Locs

Instead of “domain”,
to avoid confusion
with planning domains

11Nau – Lecture slides for Automated Planning and Acting

d2d1

d3

r1
c1 c2

States as Functions
● Represent each state s as a function that assigns values to state variables

▸For each state variable x, s(x) is one x’s possible values

s1(loc(r1)) = d1, s1(cargo(r1)) = nil,
s1(loc(c1)) = d1, s1(loc(c2)) = d2

● Mathematically, a function is a set of ordered pairs
s1 = {(loc(r1), d1), (cargo(r1), nil), (loc(c1), d1) , (loc(c2), d2)}

● Equivalently, write it as a set of ground positive literals (or ground atoms):
s1 = {loc(r1)=d1, cargo(r1)=nil, loc(c1)=d1, loc(c2)=d2}

▸ Here, we’re using ‘=’ as a predicate symbol

12Nau – Lecture slides for Automated Planning and Acting

d2d1

d3

r1
c1 c2

Action Templates
● Action template or schema: a parameterized set of actions

α = (head, pre, eff, cost)
▸ head: name, parameters
▸ pre: precondition literals
▸ eff: effect literals
▸ cost: a number (optional, default is 1)

● e.g.,
▸ head = take(r,l,c)
▸ pre = {cargo(r)=nil, loc(r)=l, loc(c)=l}
▸ eff = {cargo(r)=c, loc(c)=r}

● Each parameter has a range of possible values:
▸ Range(r) = Robots = {r1}
▸ Range(l) = Locs = {d1,d2,d3}
▸ Range(l) = Range(m) = Locs = {d1,d2,d3}
▸ Range(c) = Containers = {c1,c2}

● But we’ll usually write it more like pseudocode

move(r,l,m)
pre: loc(r)=l, adjacent(l,m)
eff: loc(r) ← m

take(r,l,c)
pre: cargo(r)=nil, loc(r)=l, loc(c)=l
eff: cargo(r) ← c, loc(c) ← r

put(r,l,c)
pre: loc(r)=l, loc(c)=r
eff: cargo(r) ← nil, loc(c) ← l

r ∈ Robots = {r1}
l,m ∈ Locs = {d1,d2,d3}
c ∈ Containers = {c1,c2}

13Nau – Lecture slides for Automated Planning and Acting

Actions
● A = set of action templates

move(r,l,m)
pre: loc(r)=l, adjacent(l, m)
eff: loc(r) ← m

take(r,l,c)
pre: cargo(r)=nil, loc(r)=l, loc(c)=l
eff: cargo(r) ← c, loc(c) ← r

put(r,l,c)
pre: loc(r)=l, loc(c)=r
eff: cargo(r) ← nil, loc(c) ← l

r ∈ Robots = {r1}
l,m ∈ Locs = {d1,d2,d3}
c ∈ Containers = {c1,c2}

● Action: ground instance of an α∈A
▸ replace each parameter with something in its range

● A = {all actions we can get from A}
= {all ground instances of members of A}

move(r1,d1,d2)
pre: loc(r1)=d1, adjacent(d1,d2)
eff: loc(r1) ← d2

d2d1

d3

r1
c1 c2

14Nau – Lecture slides for Automated Planning and Acting

Actions
● A = set of action templates

move(r,l,m)
pre: loc(r)=l, adjacent(l, m)
eff: loc(r) ← m

take(r,l,c)
pre: cargo(r)=nil, loc(r)=l, loc(c)=l
eff: cargo(r) ← c, loc(c) ← r

put(r,l,c)
pre: loc(r)=l, loc(c)=r
eff: cargo(r) ← nil, loc(c) ← l

r ∈ Robots = {r1}
l,m ∈ Locs = {d1,d2,d3}
c ∈ Containers = {c1,c2}

● Action: ground instance of an α∈A
▸ replace each parameter with something in its range

● A = {all actions we can get from A}
= {all ground instances of members of A}

move(r1,d1,d2)
pre: loc(r1)=d1, adjacent(d1,d2)
eff: loc(r1) ← d2

Poll. Let:
A = {the action templates on this page}
A = {all ground instances of members of A}

How many move actions in A?

Answers:
A. 1 F. 6
B. 2 G. 7
C. 3 H. 8
D. 4 I. 9
E. 5 J. other

15Nau – Lecture slides for Automated Planning and Acting

Applicability
● a is applicable in s if

▸ for every positive literal l ∈ pre(a),
l ∈ s or l is in one of the rigid relations

▸ for every negative literal ¬l ∈ pre(a),
l ∉ s and l isn’t in any of the rigid relations

● Rigid relation
adjacent = {(d1,d2), (d2,d1), (d1,d3), (d3,d1)}

● State
s1 = {loc(r1)=d1, cargo(r1)=nil, loc(c1)=d1}

● Action template
move(r,l,m)

pre: loc(r)=l, adjacent(l, m)
eff: loc(r) ← m

Range(r) = Robots
Range(l) = Range(m) = Locs

● Applicable:
move(r1,d1,d2)

pre: loc(r1)=d1, adjacent(d1,d2)
eff: loc(r1) ← d2

● Not applicable:
move(r1,d2,d1)

pre: loc(r1)=d2, adjacent(d2,d1)
eff: loc(r1) ← d1

Poll: How many
move actions are
applicable in s1?
A. 1 F. 6
B. 2 G. 7
C. 3 H. 8
D. 4 I. 9
E. 5 J. other

d2d1

d3

r1
c1 c2

16Nau – Lecture slides for Automated Planning and Acting

State-Transition Function
● If a is applicable in s:

▸γ(s,a) = {every literal in s that isn’t changed in eff(a)}
∪ {every literal in eff(a)}

● s2 = {loc(r1)=d2, cargo(r1)=nil, loc(c1)=d1, loc(c2)=d2}

● a = take(r1,d2,c2)
pre: cargo(r1)=nil, loc(r1)=d2, loc(c2)=d2
eff: cargo(r1) ← c2, loc(c2) ← r1

● γ(s2, take(r1,d2,c2)) =
{loc(r1)=d2, loc(c1)=d1, cargo(r1)=c2, loc(c2)=r1}
⌊__________________________⌋ ⌊____________________________⌋

from s2 from eff(a)

d2d1

d3

c1
r1 c2

d2d1

d3

c1
r1

c2

17Nau – Lecture slides for Automated Planning and Acting

State-Variable Planning Domain
● Let

B = finite set of objects
R = finite set of rigid relations over B
X = finite set of state variables

• for every state variable x, Range(x) ⊆ B
S = state space over X

= {all value-assignment functions that have sensible interpretations}
A = finite set of action templates

• for every parameter y, Range(y) ⊆ B
A = {all ground instances of action templates in A}
γ(s,a) = {(x,w) | eff(a) contains the effect x ← w}

∪{(x,w)∈s | x isn’t the target of any effect in eff(a)}

● Then Σ = (S,A,γ) is a state-variable planning domain

?

18Nau – Lecture slides for Automated Planning and Acting

Interpretations

● Let s be a value-assignment function
▸ s is a state only if the values make sense in the

planning domain we’re trying to represent
• (relation to model theory)

● Can loc(c1)=r1 if cargo(r1)=nil?
▸ Not in our intended interpretation

• Mapping of symbols to what they represent

● Can both loc(c1)=r1 and loc(c2)=r1?
▸ In our intended interpretation, can a robot carry

more than one object at a time?

● How to enforce the intended interpretation?
● Explicitly

▸Mathematical axioms
▸ Integrity constraints

● Implicitly
▸Write an initial state s0 that satisfies the

interpretation
▸Write the actions in such a way that

whenever s satisfies the interpretation, γ(s,a)
will too

d2d1

d3

c1
r1

c2

s2 = {loc(r1)=d2,
cargo(r1)=nil,
loc(c1)=d1,
loc(c2)=d2}

a3

…
s0

a2 s2 = γ(s0,a2)

s3 = γ(s0,a3) …

…

a1
s1 = γ(s0,a1)

19Nau – Lecture slides for Automated Planning and Acting

s0 = {loc(r1)=d3,
cargo(r1)=nil,
loc(c1)=d1,
loc(c2)=d2}

s1 = {loc(r1)=d1,
cargo(r1)=nil,
loc(c1)=d1,
loc(c2)=d2}

s2 = {loc(r1)=d1,
cargo(r1)=c1,
loc(c1)=r1,
loc(c2)=d2}

s3 = {loc(r1)=d3,
cargo(r1)=c1,
loc(c1)=r1,
loc(c2)=d2}

State Space

● State Space: a directed graph
▸ Nodes = states of the world
▸ Arcs: action application

20Nau – Lecture slides for Automated Planning and Acting

Applying a Plan
● A plan π is applicable in a state s if we can apply the

actions in the order that they appear in π

● This produces a path in the state space

● Let γ(s,π) = the last state in the path

● If π = ámove(r1,d3,d1), take(r1,d1,c1), move(r1,d1,d3)ñ
then γ(s0,π) = s3

s0 = {loc(r1)=d3,
cargo(r1)=nil,
loc(c1)=d1,
loc(c2)=d2}

s1 = {loc(r1)=d1,
cargo(r1)=nil,
loc(c1)=d1,
loc(c2)=d2}

s2 = {loc(r1)=d1,
cargo(r1)=c1,
loc(c1)=r1,
loc(c2)=d2}

s3 = {loc(r1)=d3,
cargo(r1)=c1,
loc(c1)=r1,
loc(c2)=d2}

21Nau – Lecture slides for Automated Planning and Acting

Planning Problems
● State-variable planning problem: a triple

P = (Σ, s0, g), where
▸Σ = (S,A,γ) is a state-variable planning domain
▸s0 ∈ S is the initial state
▸g is a set of ground literals called the goal

● Sg = {all states in S that satisfy g}
= {s∈ S | s∪R contains every positive literal

in g, and none of the negative literals in g}

● If g(s0,π) satisfies g (or equivalently, g(s0,π) ∈ Sg)
then π is a solution for P r1 c1

g = {cargo(r1)=c1}

s0 = {loc(r1)=d2, cargo(r1)=nil,
loc(c1)=d1}

d2d1

d3

r1
c1

ámove(r1,d2,d1), take(r1,d1,c1)ñ
is a solution of length 2

adjacent = {(d1,d2), (d2,d1),
(d1,d3), (d3,d1)}

Range(r) = Robots
Range(l) = Locs
Range(m) = Locs

move(r,l,m)
pre: loc(r)=l,

adjacent(l, m)
eff: loc(r) ← m

take(r,l,c)
pre: cargo(r)=nil,

loc(r)=l, loc(c)=l
eff: cargo(r) ← c,

loc(c) ← r

put(r,l,c)
pre: loc(r)=l, loc(c)=r
eff: cargo(r) ← nil,

loc(c) ← l

Poll: How many solutions of length 3?
A. 1 B. 2 C. 3 D. 4 E. 5
F. 6 G. 7 H. 8 I. 9 J. other

22Nau – Lecture slides for Automated Planning and Acting

Classical Representation

● Motivation
▸ The field of AI planning started out as automated theorem

proving
▸ It still uses a lot of that notation

● Classical representation is equivalent to state-variable
representation
▸ No distinction between rigid and varying properties
▸ Both represented as logical predicates
▸ Both are in the current state

adjacent(l,m) - location l is adjacent to m
loc(r) = l ⟶ loc(r,l) - robot r is at location l
loc(c) = r ⟶ loc(c,r) - container c is on robot r

cargo(r) = c ⟶ loaded(r) - there’s a container on r

● State s = a set of ground atoms
▸Atom a is true in s iff a ∈ s

s0 = {adjacent(d1,d2), adjacent(d2,d1),
adjacent(d1,d3), adjacent(d3,d1),
loc(c1,d1), loc(r1,d2)}

d2d1

d3

r1

c1

Poll: Should s0 also contain
¬ loaded(r1) ?

A: yes B: no
C: unsure

why not loaded(r,c)?

23Nau – Lecture slides for Automated Planning and Acting

Classical planning operators
● Action templates

move(r,l,m)
pre: loc(r)=l, adjacent(l, m)
eff: loc(r) ← m

take(r,l,c)
pre: cargo(r)=nil, loc(r)=l, loc(c)=l
eff: cargo(r) ← c, loc(c) ← r

put(r,l,c)
pre: loc(r)=l, loc(c)=r
eff: cargo(r) ← nil, loc(c) ← l

Range(r) = Robots = {r1}
Range(l) = Range(m) = Locs = {d1,d2,d3}
Range(c) = Containers = {c1,c2}

● Classical planning operators

move(r,l,m)
pre: loc(r,l), adjacent(l, m)
eff: ¬loc(r,l), loc(r,m)

take(r,l,c)
pre: ¬loaded(r), loc(r,l), loc(c,l)
eff: loaded(r), ¬loc(c,l), loc(c,r)

put(r,l,c)
pre: loc(r,l), loc(c,r)
eff: ¬loaded(r), loc(c,l), ¬loc(c,r)

d2d1

d3

r1

c1

Poll: Does move
really need to
include ¬loc(r,l) ?
A: yes B: no
C: unsure

24Nau – Lecture slides for Automated Planning and Acting

Actions
● Planning operator:

o: move(r,l,m)
pre: loc(r,l), adjacent(l,m)
eff: ¬loc(r,l), loc(r,m)

● Action:
a1: move(r1,d2,d1)

pre: loc(r1,d2), adjacent(d2,d1)
eff: ¬loc(r1,d2), loc(r1,d1)

● Let
▸ pre –(a) = {a’s negated preconditions}
▸ pre+(a) = {a’s non-negated preconditions}

● a is applicable in state s iff
s ∩ pre –(a) = ∅ and pre+(a) ⊆ s

● If a is applicable in s then
▸ γ(s,a) = (s ∖ eff –(a)) ∪ eff +(a)

d2d1

d3

r1

c1

s0 = {adjacent(d1,d2),
adjacent(d2,d1),
adjacent(d1,d3),

adjacent(d3,d1),
loc(c1,d1),

loc(r1,d2)}

γ(s0, a1) = {adjacent(d1,d2),
adjacent(d2,d1),
adjacent(d1,d3),
adjacent(d3,d1),
loc(c1,d1),
loc(r1,d1)}

d2d1

d3

r1

c1

meaning?

25Nau – Lecture slides for Automated Planning and Acting

Discussion

● Equivalent expressive power
▸Each can be converted to the other in linear time and space

● Classical representation
▸More natural for logicians
▸Don’t require single-valued functions

● State variables
▸More natural for engineers and computer programmers
▸When changing a value, don’t have to explicitly delete the old one

● Historically, classical representation has been more widely used
▸That’s starting to change

State-variable
rep.

Classical
rep.xP(b1,…,bk)=1 ⇐ P(b1,…,bk)

x(b1,…,bn–1)=bn ⇒ Px(b1,…,bn–1,bn)

Poll: Could we instead use
xP(b1,…,bk–1)=bk ?

A: yes B: no
C: unsure

26Nau – Lecture slides for Automated Planning and Acting

PDDL

● Language for defining planning domains
and problems

● Original version of PDDL ≈ 1996
▸Just classical planning

● Multiple revisions and extensions
▸Different subsets accommodate different

kinds of planning

● We’ll discuss the classical-planning subset
▸Chapter 2 of the PDDL book

Series Editors: Ronald J. Brachman, Jacobs Technion-Cornell Institute at Cornell Tech
 Francesca Rossi, AI Ethics Global Leader, IBM Research AI
 Peter Stone, University of Texas at Austin

An Introduction to the Planning Domain De!nition Language
Patrik Haslum, Australian National University
Nir Lipovetzky, University of Melbourne
Daniele Magazzeni, King’s College London
Christian Muise, IBM Research
Planning is the branch of Arti!cial Intelligence (AI) that seeks to automate reasoning about plans, most
importantly the reasoning that goes into formulating a plan to achieve a given goal in a given situation. AI
planning is model-based: a planning system takes as input a description (or model) of the initial situation,
the actions available to change it, and the goal condition to output a plan composed of those actions that will
accomplish the goal when executed from the initial situation.
 "e Planning Domain De!nition Language (PDDL) is a formal knowledge representation
language designed to express planning models. Developed by the planning research community as a means of
facilitating systems comparison, it has become a de-facto standard input language of many planning systems,
although it is not the only modelling language for planning. Several variants of PDDL have emerged that
capture planning problems of di#erent natures and complexities, with a focus on deterministic problems.
 "e purpose of this book is two-fold. First, we present a uni!ed and current account of PDDL,
covering the subsets of PDDL that express discrete, numeric, temporal, and hybrid planning. Second, we
want to introduce readers to the art of modelling planning problems in this language, through educational
examples that demonstrate how PDDL is used to model realistic planning problems. "e book is intended
for advanced students and researchers in AI who want to dive into the mechanics of AI planning, as well as
those who want to be able to use AI planning systems without an in-depth explanation of the algorithms and
implementation techniques they use.

store.morganclaypool.com

About SYNTHESIS

This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis
books provide concise, original presentations of important research and
development topics, published quickly, in digital and print formats.

HASLUM
 • ET AL

 AN INTRODUCTION TO THE PLANNING DOM
AIN DEFINITION LANGUAGE

 M
O

R
G

A
N

 &
 C

LAY
PO

O
L

Series ISSN: 1939-4608

Ronald J. Brachman, Francesca Rossi, and Peter Stone, Series Editors

27Nau – Lecture slides for Automated Planning and Acting

Example domain
● Classical representation:

move(r,l,m)
Precond: loc(r,l), adjacent(l,m)
Effects: ¬loc(r,l), loc(r,m)

take(r,l,c)
Precond: loc(r,l), loc(c,l), ¬loaded(r)
Effects: loc(c,r), ¬loc(c,l), loaded(r)

put(r,l,c)
Precond: loc(r,l), loc(c,r)
Effects: loc(c,l), ¬loc(c,r), ¬loaded(r)

(define (domain example-domain-1)
(requirements :negative-preconditions)

(:action move
:parameters (?r ?l ?m)
:precondition (and (loc ?r ?l)

(adjacent ?l ?m))
:effect (and (not (loc ?r ?l))

(loc ?r ?m)))

(:action take
:parameters (?r ?l ?c)
:precondition (and (loc ?r ?l)

(loc ?c ?l)
(not (loaded ?r)))

:effect (and (not (loc ?c ?l))
(loc ?c ?r)
(loaded ?r)))

(:action put
:parameters (?r ?l ?c)
:precondition (and (loc ?r ?l)

(loc ?c ?r))
:effect (and (loc ?c ?l)

(not (loc ?c ?r))
(not (loaded ?r)))))

d2d1

d3

r1

c1

28Nau – Lecture slides for Automated Planning and Acting

Example problem

● Classical representation: (define (problem example-problem-1)

(:domain example-domain-1))

(:init
(adjacent d1 d2)
(adjacent d2 d1)
(adjacent d1 d3)
(adjacent d3 d1)
(loc c1 d1)
(loc r1 d2)

(:goal (loc c1 r1)))

r1 c1

g = {loc(c1,r1)}

d2d1

d3

r1

c1

s0 = {adjacent(d1,d2), adjacent(d2,d1),
adjacent(d1,d3), adjacent(d3,d1),
loc(c1,d1), loc(r1,d2)}

29Nau – Lecture slides for Automated Planning and Acting

State-variable planning:

● Sets of objects
▸B = Movable_objects ∪ Locs
▸Movable_objects

= Robots ∪ Containers
▸Robots = {r1}
▸Containers = {c1}
▸ Locs = {d1, d2, d3}

● Parameter ranges
▸ r ∈ Robots
▸ l,m ∈ Locs
▸ c ∈ Containers

Typed domain

(define (domain example-domain-2)
(:requirements

:negative-preconditions
:typing)

(:types
location movable-obj - object
robot container - movable-obj)

(:predicates
(loc ?r - movable-obj

?l - location)
(loaded ?r - robot)
(adjacent ?l ?m - location))

(:action move
:parameters (?r - robot

?l ?m - location)
:precondition (and (loc ?r ?l)

(adjacent ?l ?m))
:effect (and (not (loc ?r ?l))

(loc ?r ?m)))

(:action take
:parameters (?r - robot

?l - location
?c - container)

:precondition (and (loc ?r ?l)
(loc ?c ?l)
(not (loaded ?r)))

:effect (and (not (loc ?r ?l))
(loc ?r ?m)))

(:action put
:parameters (?r - robot

?l - location
?c - container)

:precondition (and (loc ?r ?l)
(loc ?c ?r))

:effect (and (loc ?c ?l)
(not (loc ?c ?r))
(not (loaded ?r)))))

d2d1

d3

r1
c1

like saying
Locations, Movable_objects ⊆ B
Robots, Containers

⊆ Movable_objects

like saying r ∈ Robots,
l ∈ Locs,

c ∈ Containers

30Nau – Lecture slides for Automated Planning and Acting

Typed problem

(define (problem example-problem-2)
(:domain example-domain-2))

(:objects
r1 - robot
c1 - container
d1 d2 d3 - location)

(:init
(adjacent d1 d2)
(adjacent d2 d1)
(adjacent d1 d3)
(adjacent d3 d1)
(loc c1 d1)
(loc r1 d2)

(:goal (loc c1 r1)))

r1 c1g = {loc(c1,r1)}

d2d1

d3

r1

c1

s0 = {adjacent(d1,d2), adjacent(d2,d1),
adjacent(d1,d3), adjacent(d3,d1),
loc(c1,d1), loc(r1,d2)}

State-variable planning:

● Sets of objects
▸B = Movable_objects ∪ Locs
▸Movable_objects

= Robots ∪ Containers
▸Robots = {r1}
▸Containers = {c1}
▸ Locs = {d1, d2, d3}

31Nau – Lecture slides for Automated Planning and Acting

Summary Outline

Section 2.1 of Ghallab et al. (2016)

● State-Variable Representation
▸ State-transition systems, classical planning

assumptions
▸ Classical planning problems, plans, solutions
▸ Objects, rigid properties
▸ Varying properties, state variables, states as functions
▸ Action templates, actions, applicability, γ
▸ State-variable planning domains, plans, problems,

solutions
▸ Comparison with classical representation

Chapter 2 of Haslum et al. (2019)

● Classical fragment of PDDL
▸ Planning domains, planning problems
▸ untyped, typed

Chapter 2, part a (chap2a.pdf):
2.1 State-variable representation
–– Comparison with PDDL
2.2 Forward state-space search
2.6 Incorporating planning into an actor

–––

Chapter 2, part b (chap2b.pdf):
2.3 Heuristic functions
2.7.7 HTN planning

–––

Chapter 2, part c (chap2c.pdf):
2.4 Backward search
2.5 Plan-space search

–––

Additional slides:
2.7.8 LTL_planning.pdf

Next ⟶

32Nau – Lecture slides for Automated Planning and Acting

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Bucharest

Urziceni

Vaslui

Iasi

Neamt

Sibiu Fagaras

Rimnicu	Vilcea

PitesF

71

75

118

151

140

111

70

75
120

146
138

97

80

99

211

85

142

92

87
Planning as Search

● Most AI planning procedures are
search procedures
▸Search tree: the data structure the

procedure uses to keep track of
which paths it has explored

Example: Russell
& Norvig, Artificial
Intelligence: A
Modern Approach

33Nau – Lecture slides for Automated Planning and Acting

Search-Tree Terminology ● ancestors of ν
= {nodes that have ν as a successor}

● initial or starting or root node ν0 = (⟨⟩, s0)
▸ root of the search tree

● path in the search space: sequence of nodes
⟨ν0, ν1, . . . , νn⟩ such that each νi is a child of νi−1

● height of search space
= length of longest acyclic path from ν0

● depth of ν
= length(π) = length of path from ν0 to ν

● branching factor of ν
= number of children of ν

● branching factor of a search tree
= max branching factor of the nodes

● expand ν: generate all children

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

● Node ≈ a pair ν = (π,s), where s = γ(s0,π)
▸ In practice, ν will contain other things too

• depth(ν), cost(π), pointers to parent and children, …
▸ π isn’t always stored explicitly, can be computed from

the parent pointers

● children of ν = {(π.a, γ(s,a)) | a is applicable in s}

● successors or descendants of ν:
children, children of children, etc.

34Nau – Lecture slides for Automated Planning and Acting

Forward Search
Forward-search (Σ, s0, g)

s ← s0; π ← ⟨⟩
loop

if s satisfies g then return π
A′ ←{a ∈ A | a is applicable in s}
if A′ = ∅ then return failure
nondeterministically choose a ∈ A′
s ← γ(s,a); π ← π.a

● Nondeterministic algorithm
▸ Sound: if an execution trace returns a plan π, it’s

a solution
▸ Complete: if the planning problem is solvable,

at least one of the possible execution traces will
return a solution

● Represents a class of deterministic search
algorithms
▸ They’ll all be sound
▸Whether they’re complete depends on how you

implement the nondeterministic choice
• Which leaf node to expand next
• Which nodes to prune from the search space

35Nau – Lecture slides for Automated Planning and Acting

Forward Search
Forward-search (Σ, s0, g)

s ← s0; π ← ⟨⟩
loop

if s satisfies g then return π
A′ ←{a ∈ A | a is applicable in s}
if A′ = ∅ then return failure
nondeterministically choose a ∈ A′
s ← γ(s,a); π ← π.a

● Nondeterministic algorithm
▸ Sound: if an execution trace returns a plan π, it’s a solution
▸ Complete: if the planning problem is solvable, at least one

of the possible execution traces will return a solution

● Represents a class of deterministic search algorithms
▸ Deterministic versions of the nondeterministic choice

▸ Which leaf node to expand next
▸ Which nodes to prune from the search space

▸ They’ll all be sound, but not necessarily complete

● Many of the algorithms in this class:

Deterministic-Search(Σ, s0, g)
Frontier ← {(⟨⟩, s0)}
Expanded ← ∅
while Frontier ≠ ∅ do

select a node ν = (π, s) ∈ Frontier (i)
remove ν from Frontier
add ν to Expanded
if s satisfies g then return π
Children ←

{(π.a, γ(s,a)) | s satisfies pre(a)}
prune 0 or more nodes from

Children, Frontier, Expanded (ii)
Frontier ← Frontier ∪ Children

return failure

36Nau – Lecture slides for Automated Planning and Acting

Deterministic-Search(Σ, s0, g)
Frontier ← {(⟨⟩, s0)}
Expanded ← ∅
while Frontier ≠ ∅ do

select a node ν = (π, s) ∈ Frontier (i)
remove ν from Frontier
add ν to Expanded
if s satisfies g then return π
Children ←

{(π.a, γ(s,a)) | s satisfies pre(a)}
prune 0 or more nodes from

Children, Frontier, Expanded (ii)
Frontier ← Frontier ∪ Children

return failure

Deterministic Version
● Special cases:

▸ depth-first, breath-first, A*, many others

● Classify by
▸ how they select nodes (i)
▸ how they prune nodes (ii)

● Pruning often includes cycle-checking:
▸ Remove from Children every node (π,s) that

has an ancestor (π′,s′) such that s′ = s

● In classical planning problems, S is finite
▸ Cycle-checking will guarantee termination

37Nau – Lecture slides for Automated Planning and Acting

#1

#3#2 #4

Breadth-First Search (BFS)
Deterministic-Search(Σ, s0, g)

Frontier ← {(⟨⟩, s0)}
Expanded ← ∅
while Frontier ≠ ∅ do

select a node ν = (π, s) ∈ Frontier (i)
remove ν from Frontier
add ν to Expanded
if s satisfies g then return π
Children ←

{(π.a, γ(s,a)) | s satisfies pre(a)}
prune 0 or more nodes from

Children, Frontier, Expanded (ii)
Frontier ← Frontier ∪ Children

return failure

(i): Select (π,s) ∈ Frontier that has the smallest
length(π), i.e., smallest number of edges
▸ Tie-breaking rule: select oldest

(ii): Remove every (π,s) ∈ Children ∪ Frontier
such that s ∈ Expanded
▸ Thus expand states at most once

● Properties
▸ Terminates
▸ Returns solution if one exists

• shortest, but not least-cost
▸ Worst-case complexity:

• memory O(|S|)
• running time O(b|S|)

▸ where
• b = max branching factor
• |S| = number of states in S

38Nau – Lecture slides for Automated Planning and Acting

Depth-First Search (DFS)
Deterministic-Search(Σ, s0, g)

Frontier ← {(⟨⟩, s0)}
Expanded ← ∅
while Frontier ≠ ∅ do

select a node ν = (π, s) ∈ Frontier (i)
remove ν from Frontier
add ν to Expanded
if s satisfies g then return π
Children ←

{(π.a, γ(s,a)) | s satisfies pre(a)}
prune 0 or more nodes from

Children, Frontier, Expanded (ii)
Frontier ← Frontier ∪ Children

return failure

(i): Select (π,s) ∈ Frontier that has largest length(π),
i.e., largest number of edges
▸ Possible tie-breaking rules:

left-to-right, smallest h(s)
• heuristic function, will discuss later

(ii): Do cycle-checking, then prune all nodes that
recursive depth-first search would discard
▸ Repeatedly remove from Expanded

any node that has no children in
Children ∪ Frontier ∪ Expanded

● Properties
▸ Terminates
▸ Returns solution if there is one

• No guarantees on quality
▸ Worst-case running time O(bl)
▸ Worst-case memory O(bl)

• b = max branching factor
• l = max depth of any node

#1

#3

#2

#4

39Nau – Lecture slides for Automated Planning and Acting

Uniform-Cost Search
Deterministic-Search(Σ, s0, g)

Frontier ← {(⟨⟩, s0)}
Expanded ← ∅
while Frontier ≠ ∅ do

select a node ν = (π, s) ∈ Frontier (i)
remove ν from Frontier
add ν to Expanded
if s satisfies g then return π
Children ←

{(π.a, γ(s,a)) | s satisfies pre(a)}
prune 0 or more nodes from

Children, Frontier, Expanded (ii)
Frontier ← Frontier ∪ Children

return failure

(i): Select (π,s) ∈ Frontier that has smallest cost(π)

(ii): Prune every (π,s)∈Children∪Frontier
such that Expanded already contains a node (π′,s)

● Properties
▸ Terminates
▸ Finds optimal (i.e., least-cost) solution if one exists
▸ Worst-case time O(b|S|)
▸ Worst-case memory O(|S|)

14 12 75

11 8 5

#1

#2#3

Poll: If node ν is expanded before node ν′,
then how are cost(ν) and cost(ν′) related?
A. cost(ν) < cost(ν′)
B. cost(ν) ≤ cost(ν′)
C. cost(ν) > cost(ν′)
D. cost(ν) ≥ cost(ν′)
E. none of the above

40Nau – Lecture slides for Automated Planning and Acting

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Bucharest

Urziceni

Vaslui

Iasi

Neamt

Sibiu Fagaras

Rimnicu	Vilcea

PitesF

71

75

118

151

140

111

70

75
120

146
138

97

80

99

211

85

142

92

87

goal

s0

Heuristic Functions
● Idea: estimate the cost of getting from a state s to a goal

● Let h*(s) = min{cost(π) | γ(s,π) ∈ Sg}
▸Note that h*(s) ≥ 0 for all s

● heuristic function h(s):
▸Returns estimate of h*(s)
▸Require h(s) ≥ 0 for all s

● Example:
▸s = the city you’re in
▸Action: follow road from s

to a neighboring city
▸h*(s) = smallest distance to Bucharest

using roads
▸h(s) = straight-line distance from s to Bucharest

from Russell &
Norvig, Artificial
Intelligence: A
Modern Approach

straight-line dist.
from s to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Fagaras 176
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

41Nau – Lecture slides for Automated Planning and Acting

Deterministic-Search(Σ, s0, g)
Frontier ← {(⟨⟩, s0)}
Expanded ← ∅
while Frontier ≠ ∅ do

select a node ν = (π, s) ∈ Frontier (i)
remove ν from Frontier
add ν to Expanded
if s satisfies g then return π
Children ←

{(π.a, γ(s,a)) | s satisfies pre(a)}
prune 0 or more nodes from

Children, Frontier, Expanded (ii)
Frontier ← Frontier ∪ Children

return failure

Greedy Best-First Search (GBFS)
● Idea: choose a node that’s likely to be close to a goal

● Node selection:
▸ Select a node ν = (π, s) ∈ Frontier for which h(s) is smallest
▸ Tie-breaking: if more than one such node, choose the oldest

● Pruning: for every node ν = (π, s) in Children:
▸ If Children ∪ Frontier ∪ Expanded contains another node with

state s, then we’ve found multiple paths from s0 to s
▸ Keep only the one with the lowest cost
▸ If more than one such node, keep the oldest

● Properties
▸ Terminates; returns a solution if one exists
▸ Solution is usually found quickly, often near-optimal

Poll: Have you seen GBFS before?
A. yes
B. no
C. yes, but I don’t remember it very well

42Nau – Lecture slides for Automated Planning and Acting

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Bucharest

Urziceni

Vaslui

Iasi

Neamt

Sibiu Fagaras

Rimnicu	Vilcea

PitesF

71

75

118

151

140

111

70

75
120

146
138

97

80

99

211

85

142

92

87

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

329 374

X
366 380 193

253 0
X

366

253

176

straight-line dist.
from s to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Fagaras 176
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

Greedy Best-First Search (GBFS)

● generates 10 nodes

● solution cost 450

43Nau – Lecture slides for Automated Planning and Acting

A*
Deterministic-Search(Σ, s0, g)

Frontier ← {(⟨⟩, s0)}
Expanded ← ∅
while Frontier ≠ ∅ do

select a node ν = (π, s) ∈ Frontier (i)
remove ν from Frontier
add ν to Expanded
if s satisfies g then return π
Children ←

{(π.a, γ(s,a)) | s satisfies pre(a)}
prune 0 or more nodes from

Children, Frontier, Expanded (ii)
Frontier ← Frontier ∪ Children

return failure

● Idea: try to choose a node on an optimal path from s0 to goal

● Node selection
▸ Select a node ν = (π,s) in Frontier that has smallest

value of f(ν) = cost(π) + h(s)
• Tie-breaking rule: choose oldest

● Pruning: same as in GBFS
▸ for every node ν = (π,s) in Children:

• If Children ∪ Frontier ∪ Expanded contains another
node with the same state s, then we’ve found
multiple paths to s

• Keep only the one with the lowest cost
• If more than one such node, keep the oldest

● Properties (in classical planning problems):
▸ Termination: Always terminates
▸ Complete: returns a solution if one exists
▸ Optimality: under certain conditions (I’ll discuss later),

can guarantee optimality

Poll: Have you seen A* before?
A. yes
B. no
C. yes, but I don’t remember it

very well

44Nau – Lecture slides for Automated Planning and Acting

straight-line dist.
from s to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Fagaras 176
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea
418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

X X

X

XX X

366 = 0 + 366

393=140+253

413=220+193415=239+176

417=317+100

ν = (s,π)
f(ν) = cost(π)+h(s)

1

2

34

5

6
● generates 16 nodes

▸ vs 10 for GBFS
● solution cost 418

▸ vs 450 for GBFS

45Nau – Lecture slides for Automated Planning and Acting

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Bucharest

Urziceni

Vaslui

Iasi

Neamt

Sibiu Fagaras

Rimnicu	Vilcea

PitesF

71

75

118

151

140

111

70

75
120

146
138

97

80

99

211

85

142

92

87

goal

s0

Admissibility
● Notation:

▸ν = (π,s), where π is the plan for going from s0 to s
▸h*(s) = min{cost(π′) | γ(s,π′) satisfies g}
▸f *(ν) = cost(π) + h*(s)
▸f(ν) = cost(π) + h(s)

● Definition: h is admissible if
for every s, h(s) ≤ h*(s)

● Optimality:
▸in classical planning problems,

if h is admissible then any
solution returned by A* will be
optimal (least cost)

Poll: If h(s) = straight-line
distance from s to Bucharest, is
h admissible?

A. Yes B. No C. Not sure

straight-line dist.
from s to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Fagaras 176
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

46Nau – Lecture slides for Automated Planning and Acting

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Bucharest

Urziceni

Vaslui

Iasi

Neamt

Sibiu Fagaras

Rimnicu	Vilcea

PitesF

71

75

118

151

140

111

70

75
120

146
138

97

80

99

211

85

142

92

87

goal

s0

Admissibility
● Notation:

▸ν = (π,s), where π is the plan for going from s0 to s
▸h*(s) = min{cost(π′) | γ(s,π′) satisfies g}
▸f *(ν) = cost(π) + h*(s)
▸f(ν) = cost(π) + h(s)

● Definition: h is admissible if
for every s, h(s) ≤ h*(s)

● Optimality:
▸in classical planning problems,

if h is admissible then any
solution returned by A* will be
optimal (least cost)

Poll: If h is admissible, does it follow that
for every expanded node ν, f(ν) ≤ f*(ν) ?
Poll: If h is admissible, does it follow that
for every node ν, f(ν) ≤ f*(ν) ?
A. Yes B. No C. Not sure

straight-line dist.
from s to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Fagaras 176
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

47Nau – Lecture slides for Automated Planning and Acting

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Bucharest

Urziceni

Vaslui

Iasi

Neamt

Sibiu Fagaras

Rimnicu	Vilcea

PitesF

71

75

118

151

140

111

70

75
120

146
138

97

80

99

211

85

142

92

87

goal

s0

Dominance
● Definition:

▸Let h1, h2 be admissible heuristic functions
▸h2 dominates h1 if ∀s,

h1(s) ≤ h2(s) ≤ h∗(s)

● Suppose h2 dominates h1, and
A* always resolves ties in favor
of the same node. Then

▸A* with h2 will never expand
more nodes than A* with h1

▸In most cases, A* with h2
will expand fewer nodes
than A* with h1

straight-line dist.
from s to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Fagaras 176
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

Poll: Let h1(s) = 0 and h2(s) =
straight-line distance from s to
Bucharest. Does h2 dominate h1 ?

A. Yes B. No C. Not sure

48Nau – Lecture slides for Automated Planning and Acting

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Bucharest

Urziceni

Vaslui

Iasi

Neamt

Sibiu Fagaras

Rimnicu	Vilcea

PitesF

71

75

118

151

140

111

70

75
120

146
138

97

80

99

211

85

142

92

87

goal

s0

Digression

● Straight-line distance to Bucharest is a
domain-specific heuristic function
▸OK for planning a path to Bucharest
▸Not for other planning problems

● Domain-independent heuristic function:
▸A heuristic function that can be used in

any classical planning domain
▸Many such heuristics (see Section 2.3)

49Nau – Lecture slides for Automated Planning and Acting

Properties of A*
In classical planning problems:

● Termination: A* will always terminate

● Completeness: if the problem is solvable, A*
will return a solution

● Optimality: if h is admissible then the solution
will be optimal (least cost)

● Dominance: If h2 dominates h1 then (assuming
A* always resolves ties in favor of the same
node)
▸ A* with h2 will never expand more nodes

than A* with h1

▸ In most cases, A* with h2 will expand fewer
nodes than A* with h1

● A* needs to store every node it visits
▸ Running time O(b|S|) and memory O(|S|) in

worst case
▸With good heuristic function, usually much

smaller

● The book discusses additional properties

50Nau – Lecture slides for Automated Planning and Acting

Comparison
● If h is admissible, A* will return optimal solutions

▸But running time and memory requirement grow exponentially in b and d

● GBFS returns the first solution it finds
▸There are cases where GBFS takes more time and memory than A*

• But with a good heuristic function, such cases are rare
▸On classical planning problems with a good heuristic function

• GBFS usually near-optimal solutions
• GBFS does very little backtracking
• Running time and memory requirement usually much less than A*

▸GBFS is used by most classical planners nowadays

51Nau – Lecture slides for Automated Planning and Acting

Depth-First Branch and Bound (DFBB)

● Can express as modified version of
Deterministic-Search

● Node (step i) selection like DFS:
▸ Select ν = (π,s) ∈ Children that has

largest length(π)
▸ Tie-breaking: smallest h(s)

● Pruning (step ii)
▸ Like DFS, do cycle-checking and

prune what recursive depth-first
search would discard

● Additional pruning during node
expansion
▸ If f(ν) ≥ c∗ then discard ν

Poll: Have you seen DFBB before?
A. yes B. no
C. yes, but don’t remember it very well

● Basic idea:
▸ depth-first search
▸ π* = best solution so far
▸ c* = cost(π*)
▸ prune ν if f(ν) ≥ c*

▸ when frontier is empty,
return π*

● Properties
▸ Termination, completeness,

optimality same as A*
▸ Usually less memory, more

time than A*
▸ Worst-case is like DFS:

O(bl) memory, O(bl) time

Deterministic-Search(Σ, s0, g)
Frontier ← {(⟨⟩, s0)}
Expanded ← ∅
c*← ∞; π*← failure
while Frontier ≠ ∅ do

select a node ν = (π, s) ∈ Frontier (i)
remove ν from Frontier and add it

to Expanded
if s satisfies g then return π
if s satisfies g and cost(π) < c* then

c*← cost(π); π*← π
else if f(ν) < c* then

Children ←
{(π.a, γ(s,a)) | s satisfies pre(a)}

prune 0 or more nodes from
Children, Frontier, Expanded (ii)

Frontier ← Frontier ∪ Children
return failure π*

52Nau – Lecture slides for Automated Planning and Acting

Comparisons
● If h is admissible, both A* and DFBB will return optimal solutions

▸Usually DFBB generates more nodes, but A* takes more memory
▸DFBB does badly in highly connected graphs (many paths to each state)

• Can have exponentially worse running time than A* (generates nodes
exponentially many times)

▸DFBB best in problems where S is a tree of uniform height, all solutions
at the bottom (e.g., constraint satisfaction)

• DFBB and A* have similar running time
• A* can take exponentially more memory than DFBB

● DFS returns the first solution it finds
▸can take much less time than DFBB
▸but solution can be very far from optimal

53Nau – Lecture slides for Automated Planning and Acting

Iterative Deepening (IDS)
IDS(Σ, s0, g)

for k = 1 to ∞ do
do a depth-first search, backtracking at every node of depth k
if the search found a solution then return it
if the search generated no nodes of depth k then return failure

● Nodes generated:
a,b,c
a,b,c,d,e,f,g
a,b,c,d,e,f,g,h,i,j,k,l,m,n,o

● Solution path ⟨a,c,g,o⟩

● Total number of nodes generated:
3+7+15 = 25

● If goal is at depth d and branching factor is 2:

▸∑1
d (2i+1–1) = ∑1

d 2i+1 – ∑1
d 1 = O(2d)

Poll: How many nodes
generated if branching
factor is b instead of 2?
A. O(b2d)
B. O((b/2)d)
C. O(bd)
D. O(bd+1)
E. something else

e

j k

b

d

h i

a

g

n o

c

f

l m

 goal

Poll: Have you seen Iterative
Deepening before?
A. yes
B. no
C. yes, but I don’t remember it

very well

54Nau – Lecture slides for Automated Planning and Acting

Iterative Deepening (IDS)
IDS(Σ, s0, g)

for k = 1 to ∞ do
do a depth-first search, backtracking at every node of depth k
if the search found a solution then return it
if the search generated no nodes of depth k then return failure

● Nodes generated:
a,b,c
a,b,c,d,e,f,g
a,b,c,d,e,f,g,h,i,j,k,l,m,n,o

● Solution path ⟨a,c,g,o⟩

● Total number of nodes generated:
3+7+15 = 25

● If goal is at depth d and branching factor is 2:

▸∑1
d (2i+1–1) = ∑1

d 2i+1 – ∑1
d 1 = O(2d)

e

j k

b

d

h i

a

g

n o

c

f

l m

 goal

Properties:

= Termination, completeness,
optimality
Ø same as BFS

= Memory (worst case): O(bd)
Ø vs. O(bd) for BFS

= If the number of nodes grows
exponentially with d:
Ø worst-case running time

O(bd), vs. O(bl) for DFS

Ø b = max branching factor
Ø l = max depth of any node
Ø d = min solution depth if

there is one, otherwise l

55Nau – Lecture slides for Automated Planning and Acting

Summary Outline

● 2.2 Forward State-Space Search
▸ Forward-search, Deterministic-Search
▸ cycle-checking
▸ Breadth-first, depth-first, uniform-cost search
▸ A*, GBFS
▸ DFBB, IDS

Chapter 2, part a (chap2a.pdf):
2.1 State-variable representation
–– Comparison with PDDL
2.2 Forward state-space search
2.6 Incorporating planning into an actor

–––

Chapter 2, part b (chap2b.pdf):
2.3 Heuristic functions
2.7.7 HTN planning

–––

Chapter 2, part c (chap2c.pdf):
2.4 Backward search
2.5 Plan-space search

–––

Additional slides:
2.7.8 LTL_planning.pdf

Next ⟶

56Nau – Lecture slides for Automated Planning and Acting

2.6 Incorporating Planning into an Actor
● For classical planning we assumed

• Finite, static world, just one actor
• No concurrent actions, no explicit time
• Determinism, no uncertainty

▸ Sequence of states and actions ⟨s0, a1, s1, a2, s2, …⟩

● Most real-world environments don’t satisfy the
assumptions
⇒ Errors in prediction

● OK if
▸ errors occur infrequently, and
▸ they don’t have severe consequences

● What to do if an error does occur?

Deliberation
components

Execution platform

Commands Percepts

Other
actors

Objectives

Messages

External World

SignalsActuations

Actor
Deliberation components

Execution platform

Planning

Acting

Queries
Plans

57Nau – Lecture slides for Automated Planning and Acting

ignores how to get from l
to m, e.g., opening the door

Service Robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

a1 a2 a3 a4 a5

a1 = go(r1,room3,hall)
a2 = navigate(r1,hall,room1)
a3 = take(r1,room1,o7)
a4 = navigate(r1,room1,room2)
a5 = put(r1,room2,o7)⟩

room3

room2

room1
o7

ignores how do navigation,
localization

ignores how to find o, get
access to it, grasp it, lift it

go(r,l,m)
pre: adjacent(l,m), loc(r)=l
eff: loc(r) ← m

navigate(r,l,m)
pre: ¬adjacent(l, m), loc(r)=l
eff: loc(r) ← m

take(r,l,o)
pre: loc(r)=l, loc(o)=l,

cargo(r)=nil
eff: loc(o) ← r, cargo(r) ← o

58Nau – Lecture slides for Automated Planning and Acting

ignores how to get from l
to m, e.g., opening the door

Service Robot
a1 = go(r1,room3,hall)
a2 = navigate(r1,hall,room1)
a3 = take(r1,room1,o7)
a4 = navigate(r1,room1,room2)
a5 = put(r1,room2,o7)⟩

room3

room2

room1
o7

ignores how do navigation,
localization

ignores how to find o, get
access to it, grasp it, lift it

go(r,l,m)
pre: adjacent(l,m), loc(r)=l
eff: loc(r) ← m

navigate(r,l,m)
pre: ¬adjacent(l, m), loc(r)=l
eff: loc(r) ← m

take(r,l,o)
pre: loc(r)=l, loc(o)=l,

cargo(r)=nil
eff: loc(o) ← r, cargo(r) ← o

= Some things that can go wrong:
Ø Execution failures

• locked door
• robot battery goes dead

Ø Unexpected events
• class ends, hallway gets crowded
• hallway closed for maintenance

Ø Incorrect information
• navigation error, go to wrong place

Ø Missing information
• where is o7 ?

= How to detect and recover from errors?

59Nau – Lecture slides for Automated Planning and Acting

Using Planning in Acting
● Call Lookahead, obtain π, perform 1st action, call

Lookahead again …

● Useful when unpredictable things are likely to happen
▸ Replans immediately

● Also useful with receding horizon search (e.g., as in
chess programs):
▸ Lookahead looks a limited distance ahead

● Potential problem:
▸ Lookahead needs to return quickly
▸ Otherwise, may pause repeatedly while waiting for

Lookahead to return
▸ What if ξ changes during the wait?

Run-Lookahead(Σ, g)
s ← abstraction of observed state ξ
while s ⊭ g do

π ← Lookahead(Σ, s, g)
if π = failure then return failure
a ← pop-first-action(π); perform(a)
s ← abstraction of observed state ξ

8

Planning stage
Acting stage

the
planner

60Nau – Lecture slides for Automated Planning and Acting

Using Planning in Acting
● Call Lookahead, execute the plan as far as possible,

don’t call Lookahead again unless necessary

● Simulate tests whether the plan will execute correctly
▸ Lower-level refinement, physics-based simulation

● What if you don’t have a simulation program?
▸ Could write Simulate(…) to test whether γ(s,π) ⊨ g

• or test whether s = γ(s′, a),
where s′ is the previous state

● Potential problems
▸ Simulate needs to return quickly

• otherwise, may pause repeatedly, ξ may change
▸ May might miss opportunities to replace π with a

better plan

Run-Lazy-Lookahead(Σ, g)
s ← abstraction of observed state ξ
until s satisfies g do

π ← Lookahead(Σ, s, g)
if π = failure then return failure
until π = ⟨ ⟩ or s ⊨ g or Simulate(Σ, s, g, π) = failure do

a ← pop-first-action(π); perform(a)
s ← abstraction of observed state ξ

Planning Stage
Acting Stage

61Nau – Lecture slides for Automated Planning and Acting

Using Planning in Acting
● Motivation: plan and act in a dynamically changing environment

▸ Want a recent plan, rather than the old one that Run-Lazy-
Lookahead would use

▸ Want to get it quickly, rather than waiting like Run-
Lookahead

● But there are several problems with the pseudocode
▸ It ignores some implementation details

• how to do locking
• whether each thread has correct values for π and s

▸ If thread 2 performs any actions while Lookahead is running,
we probably should restart Lookahead
• Otherwise Lookahead will return a plan that’s out-of-date

▸ Another possibility:
• If thread 2 is going to perform action a, have thread 1 run

Lookahead(Σ, γ(s,a), g)

8

Planning stage
Acting stage

Run-Concurrent-Lookahead (basic idea)
▸ global s, π
▸ thread 1:

• loop:
▸ s ← observed state
▸ π ← Lookahead(Σ,s,g)

▸ thread 2:
• loop:

▸ a ← pop-first-element(π)
▸ perform a
▸ return if observed state ⊨ g

62Nau – Lecture slides for Automated Planning and Acting
8

Planning stage
Acting stage

How to do Lookahead
Some possibilities (can also combine these)

● Full planning (if the planner can solve the planning problem quickly enough)

● Receding horizon
▸Modify Lookahead to search just part of the way to g (see next page)
▸E.g., cut off search when one of the following

exceeds a maximum threshold:
• plan length, plan cost, computation time

● Sampling
▸Modify Lookahead to do a Monte Carlo rollout

• Depth-first search with random node selection and no backtracking
▸Call Lookahead several times, choose the plan that looks best
▸Best-known example of this: the UCT algorithm (see Chapter 6)

● Subgoaling
▸Tell Lookahead to plan for some subgoal g1, rather than g itself
▸Once the actor has achieved g1, tell Lookahead to plan for the next subgoal g2

▸And so forth until the actor reaches g

63Nau – Lecture slides for Automated Planning and Acting

Receding-Horizon Search
Deterministic-Search(Σ, s0, g)

Frontier ← {(⟨⟩, s0)}
Expanded ← ∅
while Frontier ≠ ∅ do

select a node ν = (π, s) ∈ Frontier (i)
remove ν from Frontier
add ν to Expanded
if s satisfies g then return π
Children ← {(π.a, γ(s,a)) | s satisfies pre(a)}
prune 0 or more nodes from

Children, Frontier, Expanded (ii)
Frontier ← Frontier ∪ Children

return failure

● Lookahead = modified version of Deterministic-Search
▸ Before line (i), put something like one of these:

• time-based cutoff: if time-left() = 0 then return π
• length-based cutoff: if |π| > lmax then return π
• cost-based cutoff: if f(𝜈) > cmax then return π
• closeness to goal: if h(s) ≤ ε then return π

▸ Length-based and cost-based make sense if you’re doing
GBFS or AI, but not if you’re doing DFS

▸ Could modify DFBB to use π* = least costly partial solution
of length ≤ lmax

8

Planning stage
Acting stage

64Nau – Lecture slides for Automated Planning and Acting

Subgoaling Example
● Killzone 2

▸“First-person shooter” game, ≈ 2009
▸widely acclaimed at the time

● Special-purpose AI planner
▸Plans enemy actions at the squad level

• Subproblems; plans are maybe 4–6 actions long
▸Different planning algorithm from

what we’ve discussed so far
▸HTN planning (see Section 2.7.7)

• Quickly generates a plan for a subgoal
• Replans several times per second as the world changes

● Why it worked:
▸Don’t want to get the best possible plan
▸Need actions that appear believable and consistent to human users
▸Need them very quickly

65Nau – Lecture slides for Automated Planning and Acting

Summary Outline
● 2.6 Incorporating Planning into an actor

▸ Things that can go wrong while acting
▸ Algorithms

• Run-Lookahead,
• Run-Lazy-Lookahead,
• Run-Concurrent-Lookahead

▸ Lookahead
• receding-horizon search
• sampling
• subgoaling

Chapter 2, part a (chap2a.pdf):
2.1 State-variable representation
–– Comparison with PDDL
2.2 Forward state-space search
2.6 Incorporating planning into an actor

–––

Chapter 2, part b (chap2b.pdf):
2.3 Heuristic functions
2.7.7 HTN planning

–––

Chapter 2, part c (chap2c.pdf):
2.4 Backward search
2.5 Plan-space search

–––

Additional slides:
2.7.8 LTL_planning.pdf

Next ⟶

