Last update: 3:25 PM, March 10, 2022

Chapter 2 Deliberation with Deterministic Models

Sections 2.1, 2.2, 2.6

Dana Nau University of Maryland

Automated Planning and Acting

Malik Ghallab, Dana Nau and Paolo Traverso

http://www.laas.fr/planning

Motivation

- How to model a complex environment?
 - Generally need simplifying assumptions
- Classical planning
 - Finite, static world, just one actor
 - No concurrent actions, no explicit time
 - Determinism, no uncertainty
 - Sequence of states and actions $\langle s_0, a_1, s_1, a_2, s_2, \ldots \rangle$
- Avoids many complications
- Most real-world environments don't satisfy the assumptions
 ⇒ Errors in prediction
- OK if they're infrequent and don't have severe consequences

Outline

Chapter 2, part *a* (chap2a.pdf):

- $Next \rightarrow 2.1$ State-variable representation
 - Comparison with PDDL
 - 2.2 Forward state-space search
 - 2.6 Incorporating planning into an actor

Chapter 2, part *b* (chap2b.pdf):

2.3 Heuristic functions2.7.7 HTN planning

Chapter 2, part *c* (chap2c.pdf):

- 2.4 Backward search
- 2.5 Plan-space search

Additional slides: 2.7.8 LTL_planning.pdf

Domain Model

State-transition system or *classical planning domain*:

- $\Sigma = (S, A, \gamma, \text{cost})$ or (S, A, γ)
 - ► *S* finite set of *states*
 - ► A finite set of *actions*
 - $\blacktriangleright \gamma: S \times A \longrightarrow S$

prediction (or state-transition) function

- *partial* function: γ(s,a) is not necessarily defined for every (s,a)
 - *a* is *applicable* in *s* iff $\gamma(s,a)$ is defined
 - Domain(a) = { $s \in S | a$ is applicable in s}
 - Range(a) = { $\gamma(s,a) | s \in \text{Domain}(a)$ }
- cost: $S \times A \to \mathbb{R}^+$ or cost: $A \to \mathbb{R}^+$
 - optional; default is $cost(a) \equiv 1$
 - money, time, something else

- plan:
 - a sequence of actions $\pi = \langle a_1, ..., a_n \rangle$
- π is *applicable* in s₀ if the actions are applicable in the order given
 - $\gamma(s_0, a_1) = s_1$ $\gamma(s_1, a_2) = s_2$
 - $\gamma(s_{n-1}, a_n) = s_n$
 - In this case define $\gamma(s_0, \pi) = s_n$
- Classical planning problem:
 - $\blacktriangleright P = (\Sigma, s_0, S_g)$

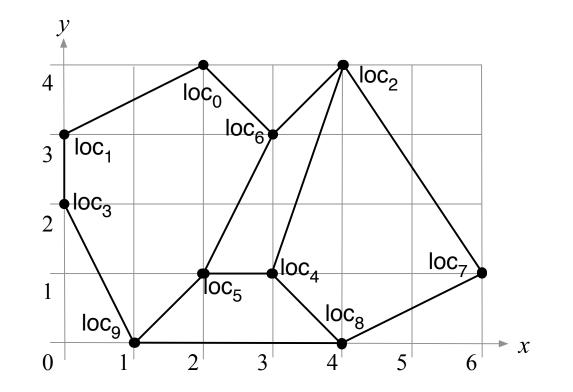
. . .

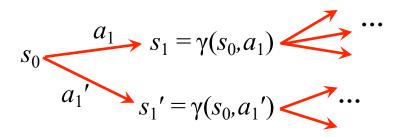
- planning domain, initial state, set of goal states
- *Solution* for *P*:
 - ► a plan π such that that $\gamma(s_0, \pi) \in S_g$

Representing Σ

- If *S* and *A* are small enough
 - Give each state and action a name
 - For each *s* and *a*, store $\gamma(s,a)$ in a lookup table

- In larger domains, don't represent all states explicitly
 - Language for describing properties of states
 - Language for describing how each action changes those properties
 - Start with initial state, use actions to produce other states





Domain-Specific Representation

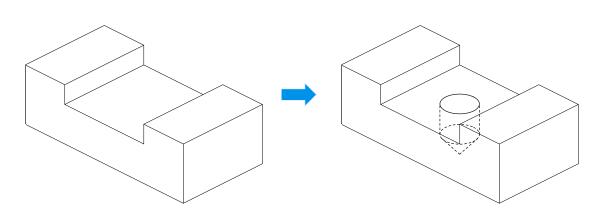
- Tailor-made for a specific environment
- State: arbitrary data structure
- Action: (head, preconditions, effects, cost)
 - *head*: name and parameter list
 - Get actions by instantiating the parameters
 - preconditions:
 - Computational tests to predict whether an action can be performed
 - Should be necessary/sufficient for the action to run without error

► effects:

- Procedures that modify the current state
- *cost*: procedure that returns a number
 - Can be omitted, default is $cost \equiv 1$

Example

- Drilling holes in a metal workpiece
 - A state
 - geometric model of the workpiece
 - *annotated* with dimensions, tolerances, etc.
 - capabilities and status of drilling machine and drill bit
 - Several actions
 - clamp the workpiece onto the drilling machine
 - load a drill bit into the machine
 - drill a hole



- Name: drill-hole
- Arguments:
 - ID codes for the machine and drill bit
 - annotated geometric model of the workpiece
 - description of the hole to be drilled
- Preconditions
 - Capabilities: can the machine and drill bit produce the desired hole?
 - *Current state*: Is the drill bit installed? Is the workpiece clamped onto the table? Etc.
- Effects
 - annotated geometric model of modified workpiece
- Cost
 - estimate of time or monetary cost

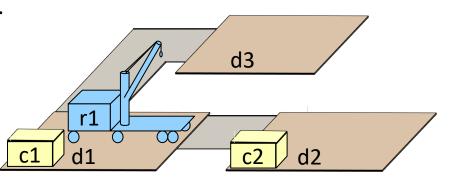
Discussion

- Advantage of domain-specific representation:
 - use whatever works best for that particular domain
- Disadvantage:
 - for each new domain, need new representation and deliberation algorithms
- Alternative: *domain-independent* representation
 - Try to create a "standard format" that can be used for many different planning domains
 - Deliberation algorithms that work for anything in this format

- *State-variable* representation
 - Simple formats for describing states and actions
 - Limited representational capability
 - But easy to compute, easy to reason about
 - Domain-independent search algorithms and heuristic functions that can be used in all statevariable planning problems

State-Variable Representation

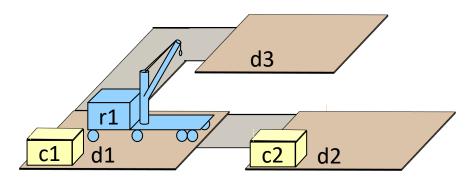
- *E*: environment that we want to represent
- *B*: set of symbols called *objects*
 - ▶ names for objects in *E*, mathematical constants, ...
- Example
 - ► $B = Robots \cup Containers \cup Locs \cup \{nil\}$
 - *Robots* = {r1}
 - *Containers* = {c1, c2}
 - $Locs = \{d1, d2, d3\}$



- *B* only needs to include objects that matter at the current level of abstraction
- Can omit lots of details
 - physical characteristics of robots, containers, loading docks, roads, ...

Rigid Properties

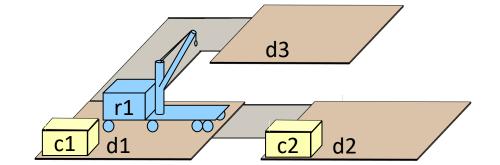
- Objects have two kinds of properties
 - rigid and varying
- *Rigid*: stays the same in every state
 - Can be described as a mathematical relation adjacent = {(d1,d2), (d2,d1), (d1,d3), (d3,d1)}
 - Or equivalently, a set of ground atoms adjacent(d1,d2), adjacent(d2,d1), adjacent(d1,d3), adjacent(d3,d1)
 - I'll use the two notations interchangeably



- Terminology from first-order logic:
 - *atom* ≡ *atomic formula* ≡ *positive literal* ≡ predicate symbol with list of arguments
 - *e.g.*, adjacent(*x*,d2)
 - an atom is *ground* (or *fully instantiated*) if it contains no variable symbols
 - *e.g.*, adjacent(d1,d2)
 - *negative literal* = *negated atom* = atom with a negation sign in front of it
 - *e.g.*, ¬ adjacent(*x*,d2)

Varying Properties

- *Varying* property (or *fluent*):
 - a property that may differ in different states
- Represent it using a *state variable*
 - a term that we can assign a value to
 - *e.g.,* loc(r1)
- Let X = {all state variables in the environment}
 e.g., X = {loc(r1), loc(c1), loc(c2), cargo(r1)}
- Each state variable $x \in X$ has a *range*
 - = {all values that can be assigned to x}
 - Range(loc(r1)) = Locs
 - Range(loc(c1)) = Range(loc(c2)) = Robots U Locs
 - Range(cargo(r1)) = *Containers* U {nil}
- To abbreviate the "range" notation often I'll just say things like
 - ▶ $loc(r1) \in Locs$
 - ▶ loc(c1), $loc(c2) \in Robots \cup Locs$

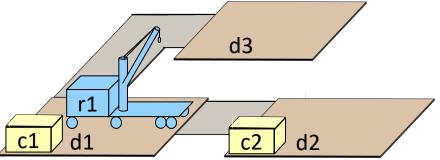


Instead of "domain", to avoid confusion with planning domains

States as Functions

- Represent each state *s* as a function that assigns values to state variables
 - For each state variable x, s(x) is one x's possible values

 $s_1(loc(r1)) = d1,$ $s_1(cargo(r1)) = nil,$ $s_1(loc(c1)) = d1,$ $s_1(loc(c2)) = d2$



- Mathematically, a function is a set of ordered pairs $s_1 = \{(loc(r1), d1), (cargo(r1), nil), (loc(c1), d1), (loc(c2), d2)\}$
- Equivalently, write it as a set of *ground positive literals* (or *ground atoms*):
 s₁ = {loc(r1)=d1, cargo(r1)=nil, loc(c1)=d1, loc(c2)=d2}
 - Here, we're using '=' as a predicate symbol

Action Templates

- Action *template* or *schema*: a parameterized set of actions
 - $\alpha =$ (head, pre, eff, cost)
 - head: name, parameters
 - pre: precondition literals
 - eff: *effect* literals
 - cost: a number (optional, default is 1)
- e.g.,
 - head = take(r, l, c)
 - pre = {cargo(r)=nil, loc(r)=l, loc(c)=l}
 - eff = {cargo(r)=c, loc(c)=r}
- Each parameter has a range of possible values.
 - Range(r) = Robots = {r1}
 - Range(l) = Locs = {d1,d2,d3}
 - Range(l) = Range(m) = Locs = {d1,d2,d3}
 - Range(c) = Containers = {c1,c2}
- But we'll usually write it more like pseudocode

```
d3
                                   d2
                             c2
move(r, l, m)
    pre: loc(r) = l, adjacent(l,m)
    eff: loc(r) \leftarrow m
take(r,l,c)
    pre: cargo(r)=nil, loc(r)=l, loc(c)=l
    eff: cargo(r) \leftarrow c, loc(c) \leftarrow r
put(r,l,c)
    pre: loc(r) = l, loc(c) = r
    eff: cargo(r) \leftarrow nil, loc(c) \leftarrow l
r \in Robots = \{r1\}
l,m \in Locs = \{d1,d2,d3\}
c \in Containers = \{c1, c2\}
```

Actions

• $\mathcal{A} = \text{set of action templates}$

```
move(r, l, m)

pre: loc(r)=l, adjacent(l, m)

eff: loc(r) \leftarrow m
```

```
take(r, l, c)

pre: cargo(r)=nil, loc(r)=l, loc(c)=l

eff: cargo(r) \leftarrow c, loc(c) \leftarrow r
```

```
put(r, l, c)

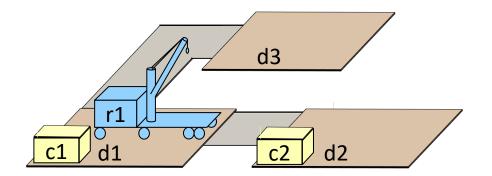
pre: loc(r)=l, loc(c)=r

eff: cargo(r) \leftarrow nil, loc(c) \leftarrow l
```

```
r \in Robots = \{r1\}l,m \in Locs = \{d1,d2,d3\}c \in Containers = \{c1,c2\}
```

- Action: *ground instance* of an $\alpha \in \mathcal{A}$
 - replace each parameter with something in its range
- A = {all actions we can get from A}
 = {all ground instances of members of A}

```
move(r1,d1,d2)
pre: loc(r1)=d1, adjacent(d1,d2)
eff: loc(r1) \leftarrow d2
```



Actions

• $\mathcal{A} = \text{set of action templates}$

move(r, l, m) pre: loc(r)=l, adjacent(l, m) eff: loc(r) $\leftarrow m$

```
take(r, l, c)

pre: cargo(r)=nil, loc(r)=l, loc(c)=l

eff: cargo(r) \leftarrow c, loc(c) \leftarrow r
```

```
put(r,l,c)

pre: loc(r)=l, loc(c)=r

eff: cargo(r) \leftarrow nil, loc(c) \leftarrow l

r \in Robots = \{r1\}

l,m \in Locs = \{d1,d2,d3\}

c \in Containers = \{c1,c2\}
```

• Action: *ground instance* of an $\alpha \in \mathcal{A}$

replace each parameter with something in its range

A newore.

E. 5

6

7

8

9

J. other

A = {all actions we can get from A}
 = {all ground instances of members of A}

```
move(r1,d1,d2)
pre: loc(r1)=d1, adjacent(d1,d2)
eff: loc(r1) \leftarrow d2
```

	Answers:	
Poll. Let:	A. 1	F.
$\mathcal{A} = \{$ the action templates on this page $\}$	B. 2	G.
$A = \{ \text{all ground instances of members of } \mathcal{A} \}$	C. 3	Н.
How many move actions in <i>A</i> ?	D. 4	I.

Applicability

- *a* is *applicable* in *s* if
 - for every positive literal $l \in pre(a)$, $l \in s$ or l is in one of the rigid relations
 - for every negative literal $\neg l \in \text{pre}(a)$, $l \notin s$ and *l* isn't in any of the rigid relations
- Rigid relation

 $adjacent = \{(d1, d2), (d2, d1), (d1, d3), (d3, d1)\}$

• State

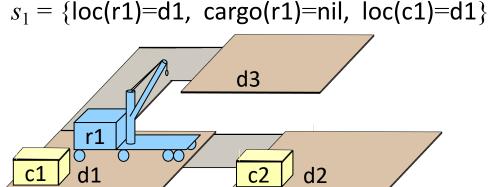
d3 c2 d2

- Action template move(r, l, m)pre: loc(r)=l, adjacent(*l*, *m*) eff: $loc(r) \leftarrow m$ Range(r) = RobotsRange(l) = Range(m) = Locs
- Applicable:

move(r1,d1,d2) pre: loc(r1)=d1, adjacent(d1,d2) eff: loc(r1) \leftarrow d2

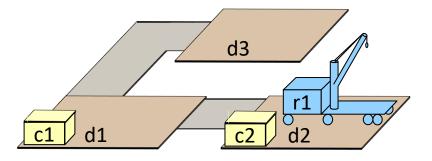
• Not applicable: move(r1,d2,d1)pre: loc(r1)=d2, adjacent(d2,d1) eff: $loc(r1) \leftarrow d1$

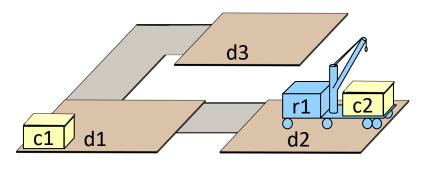
Poll: How many									
nove actions are									
applicable in s_1 ?									
A. 1	F. 6								
B. 2	G. 7								
C. 3	H. 8								
D. 4	I. 9								
E. 5	J. othe								



State-Transition Function

- If *a* is applicable in *s*:
 - γ(s,a) = {every literal in s that isn't changed in eff(a)}
 U {every literal in eff(a)}
- $s_2 = \{ loc(r1) = d2, cargo(r1) = nil, loc(c1) = d1, loc(c2) = d2 \}$
- *a* = take(r1,d2,c2) pre: cargo(r1)=nil, loc(r1)=d2, loc(c2)=d2 eff: cargo(r1) ← c2, loc(c2) ← r1





State-Variable Planning Domain

• Let

- B = finite set of objects
- R = finite set of rigid relations over B
- X = finite set of state variables
 - for every state variable x, Range $(x) \subseteq B$
- S = state space over X

= {all value-assignment functions that have sensible interpretations}

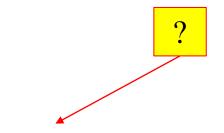
 \mathcal{A} = finite set of action templates

• for every parameter y, Range $(y) \subseteq B$

 $A = \{ all ground instances of action templates in <math>\mathcal{A} \}$

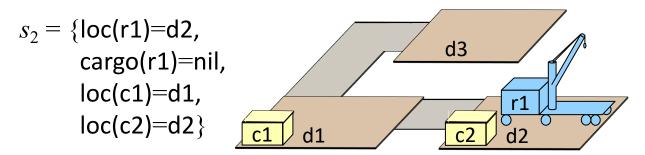
 $\gamma(s,a) = \{(x,w) \mid \text{eff}(a) \text{ contains the effect } x \leftarrow w\}$ $\cup \{(x,w) \in s \mid x \text{ isn't the target of any effect in eff}(a)\}$

• Then $\Sigma = (S, A, \gamma)$ is a *state-variable planning domain*



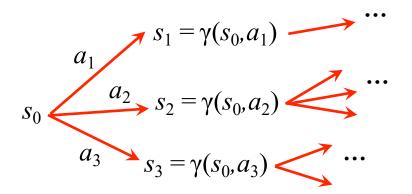
Interpretations

- Let *s* be a value-assignment function
 - s is a state only if the values make sense in the planning domain we're trying to represent
 - (relation to *model theory*)
- Can loc(c1)=r1 if cargo(r1)=nil?
 - Not in our intended *interpretation*
 - Mapping of symbols to what they represent



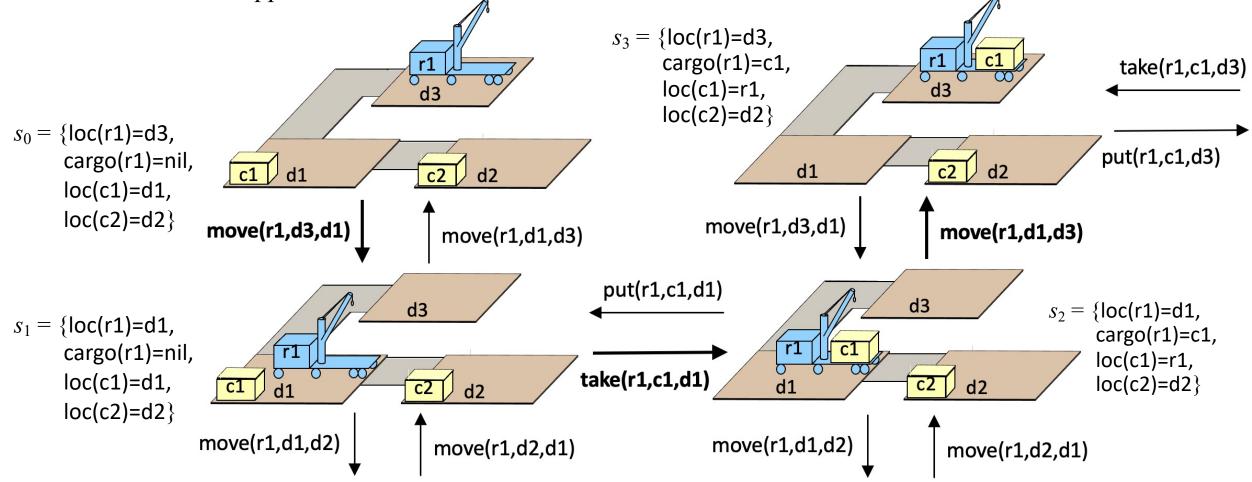
- Can both loc(c1)=r1 and loc(c2)=r1?
 - In our intended interpretation, can a robot carry more than one object at a time?

- How to enforce the intended interpretation?
- Explicitly
 - Mathematical axioms
 - Integrity constraints
- Implicitly
 - Write an initial state s₀ that satisfies the interpretation
 - Write the actions in such a way that whenever s satisfies the interpretation, γ(s,a) will too



State Space

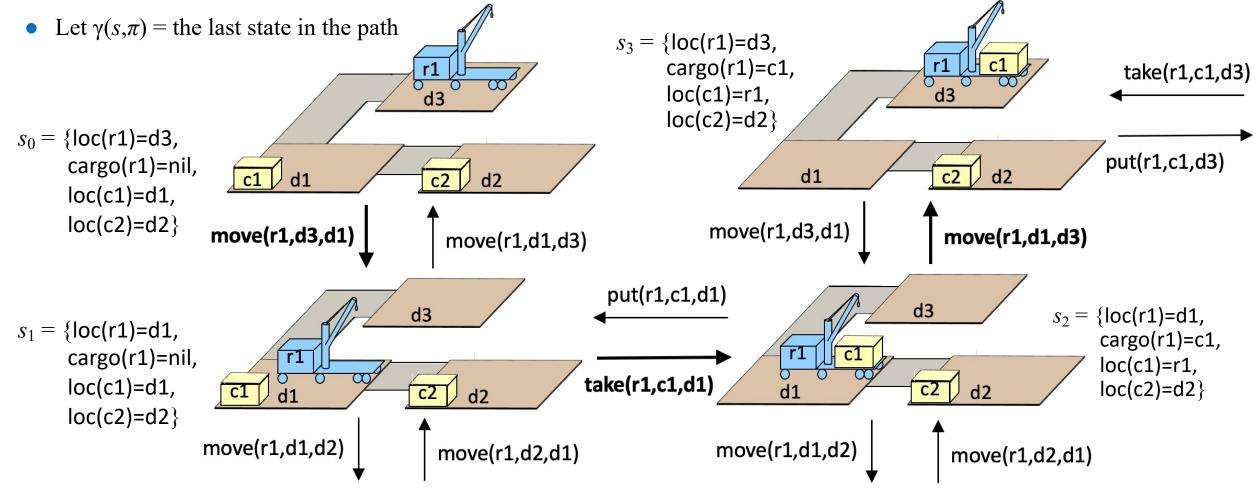
- *State Space*: a directed graph
 - Nodes = states of the world
 - Arcs: action application



Applying a Plan

- A plan π is applicable in a state *s* if we can apply the actions in the order that they appear in π
- This produces a path in the state space

• If $\pi = \langle \text{move}(r1,d3,d1), \text{take}(r1,d1,c1), \text{move}(r1,d1,d3) \rangle$ then $\gamma(s_0,\pi) = s_3$



Nau – Lecture slides for Automated Planning and Acting

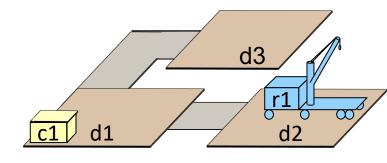
Planning Problems

- *State-variable planning problem*: a triple $P = (\Sigma, s_0, g)$, where
 - $\Sigma = (S, A, \gamma)$ is a state-variable planning domain
 - $s_0 \in S$ is the *initial state*
 - ▶ g is a set of ground literals called the goal
- $S_g = \{ \text{all states in } S \text{ that satisfy } g \}$
 - $= \{s \in S \mid s \cup R \text{ contains every positive literal} \\ \text{in } g, \text{ and none of the negative literals in } g\}$
- If $\gamma(s_0,\pi)$ satisfies g (or equivalently, $\gamma(s_0,\pi) \in S_g$) then π is a *solution* for P

Poll: How many solutions of length 3?

A. 1	B. 2	C. 3	D. 4	E. 5
F. 6	G. 7	H. 8	I. 9	J. other

```
adjacent = {(d1,d2), (d2,d1),
(d1,d3), (d3,d1)}
```



 $s_0 = \{loc(r1)=d2, cargo(r1)=nil, loc(c1)=d1\}$

$$g = \{ cargo(r1)=c1 \}$$

(move(r1,d2,d1), take(r1,d1,c1))
is a solution of length 2

move(r; l, m)pre: loc(r)=l, adjacent(l, m) eff: loc(r) \leftarrow m

take(r, l, c) pre: cargo(r)=nil, loc(r)=l, loc(c)=leff: cargo(r) $\leftarrow c$, loc(c) $\leftarrow r$

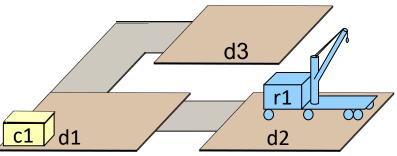
put(r, l, c) pre: loc(r)=l, loc(c)=reff: cargo(r) \leftarrow nil, loc(c) $\leftarrow l$

Range(r) = RobotsRange(l) = LocsRange(m) = Locs

Classical Representation

- Motivation
 - The field of AI planning started out as automated theorem proving
 - It still uses a lot of that notation
- Classical representation is equivalent to state-variable representation
 - No distinction between rigid and varying properties
 - Both represented as logical predicates
 - Both are in the current state

adjacent(*l*,*m*) - location *l* is adjacent to *m* $loc(r) = l \rightarrow loc(r,l)$ - robot *r* is at location *l* $loc(c) = r \rightarrow loc(c,r)$ - container *c* is on robot *r* $cargo(r) = c \rightarrow loaded(r)$ - there's a container on *r* why not loaded(*r*,*c*)?



- State *s* = a set of ground atoms
 - Atom *a* is true in *s* iff $a \in s$
- $s_0 = \{ adjacent(d1,d2), adjacent(d2,d1), \\ adjacent(d1,d3), adjacent(d3,d1), \\ loc(c1,d1), loc(r1,d2) \}$

```
Poll: Should s<sub>0</sub> also contain
¬ loaded(r1)?
A: yes B: no
C: unsure
```

Classical planning operators

• Action templates

```
move(r, l, m)

pre: loc(r)=l, adjacent(l, m)

eff: loc(r) \leftarrow m
```

```
take(r, l, c)

pre: cargo(r)=nil, loc(r)=l, loc(c)=l

eff: cargo(r) \leftarrow c, loc(c) \leftarrow r
```

```
put(r, l, c)

pre: loc(r)=l, loc(c)=r

eff: cargo(r) \leftarrow nil, loc(c) \leftarrow l
```

```
Range(r) = Robots = {r1}
Range(l) = Range(m) = Locs = {d1,d2,d3}
Range(c) = Containers = {c1,c2}
```

• Classical planning operators

```
move(r,l,m)
pre: loc(r,l), adjacent(l, m)
eff: ¬loc(r,l), loc(r,m)
```

```
take(r,l,c)

pre: \negloaded(r), loc(r,l), loc(c,l)

eff: loaded(r), \negloc(c,l), loc(c,r)

put(r,l,c)

pre: loc(r,l), loc(c,r)

eff: \negloaded(r), loc(c,l), \negloc(c,r)
```

Poll: Does move really need to include $\neg loc(r,l)$? A: yes B: no C: unsure

```
\begin{array}{c} d3 \\ \hline r1 \\ c1 \\ d1 \\ d2 \\ \end{array}
```

Actions

- Planning operator:
 - o: move(r,l,m)
 pre: loc(r,l), adjacent(l,m)
 eff: ¬loc(r,l), loc(r,m)
- Action:
 - a₁: move(r1,d2,d1) pre: loc(r1,d2), adjacent(d2,d1) eff: ¬loc(r1,d2), loc(r1,d1)

d3

r1

d2

 ∞

- Let
 - pre -(a) = {a's negated preconditions}
 - pre+(a) = {a's non-negated preconditions}

r1

c1

 α

meaning?

d3

d2

- *a* is applicable in state *s* iff
 s ∩ pre⁻(*a*) = Ø and pre⁺(*a*) ⊆ *s*
- If a is applicable in s then
 γ(s,a) = (s \ eff⁻(a)) ∪ eff⁺(a)

adjacent(d2,d1),

adjacent(d1,d3),

adjacent(d3,d1),

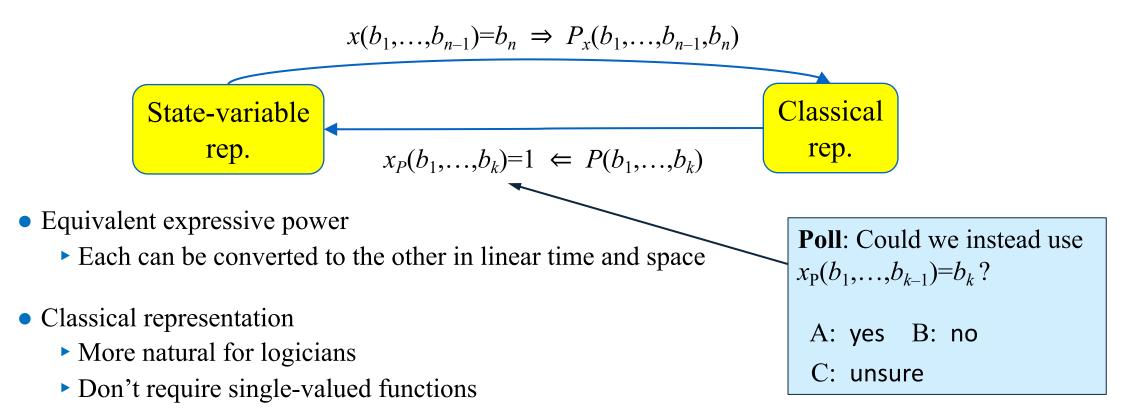
loc(c1,d1),

<u>loc(r1,d1)</u>}

 $\gamma(s_0, a_1) = \{ adjacent(d1, d2), \}$

 $s_0 = \{ adjacent(d1,d2), \\ adjacent(d2,d1), \\ adjacent(d1,d3), \\ adjacent(d3,d1), \\ loc(c1,d1), \\ loc(r1,d2) \}$

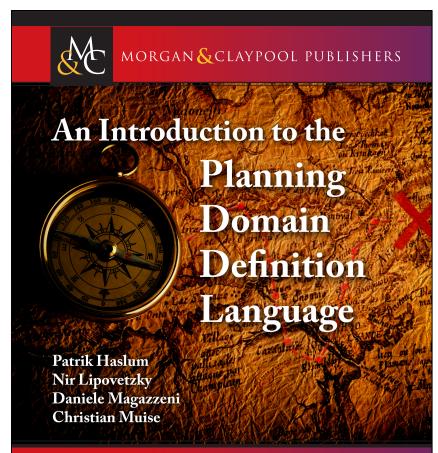
Discussion



- State variables
 - More natural for engineers and computer programmers
 - When changing a value, don't have to explicitly delete the old one
- Historically, classical representation has been more widely used
 - That's starting to change

PDDL

- Language for defining planning domains and problems
- Original version of PDDL \approx 1996
 - Just classical planning
- Multiple revisions and extensions
 - Different subsets accommodate different kinds of planning
- We'll discuss the classical-planning subset
 - Chapter 2 of the PDDL book



Synthesis Lectures on Artificial Intelligence and Machine Learning

Ronald J. Brachman, Francesca Rossi, and Peter Stone, Series Editors

Example domain

• Classical representation:

```
move(r, l, m)

Precond: loc(r, l), adjacent(l, m)

Effects: \neg loc(r, l), loc(r, m)
```

```
take(r,l,c)

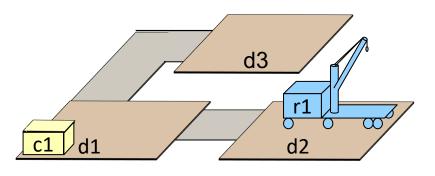
Precond: loc(r,l), loc(c,l), \negloaded(r)

Effects: loc(c,r), \negloc(c,l), loaded(r)
```

```
put(r,l,c)

Precond: loc(r,l), loc(c,r)

Effects: loc(c,l), \negloc(c,r), \negloaded(r)
```



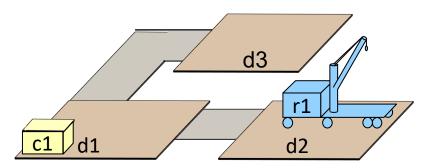
```
(define (domain example-domain-1)
  (requirements :negative-preconditions)
```

```
(loc ?c ?l)
(not (loaded ?r)))
:effect (and (not (loc ?c ?l))
(loc ?c ?r)
(leaded 2m)))
```

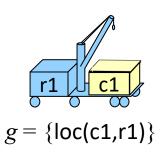
(loaded ?r)))

Example problem

• Classical representation:



 $s_0 = \{ adjacent(d1,d2), adjacent(d2,d1), adjacent(d1,d3), adjacent(d3,d1), loc(c1,d1), loc(r1,d2) \}$



(define (problem example-problem-1)
 (:domain example-domain-1))

(:init

- (adjacent d1 d2)
- (adjacent d2 d1)
- (adjacent d1 d3)
- (adjacent d3 d1)
- (loc c1 d1)
- (loc r1 d2)

(:goal (loc c1 r1)))

Typed domain

State-variable planning:

- Sets of objects
 - ► B = Movable_objects ∪ Locs
 - Movable_objects
 = Robots U Containers
 - $Robots = \{r1\}$

Nau – Lecture slides for Automated Planning and Acting

- Containers = $\{c1\}$
- Locs = {d1, d2, d3}

```
d3
r1
d1
d2
```

- Parameter ranges
 - $r \in Robots$
 - ▶ $l,m \in Locs$
 - $c \in Containers$

```
(define (domain example-domain-2)
    (:requirements
         :negative-preconditions
         :typing)
    (:types
        location movable-obj - object ]
        robot container - movable-obj)
                                             like saying
                                    Locations, Movable objects \subseteq B
    (:predicates
         (loc ?r - movable-obj
                                    Robots, Containers
              ?1 - location)
                                               \subseteq Movable objects
         (loaded ?r - robot)
         (adjacent ?1 ?m - location))
```

```
(:action move
:parameters (?r - robot
                ?1 ?m - location)
:precondition (and (loc ?r ?l)
                     (adjacent ?l ?m))
:effect (and (not (loc ?r ?l))
                    (loc ?r ?m)))
```

(loc ?c ?r))

(not (loc ?c ?r))

(not (loaded ?r)))))

:precondition (and (loc ?r ?l)

:effect (and (loc ?c ?l)

```
location))
```

Typed problem

State-variable planning:

- Sets of objects
 - $B = Movable_objects \cup Locs$
 - Movable_objects
 = Robots U Containers
 - $Robots = \{r1\}$
 - ► *Containers* = {c1}
 - Locs = {d1, d2, d3}

1, d2, d3 d3 r1 d1 d2

 $s_0 = \{ adjacent(d1,d2), adjacent(d2,d1), adjacent(d1,d3), adjacent(d3,d1), loc(c1,d1), loc(r1,d2) \}$

$$g = \{ loc(c1,r1) \}$$
 r1 c1

(define (problem example-problem-2)
 (:domain example-domain-2))

(:init
 (adjacent d1 d2)
 (adjacent d2 d1)
 (adjacent d1 d3)
 (adjacent d3 d1)
 (loc c1 d1)
 (loc r1 d2)

(:goal (loc c1 r1)))

Summary

Section 2.1 of Ghallab et al. (2016)

- State-Variable Representation
 - State-transition systems, classical planning assumptions
 - Classical planning problems, plans, solutions
 - Objects, rigid properties
 - Varying properties, state variables, states as functions
 - Action templates, actions, applicability, γ
 - State-variable planning domains, plans, problems, solutions
 - Comparison with classical representation

Chapter 2 of Haslum et al. (2019)

- Classical fragment of PDDL
 - Planning domains, planning problems
 - untyped, typed

Outline

Chapter 2, part *a* (chap2a.pdf):

- 2.1 State-variable representation
- Comparison with PDDL
- $Next \rightarrow 2.2$ Forward state-space search
 - 2.6 Incorporating planning into an actor

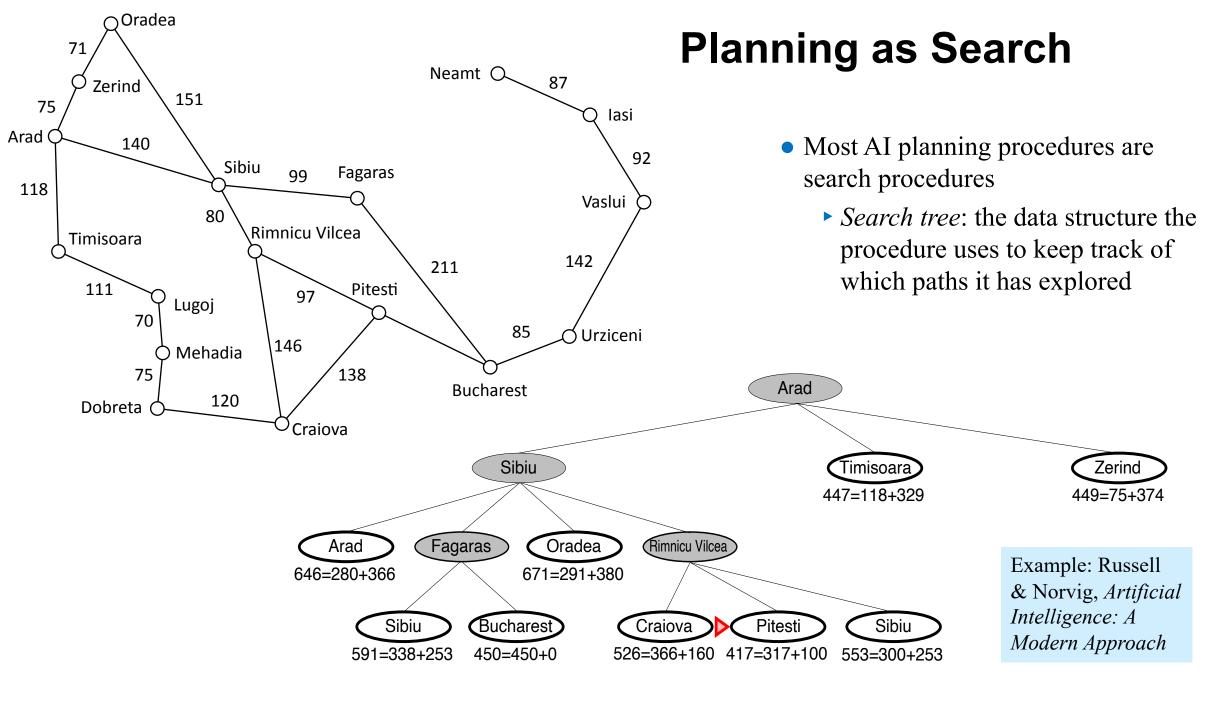
Chapter 2, part *b* (chap2b.pdf):

- 2.3 Heuristic functions
- 2.7.7 HTN planning

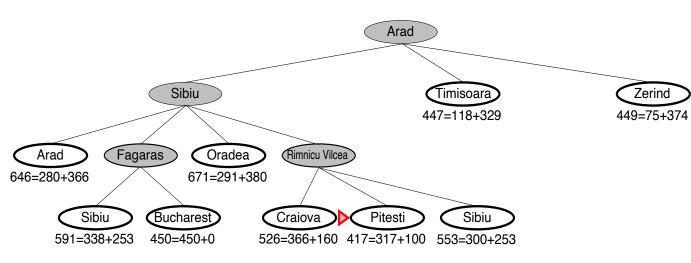
Chapter 2, part *c* (chap2c.pdf):

- 2.4 Backward search
- 2.5 Plan-space search

Additional slides: 2.7.8 LTL_planning.pdf



Search-Tree Terminology



- *Node* \approx a pair $v = (\pi, s)$, where $s = \gamma(s_0, \pi)$
 - In practice, v will contain other things too
 - depth(v), $cost(\pi)$, pointers to parent and children, ...
 - π isn't always stored explicitly, can be computed from the parent pointers
- *children* of $v = \{(\pi.a, \gamma(s, a)) \mid a \text{ is applicable in } s\}$
- *successors* or *descendants* of v: children, children of children, etc.

- ancestors of v
 = {nodes that have v as a successor}
- *initial* or *starting* or *root* node $v_0 = (\langle \rangle, s_0)$
 - root of the search tree
- *path* in the search space: sequence of nodes $\langle v_0, v_1, \ldots, v_n \rangle$ such that each v_i is a child of v_{i-1}
- *height* of search space
 = length of longest acyclic path from v₀
- *depth* of v= length(π) = length of path from v_0 to v
- *branching factor* of v
 = number of children of v
- *branching factor* of a search tree
 = max branching factor of the nodes
- *expand* v: generate all children

Forward Search

Forward-search (Σ, s_0, g) $s \leftarrow s_0; \quad \pi \leftarrow \langle \rangle$ loop if *s* satisfies *g* then return π $A' \leftarrow \{a \in A \mid a \text{ is applicable in } s\}$ if $A' = \emptyset$ then return failure nondeterministically choose $a \in A'$ $s \leftarrow \gamma(s, a); \quad \pi \leftarrow \pi.a$

- Nondeterministic algorithm
 - Sound: if an execution trace returns a plan π, it's a solution
 - *Complete*: if the planning problem is solvable, at least one of the possible execution traces will return a solution
- Represents a class of deterministic search algorithms
 - They'll all be sound
 - Whether they're complete depends on how you implement the nondeterministic choice
 - Which leaf node to expand next
 - Which nodes to prune from the search space

Forward Search

Forward-search (Σ, s_0, g) $s \leftarrow s_0; \quad \pi \leftarrow \langle \rangle$ loop if *s* satisfies *g* then return π $A' \leftarrow \{a \in A \mid a \text{ is applicable in } s\}$ if $A' = \emptyset$ then return failure nondeterministically choose $a \in A'$ $s \leftarrow \gamma(s, a); \quad \pi \leftarrow \pi.a$

- Nondeterministic algorithm
 - Sound: if an execution trace returns a plan π , it's a solution
 - *Complete*: if the planning problem is solvable, at least one of the possible execution traces will return a solution
- Represents a class of deterministic search algorithms
 - Deterministic versions of the nondeterministic choice
 - Which leaf node to expand next
 - Which nodes to prune from the search space
 - They'll all be sound, but not necessarily complete

Many of the algorithms in this class:

Deterministic-Search(Σ , s_0 , g) Frontier $\leftarrow \{(\langle \rangle, s_0)\}$ *Expanded* $\leftarrow \emptyset$ while *Frontier* $\neq \emptyset$ do select a node $v = (\pi, s) \in Frontier$ (i)remove v from *Frontier* add v to *Expanded* if s satisfies g then return π *Children* ← $\{(\pi, a, \gamma(s, a)) \mid s \text{ satisfies } pre(a)\}$ prune 0 or more nodes from Children, Frontier, Expanded *(ii) Frontier* \leftarrow *Frontier* \cup *Children* return failure

Deterministic Version

Deterministic-Search(Σ , s_0 , g) Frontier $\leftarrow \{(\langle \rangle, s_0)\}$ *Expanded* $\leftarrow \emptyset$ while *Frontier* $\neq \emptyset$ do select a node $v = (\pi, s) \in Frontier$ (i)remove v from *Frontier* add v to *Expanded* if s satisfies g then return π *Children* ← $\{(\pi.a, \gamma(s,a)) \mid s \text{ satisfies } pre(a)\}$ prune 0 or more nodes from *Children, Frontier, Expanded (ii)* Frontier \leftarrow Frontier \cup Children return failure

- Special cases:
 - depth-first, breath-first, A*, many others
- Classify by
 - how they *select* nodes (*i*)
 - how they prune nodes (ii)
- Pruning often includes *cycle-checking*:
 - Remove from *Children* every node (π,s) that has an ancestor (π',s') such that s' = s
- In classical planning problems, *S* is finite
 - Cycle-checking will guarantee termination

Breadth-First Search (BFS)

Deterministic-Search(Σ , s_0 , g) Frontier $\leftarrow \{(\langle \rangle, s_0)\}$ *Expanded* $\leftarrow \emptyset$ while *Frontier* $\neq \emptyset$ do select a node $v = (\pi, s) \in Frontier$ (*i*) remove v from *Frontier* add v to *Expanded* if s satisfies g then return π *Children* ← $\{(\pi, a, \gamma(s, a)) \mid s \text{ satisfies } pre(a)\}$ prune 0 or more nodes from *Children*, *Frontier*, *Expanded* (ii)#1 *Frontier* \leftarrow *Frontier* \cup *Children* return failure #3

- (*i*): Select $(\pi, s) \in Frontier$ that has the smallest length (π) , i.e., smallest number of edges
 - Tie-breaking rule: select oldest
- (*ii*): Remove every $(\pi, s) \in Children \cup Frontier$ such that $s \in Expanded$
 - Thus expand states at most once
- Properties
 - Terminates
 - Returns solution if one exists
 - shortest, but not least-cost
 - Worst-case complexity:
 - memory O(|S|)
 - running time O(b|S|)
 - ► where

#4

- $b = \max$ branching factor
- |S| = number of states in S

Depth-First Search (DFS)

Deterministic-Search(Σ , s_0 , g) Frontier $\leftarrow \{(\langle \rangle, s_0)\}$ *Expanded* $\leftarrow \emptyset$ while *Frontier* $\neq \emptyset$ do select a node $v = (\pi, s) \in Frontier$ (*i*) remove v from *Frontier* add v to *Expanded* if s satisfies g then return π *Children* ← $\{(\pi, a, \gamma(s, a)) \mid s \text{ satisfies } pre(a)\}$ prune 0 or more nodes from *Children*, *Frontier*, *Expanded* (ii)#1 Frontier \leftarrow Frontier \cup Children return failure #3

- (*i*): Select $(\pi, s) \in Frontier$ that has largest length (π) , i.e., largest number of edges
 - Possible tie-breaking rules: left-to-right, smallest h(s)
 - heuristic function, will discuss later
- *(ii)*: Do cycle-checking, then prune all nodes that recursive depth-first search would discard
 - Repeatedly remove from *Expanded* any node that has no children in *Children* U *Frontier* U *Expanded*
- Properties
 - Terminates
 - Returns solution if there is one
 - No guarantees on quality
 - ► Worst-case running time *O*(*b*^{*l*})
 - Worst-case memory *O*(*bl*)
 - *b* = max branching factor
 - $l = \max$ depth of any node

Uniform-Cost Search

75

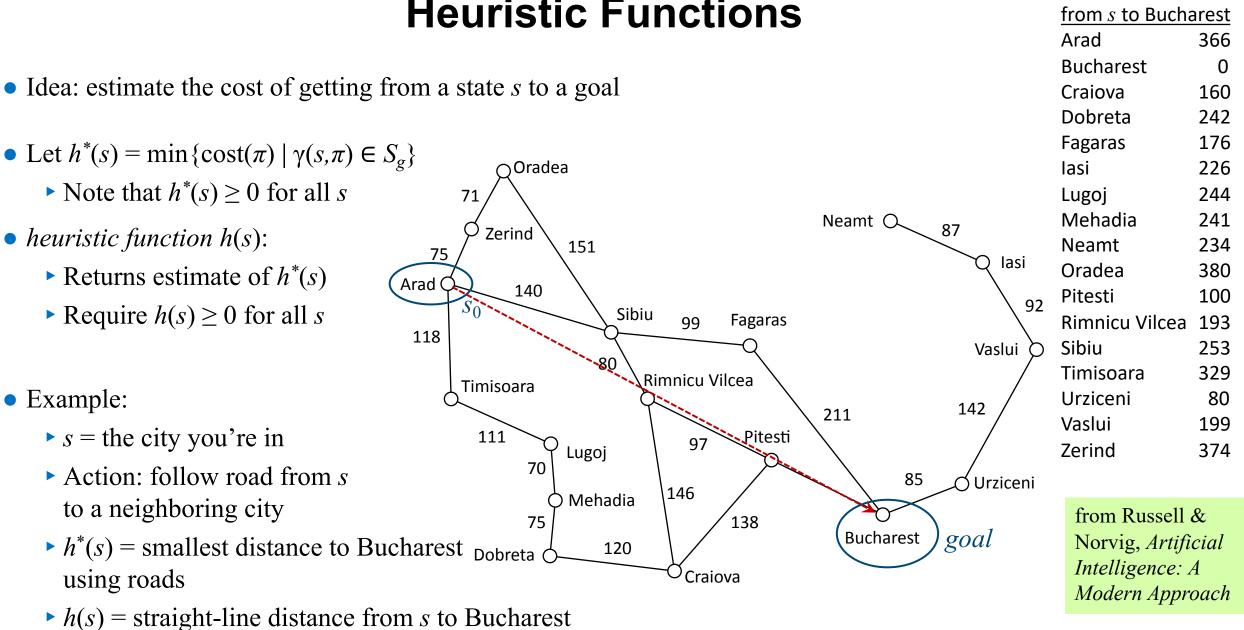
Deterministic-Search(Σ , s_0 , g) Frontier $\leftarrow \{(\langle \rangle, s_0)\}$ *Expanded* $\leftarrow \emptyset$ while *Frontier* $\neq \emptyset$ do select a node $v = (\pi, s) \in Frontier$ (*i*) remove v from *Frontier* add v to *Expanded* if s satisfies g then return π *Children* ← $\{(\pi, a, \gamma(s, a)) \mid s \text{ satisfies } pre(a)\}$ prune 0 or more nodes from *Children*, *Frontier*, *Expanded (ii)* #1 *Frontier* \leftarrow *Frontier* \cup *Children* 14 12 return failure #2 5

- (*i*): Select $(\pi, s) \in Frontier$ that has smallest $cost(\pi)$
- (*ii*): Prune every $(\pi, s) \in Children \cup Frontier$ such that *Expanded* already contains a node (π', s)
- Properties
 - Terminates
 - Finds optimal (i.e., least-cost) solution if one exists
 - ► Worst-case time *O*(*b*|*S*|)
 - ► Worst-case memory *O*(|*S*|)

Poll: If node v is expanded before node v', then how are cost(v) and cost(v') related?

- A. cost(v) < cost(v')
- B. $cost(v) \le cost(v')$
- C. cost(v) > cost(v')
- D. $cost(v) \ge cost(v')$
- E. none of the above

Heuristic Functions



straight-line dist.

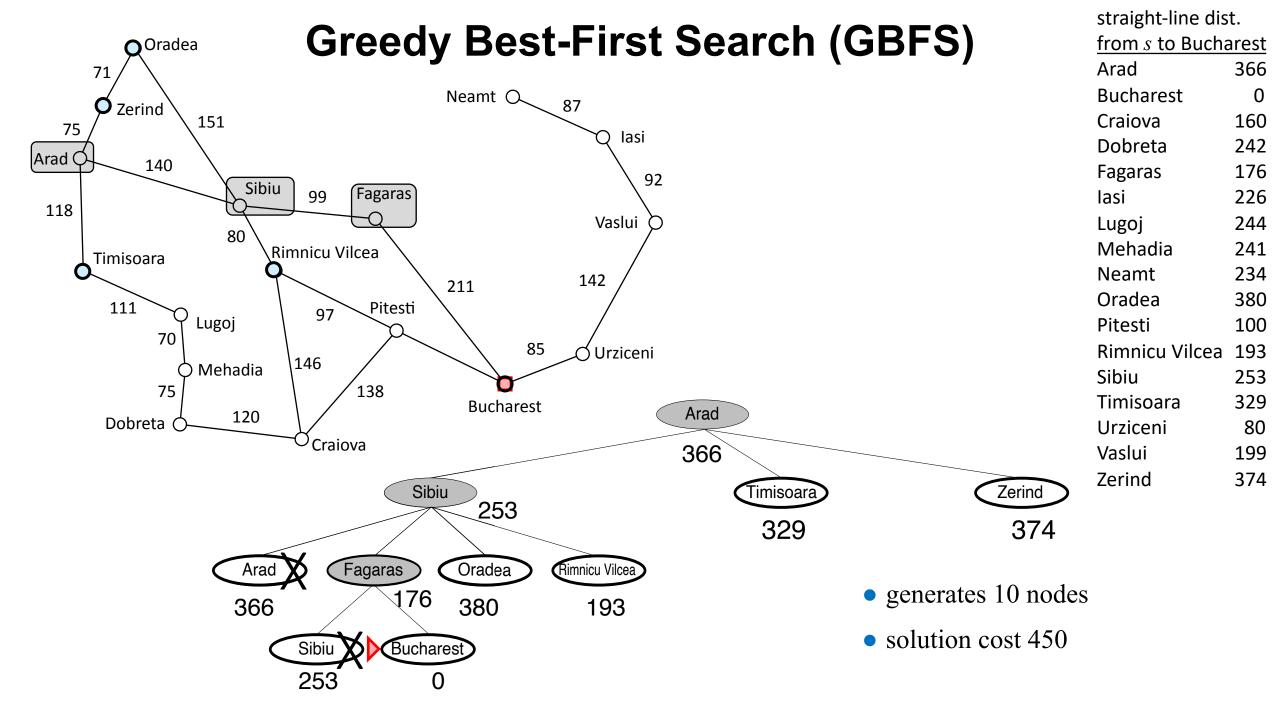
Greedy Best-First Search (GBFS)

Deterministic-Search(Σ , s_0 , g) Frontier $\leftarrow \{(\langle \rangle, s_0)\}$ *Expanded* $\leftarrow \phi$ while *Frontier* $\neq \emptyset$ do select a node $v = (\pi, s) \in Frontier$ *(i)* remove v from *Frontier* add v to *Expanded* if s satisfies g then return π *Children* ← $\{(\pi, a, \gamma(s, a)) \mid s \text{ satisfies } pre(a)\}$ prune 0 or more nodes from *Children*, *Frontier*, *Expanded* (ii)Frontier \leftarrow Frontier \cup Children return failure

- Idea: choose a node that's likely to be close to a goal
- Node selection:
 - Select a node $v = (\pi, s) \in Frontier$ for which h(s) is smallest
 - Tie-breaking: if more than one such node, choose the oldest
- Pruning: for every node $v = (\pi, s)$ in *Children*:
 - ► If *Children* ∪ *Frontier* ∪ *Expanded* contains another node with state *s*, then we've found multiple paths from *s*₀ to *s*
 - Keep only the one with the lowest cost
 - If more than one such node, keep the oldest
- Properties
 - Terminates; returns a solution if one exists
 - Solution is usually found quickly, often near-optimal

Poll: Have you seen GBFS before?

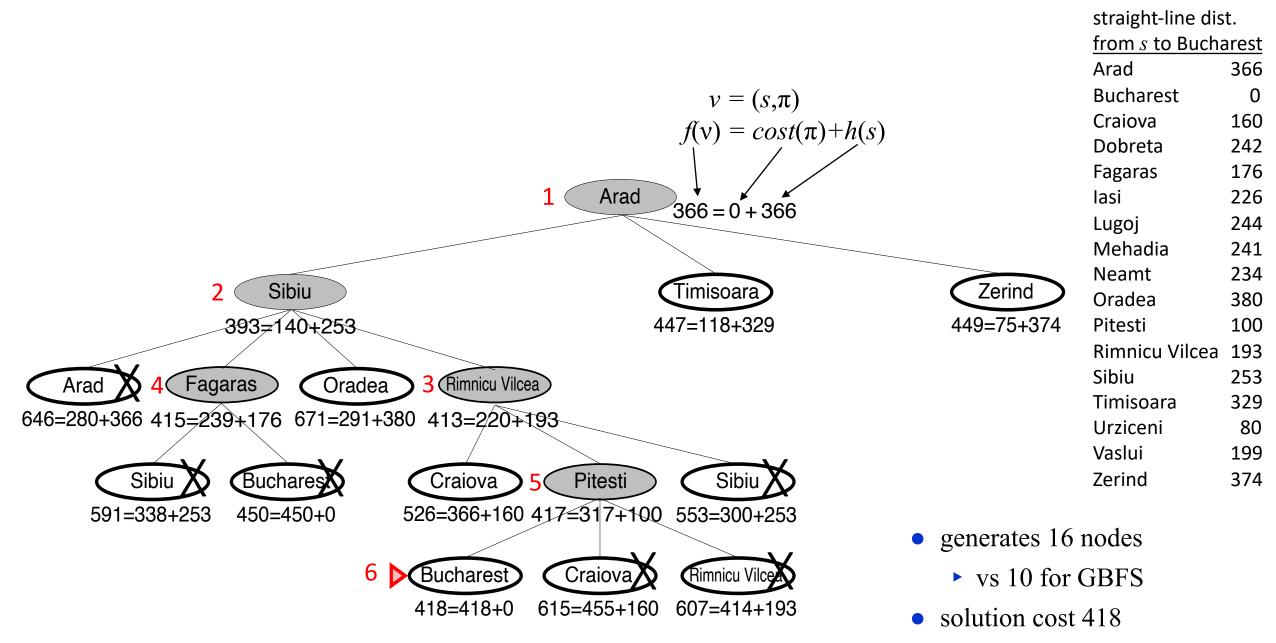
- A. yes
- B. no
- C. yes, but I don't remember it very well



Deterministic-Search(Σ , s_0 , g) Frontier $\leftarrow \{(\langle \rangle, s_0)\}$ *Expanded* $\leftarrow \emptyset$ while *Frontier* $\neq \emptyset$ do select a node $v = (\pi, s) \in Frontier$ (i)remove v from *Frontier* add v to *Expanded* if s satisfies g then return π *Children* ← $\{(\pi, a, \gamma(s, a)) \mid s \text{ satisfies } pre(a)\}$ prune 0 or more nodes from Children, Frontier, Expanded *(ii)* Frontier \leftarrow Frontier \cup Children return failure **Poll:** Have you seen A* before?

- A. yesB. noC. yes, but I don
- C. yes, but I don't remember it very well

- Idea: try to choose a node on an optimal path from s_0 to goal
- Node selection
 - Select a node $v = (\pi, s)$ in *Frontier* that has smallest value of $f(v) = cost(\pi) + h(s)$
 - Tie-breaking rule: choose oldest
- Pruning: same as in GBFS
 - for every node $v = (\pi, s)$ in *Children*:
 - If *Children* ∪ *Frontier* ∪ *Expanded* contains another node with the same state *s*, then we've found multiple paths to *s*
 - Keep only the one with the lowest cost
 - If more than one such node, keep the oldest
- Properties (in classical planning problems):
 - Termination: Always terminates
 - *Complete*: returns a solution if one exists
 - Optimality: under certain conditions (I'll discuss later), can guarantee optimality



► vs 450 for GBFS

Admissibility		straight-line dist. <u>from <i>s</i> to Bucharest</u> Arad 366
or going from <i>s</i> ₀ to <i>s</i> tisfies <i>g</i> }	Poll: If $h(s) =$ straight-line distance from s to Bucharest, is h admissible?A. YesB. NoC. Not sure	Bucharest0Craiova160Dobreta242Fagaras176Iasi226Lugoj244Mehadia241
e 111 Lugoj	99 Fagaras Neamt 0 87 99 Fagaras Vash hicu Vilcea 97 Pitesti 46 138 Bucharest goal	Neamt 234 Oradea 380 Pitesti 100 Rimnicu Vilcea 193 Sibiu 253 92 Timisoara 329 Urziceni 80 Vaslui 199 Zerind 374

• Notation:

- ν = (π,s), where π is the plan for going from s₀ to s
 h^{*}(s) = min{cost(π') | γ(s,π') satisfies g}
- $f^*(\mathbf{v}) = \cot(\pi) + h^*(s)$
- $f(v) = \cot(\pi) + h(s)$
- Definition: *h* is *admissible* if for every *s*, $h(s) \le h^*(s)$

• Optimality:

 in classical planning problems, if *h* is admissible then any solution returned by A* will be optimal (least cost)

Admissibility

• Notation:

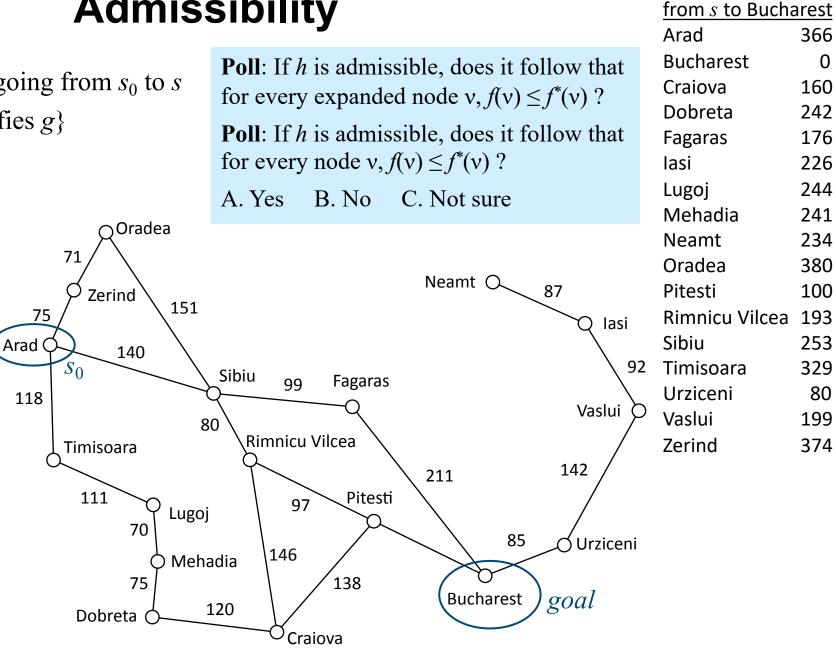
- $v = (\pi, s)$, where π is the plan for going from s_0 to s
- $h^*(s) = \min \{ \cot(\pi') \mid \gamma(s,\pi') \text{ satisfies } g \}$
- $f^{*}(v) = \cot(\pi) + h^{*}(s)$

• $f(v) = cost(\pi) + h(s)$

• Definition: *h* is *admissible* if for every *s*, $h(s) \le h^*(s)$

• *Optimality*:

 in classical planning problems, if *h* is admissible then any solution returned by A* will be optimal (least cost)



straight-line dist.

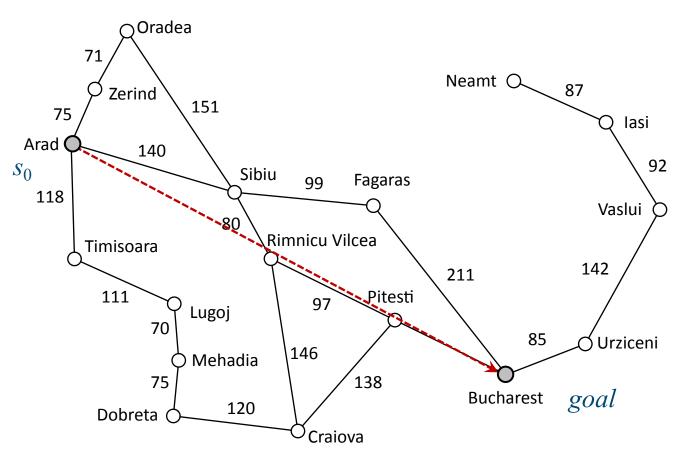
Dominance

Domina	ance	from s to Bucharest	
Definition:		Arad	366
 Let h₁, h₂ be admissible heuristic functions h₂ dominates h₁ if ∀s, h₁(s) ≤ h₂(s) ≤ h*(s) 	Poll: Let $h_1(s) = 0$ and $h_2(s) =$ straight-line distance from <i>s</i> to Bucharest. Does h_2 dominate h_1 ? A. Yes B. No C. Not sure	Bucharest Craiova Dobreta Fagaras Iasi Lugoj Mehadia	0 160 242 176 226 244 241
Suppose h_2 dominates h_1 , and A* always resolves ties in favor of the same node. Then • A* with h_2 will never expand more nodes than A* with h_1 • In most cases, A* with h_2 will expand fewer nodes than A* with h_1 • In description of the same nodes than A* with h_1 • In most cases, A* with h_2 will expand fewer nodes than A* with h_1		Neamt Oradea Pitesti Rimnicu Vilcea Sibiu Timisoara Urziceni Vaslui Zerind	234 380 100

straight-line dist.

Digression

- Straight-line distance to Bucharest is a *domain-specific* heuristic function
 - OK for planning a path to Bucharest
 - Not for other planning problems
- *Domain-independent* heuristic function:
 - A heuristic function that can be used in any classical planning domain
 - Many such heuristics (see Section 2.3)



Properties of A*

In classical planning problems:

- *Termination:* A* will always terminate
- *Completeness:* if the problem is solvable, A* will return a solution
- *Optimality:* if *h* is admissible then the solution will be optimal (least cost)
- *Dominance:* If h₂ dominates h₁ then (assuming A* always resolves ties in favor of the same node)
 - A* with h₂ will never expand more nodes than A* with h₁
 - In most cases, A* with h₂ will expand fewer nodes than A* with h₁

- A* needs to store every node it visits
 - Running time O(b|S|) and memory O(|S|) in worst case
 - With good heuristic function, usually much smaller
- The book discusses additional properties

Comparison

- If *h* is admissible, A* will return optimal solutions
 - ▶ But running time and memory requirement grow exponentially in *b* and *d*
- GBFS returns the first solution it finds
 - ► There are cases where GBFS takes more time and memory than A*
 - But with a good heuristic function, such cases are rare
 - On classical planning problems with a good heuristic function
 - GBFS usually near-optimal solutions
 - GBFS does very little backtracking
 - Running time and memory requirement usually much less than A*
 - GBFS is used by most classical planners nowadays

Depth-First Branch and Bound (DFBB)

- Basic idea:
 - depth-first search
 - π^* = best solution so far
 - $c^* = \operatorname{cost}(\pi^*)$
 - prune v if $f(v) \ge c^*$
 - when frontier is empty, return π^{*}
- Properties
 - Termination, completeness, optimality same as A*
 - Usually less memory, more time than A*
 - Worst-case is like DFS:
 O(bl) memory, O(b^l) time

Deterministic-Search(Σ , s_0 , g) Frontier $\leftarrow \{(\langle \rangle, s_0)\}$ *Expanded* $\leftarrow \emptyset$ $c^* \leftarrow \infty; \pi^* \leftarrow \text{failure}$ while *Frontier* $\neq \emptyset$ do select a node $v = (\pi, s) \in Frontier$ *(i)* remove v from *Frontier* and add it to *Expanded* if s satisfies g then return π if *s* satisfies *g* and $cost(\pi) < c^*$ then $c^* \leftarrow \operatorname{cost}(\pi); \ \pi^* \leftarrow \pi$ else if $f(v) < c^*$ then *Children* ← $\{(\pi, a, \gamma(s, a)) \mid s \text{ satisfies } pre(a)\}$ prune 0 or more nodes from *Children*, *Frontier*, *Expanded* (*ii*) *Frontier* \leftarrow *Frontier* \cup *Children* return failure π^*

Poll: Have you seen DFBB before?A. yesB. noC. yes, but don't remember it very well

- Can express as modified version of Deterministic-Search
- Node (step *i*) selection like DFS:
 - Select v = (π,s) ∈ Children that has largest length(π)
 - Tie-breaking: smallest *h*(*s*)
- Pruning (step *ii*)
 - Like DFS, do cycle-checking and prune what recursive depth-first search would discard
- Additional pruning during node expansion
 - If $f(v) \ge c^*$ then discard v

Comparisons

- If h is admissible, both A* and DFBB will return optimal solutions
 - Usually DFBB generates more nodes, but A* takes more memory
 - DFBB does badly in highly connected graphs (many paths to each state)
 - Can have exponentially worse running time than A* (generates nodes exponentially many times)
 - DFBB best in problems where S is a tree of uniform height, all solutions at the bottom (e.g., constraint satisfaction)
 - DFBB and A* have similar running time
 - A* can take exponentially more memory than DFBB
- DFS returns the first solution it finds
 - can take much less time than DFBB
 - but solution can be very far from optimal

Nau – Lecture slides for Automated Planning and Acting

Iterative Deepening (IDS)

 $\mathsf{IDS}(\Sigma, s_0, g)$

for k = 1 to ∞ do

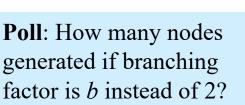
do a depth-first search, backtracking at every node of depth k if the search found a solution then return it

if the search generated no nodes of depth k then return failure

• Nodes generated:

a,b,c a,b,c,d,e,f,g a,b,c,d,e,f,g,h,i,j,k,l,m,n,o

- Solution path (*a*,*c*,*g*,*o*)
- Total number of nodes generated: 3+7+15 = 25
- If goal is at depth *d* and branching factor is 2:
 - $\sum_{1}^{d} (2^{i+1}-1) = \sum_{1}^{d} 2^{i+1} \sum_{1}^{d} 1 = O(2^{d})$



C. yes, but I don't remember it

Poll: Have you seen Iterative

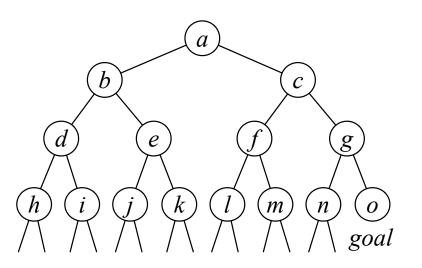
Deepening before?

very well

A. yes

B. no

- A. $O(b2^d)$
- B. $O((b/2)^d)$
- C. $O(b^d)$
- D. $O(b^{d+1})$
- E. something else



Iterative Deepening (IDS)

 $\mathsf{IDS}(\Sigma, s_0, g)$

for k = 1 to ∞ do

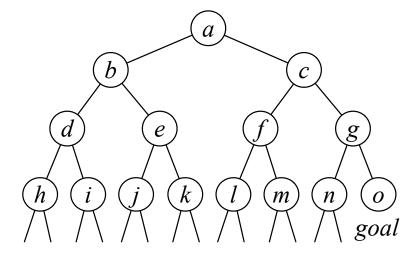
do a depth-first search, backtracking at every node of depth k if the search found a solution then return it

if the search generated no nodes of depth k then return failure

• Nodes generated:

a,b,c a,b,c,d,e,f,g a,b,c,d,e,f,g,h,i,j,k,l,m,n,o

- Solution path *(a,c,g,o)*
- Total number of nodes generated: 3+7+15 = 25
- If goal is at depth *d* and branching factor is 2:
 - $\sum_{1}^{d} (2^{i+1}-1) = \sum_{1}^{d} 2^{i+1} \sum_{1}^{d} 1 = O(2^{d})$



Properties:

- Termination, completeness, optimality
 - ➤ same as BFS
- Memory (worst case): O(bd)
 - > vs. $O(b^d)$ for BFS
- If the number of nodes grows exponentially with *d*:
 - worst-case running time
 O(b^d), vs. O(b^l) for DFS
 - > $b = \max$ branching factor
 - > $l = \max$ depth of any node
 - d = min solution depth if
 there is one, otherwise l

Summary

- 2.2 Forward State-Space Search
 - Forward-search, Deterministic-Search
 - cycle-checking
 - Breadth-first, depth-first, uniform-cost search
 - ► A*, GBFS
 - ► DFBB, IDS

Outline

Chapter 2, part *a* (chap2a.pdf):

- 2.1 State-variable representation
- Comparison with PDDL
- 2.2 Forward state-space search
- $Next \rightarrow 2.6$ Incorporating planning into an actor

Chapter 2, part *b* (chap2b.pdf):

- 2.3 Heuristic functions
- 2.7.7 HTN planning

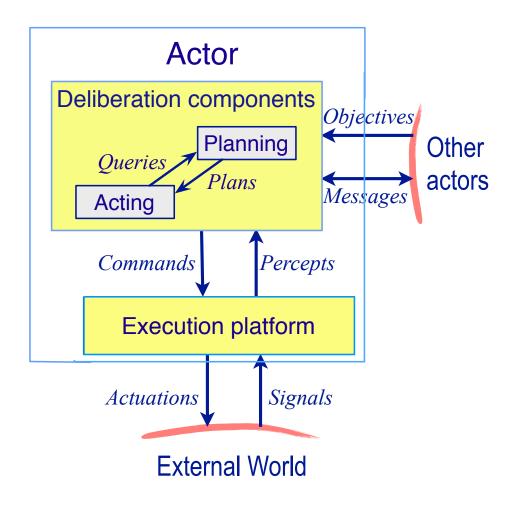
Chapter 2, part *c* (chap2c.pdf):

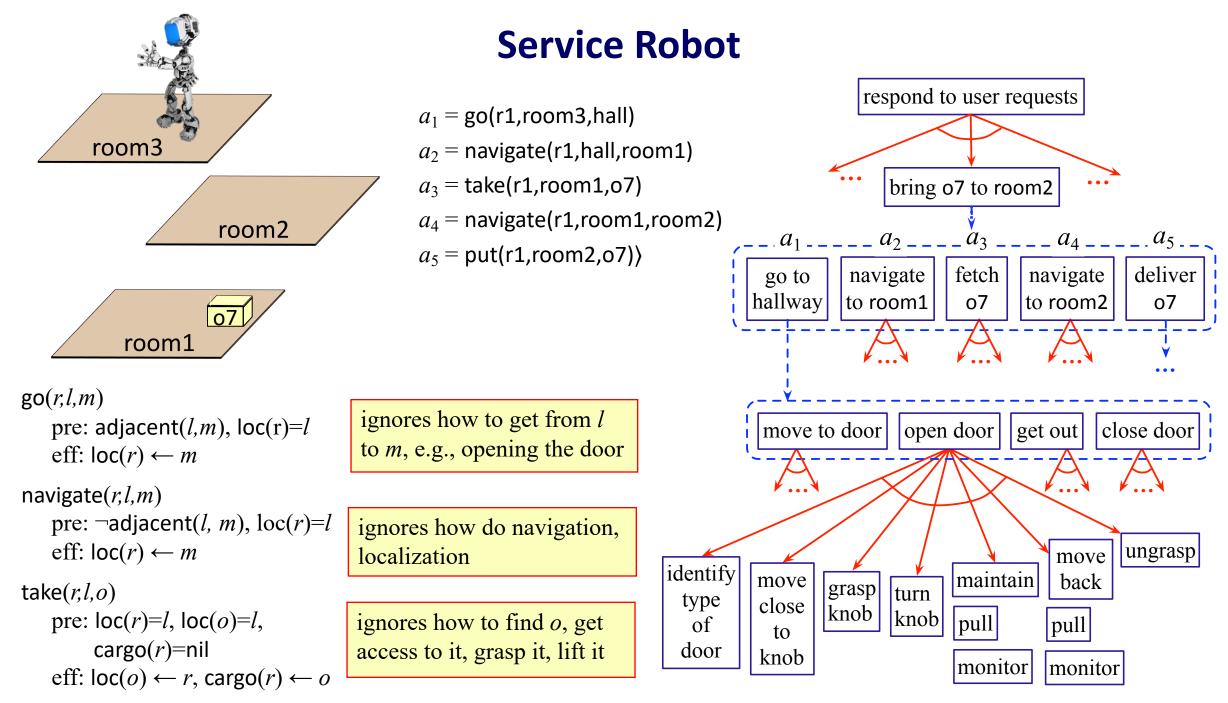
- 2.4 Backward search
- 2.5 Plan-space search

Additional slides: 2.7.8 LTL_planning.pdf

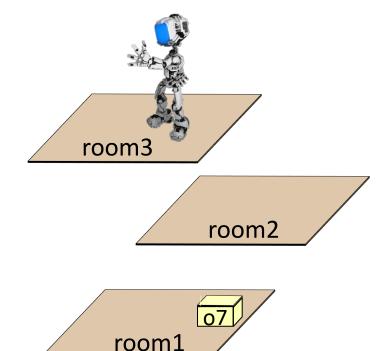
2.6 Incorporating Planning into an Actor

- For classical planning we assumed
 - Finite, static world, just one actor
 - No concurrent actions, no explicit time
 - Determinism, no uncertainty
 - Sequence of states and actions $\langle s_0, a_1, s_1, a_2, s_2, \ldots \rangle$
- Most real-world environments don't satisfy the assumptions
 - \Rightarrow Errors in prediction
- OK if
 - errors occur infrequently, and
 - they don't have severe consequences
- What to do if an error *does* occur?





Nau – Lecture slides for Automated Planning and Acting



```
go(r, l, m)

pre: adjacent(l,m), loc(r)=l

eff: loc(r) \leftarrow m
```

navigate(r, l, m) pre: \neg adjacent(l, m), loc(r)=leff: loc(r) $\leftarrow m$

 $\begin{aligned} \mathsf{take}(r,l,o) \\ \mathsf{pre:} \ \mathsf{loc}(r) = l, \ \mathsf{loc}(o) = l, \\ \mathsf{cargo}(r) = \mathsf{nil} \\ \mathsf{eff:} \ \mathsf{loc}(o) \leftarrow r, \ \mathsf{cargo}(r) \leftarrow o \end{aligned}$

Service Robot

 $a_1 = go(r1, room3, hall)$ $a_2 = navigate(r1, hall, room1)$ $a_3 = take(r1, room1, o7)$ $a_4 = navigate(r1, room1, room2)$ $a_5 = put(r1, room2, o7))$

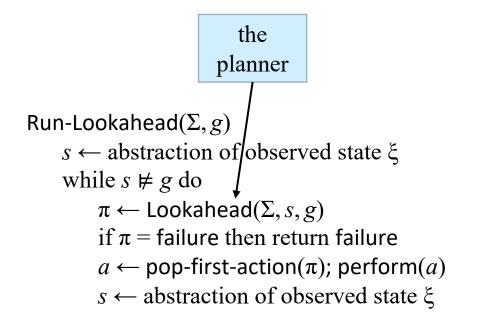
ignores how to get from *l* to *m*, e.g., opening the door

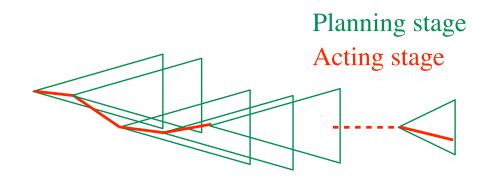
ignores how do navigation, localization

ignores how to find *o*, get access to it, grasp it, lift it

- Some things that can go wrong:
 - > Execution failures
 - locked door
 - robot battery goes dead
 - Unexpected events
 - class ends, hallway gets crowded
 - hallway closed for maintenance
 - Incorrect information
 - navigation error, go to wrong place
 - Missing information
 - where is **o7**?
- How to detect and recover from errors?

Using Planning in Acting



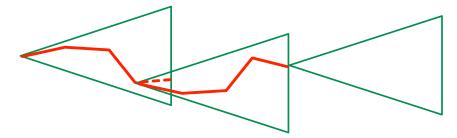


- Call Lookahead, obtain π , perform 1st action, call Lookahead again ...
- Useful when unpredictable things are likely to happen
 - Replans immediately
- Also useful with *receding horizon* search (e.g., as in chess programs):
 - Lookahead looks a limited distance ahead
- Potential problem:
 - Lookahead needs to return quickly
 - Otherwise, may pause repeatedly while waiting for Lookahead to return
 - What if ξ changes during the wait?

Using Planning in Acting

Run-Lazy-Lookahead(Σ, g) $s \leftarrow abstraction of observed state \xi$ until s satisfies g do $\pi \leftarrow Lookahead(\Sigma, s, g)$ if $\pi = failure$ then return failure until $\pi = \langle \rangle$ or $s \vDash g$ or Simulate(Σ, s, g, π) = failure do $a \leftarrow pop-first-action(\pi)$; perform(a) $s \leftarrow abstraction of observed state \xi$

> Planning Stage Acting Stage



- Call Lookahead, execute the plan as far as possible, don't call Lookahead again unless necessary
- Simulate tests whether the plan will execute correctly
 - Lower-level refinement, physics-based simulation
- What if you don't have a simulation program?
 - Could write Simulate(...) to test whether $\gamma(s,\pi) \vDash g$
 - or test whether $s = \gamma(s', a)$, where s' is the previous state
- Potential problems
 - Simulate needs to return quickly
 - otherwise, may pause repeatedly, ξ may change
 - May might miss opportunities to replace π with a better plan

Using Planning in Acting

Run-Concurrent-Lookahead (basic idea)

- global *s*, π
- thread 1:
 - loop:
 - $s \leftarrow \text{observed state}$
 - $\pi \leftarrow \text{Lookahead}(\Sigma, s, g)$
- thread 2:
 - loop:
 - $a \leftarrow \text{pop-first-element}(\pi)$
 - perform *a*
 - return if observed state $\models g$



- Motivation: plan and act in a dynamically changing environment
 - Want a recent plan, rather than the old one that Run-Lazy-Lookahead would use
 - Want to get it quickly, rather than waiting like Run-Lookahead
- But there are several problems with the pseudocode
 - It ignores some implementation details
 - how to do locking
 - whether each thread has correct values for π and *s*
 - If thread 2 performs any actions while Lookahead is running, we probably should restart Lookahead
 - Otherwise Lookahead will return a plan that's out-of-date
 - Another possibility:
 - If thread 2 is going to perform action *a*, have thread 1 run Lookahead(Σ, γ(s,a), g)

How to do Lookahead

Some possibilities (can also combine these)

- Full planning (if the planner can solve the planning problem quickly enough)
- Receding horizon
 - Modify Lookahead to search just part of the way to g (see next page)
 - E.g., cut off search when one of the following exceeds a maximum threshold:
 - plan length, plan cost, computation time

Sampling

- Modify Lookahead to do a Monte Carlo rollout
 - Depth-first search with random node selection and no backtracking
- Call Lookahead several times, choose the plan that looks best
- Best-known example of this: the UCT algorithm (see Chapter 6)

Subgoaling

- Tell Lookahead to plan for some subgoal g_1 , rather than g itself
- Once the actor has achieved g_1 , tell Lookahead to plan for the next subgoal g_2
- And so forth until the actor reaches g

Planning stage

Acting stage

Receding-Horizon Search

Deterministic-Search(Σ , s_0 , g) Frontier $\leftarrow \{(\langle \rangle, s_0)\}$ *Expanded* $\leftarrow \emptyset$ while *Frontier* $\neq \emptyset$ do select a node $v = (\pi, s) \in Frontier$ (*i*) remove v from *Frontier* add v to *Expanded* if s satisfies g then return π *Children* \leftarrow {(π .a, γ (s,a)) | s satisfies pre(a)} prune 0 or more nodes from *Children*, *Frontier*, *Expanded (ii)* Frontier \leftarrow Frontier \cup Children return failure

- Lookahead = modified version of Deterministic-Search
 - Before line (*i*), put something like one of these:
 - *time-based cutoff*: if time-left() = 0 then return π
 - *length-based cutoff*: if $|\pi| > l_{max}$ then return π
 - *cost-based cutoff*: if $f(v) > c_{\max}$ then return π
 - *closeness to goal*: if $h(s) \le \varepsilon$ then return π
 - Length-based and cost-based make sense if you're doing GBFS or AI, but not if you're doing DFS
 - Could modify DFBB to use $\pi^* = \text{least costly partial solution}$ of length $\leq l_{\text{max}}$

Planning stage

Subgoaling Example

• Killzone 2

- "First-person shooter" game, ≈ 2009
- widely acclaimed at the time
- Special-purpose AI planner
 - Plans enemy actions at the squad level
 - Subproblems; plans are maybe 4–6 actions long
 - Different planning algorithm from what we've discussed so far
 - ► HTN planning (see Section 2.7.7)
 - Quickly generates a plan for a subgoal
 - Replans several times per second as the world changes
- Why it worked:
 - Don't want to get the best possible plan
 - Need actions that appear believable and consistent to human users
 - Need them very quickly

Summary

- 2.6 Incorporating Planning into an actor
 - Things that can go wrong while acting
 - Algorithms
 - Run-Lookahead,
 - Run-Lazy-Lookahead,
 - Run-Concurrent-Lookahead
 - Lookahead
 - receding-horizon search
 - sampling
 - subgoaling

Outline

Chapter 2, part *a* (chap2a.pdf):

- 2.1 State-variable representation
- Comparison with PDDL
- 2.2 Forward state-space search
- 2.6 Incorporating planning into an actor

Chapter 2, part *b* (chap2b.pdf):

 $Next \rightarrow 2.3$ Heuristic functions 2.7.7 HTN planning

Chapter 2, part *c* (chap2c.pdf):

- 2.4 Backward search
- 2.5 Plan-space search

Additional slides: 2.7.8 LTL_planning.pdf