Chapter 4
Deliberation with Temporal Domain Models

Section 4.4: Constraint Management
Section 4.5: Acting with Temporal Models

Dana S. Nau
University of Maryland
Outline

✓ Introduction
✓ Representation
✓ Temporal planning

● 4.4 Constraint Management
 ➢ Consistency of object constraints and tconstraints
 ➢ Controlling the actions when we don’t know how long they’ll take

● 4.5 Acting with temporal models
Constraint Management

- Each time TemPlan applies a resolver, it modifies \((T,C)\)
 - Some resolvers will make \((T,C)\) inconsistent
 - No solution in this part of the search space
 - Detect inconsistency => prune this part of the search space
 - Don’t detect it => waste time looking for a solution

Analogy: PSP checked simple cases of inconsistency
- E.g., can’t create a constraint \(a \prec b\) if there’s already a constraint \(b \prec a\)
 - Ignored more complicated cases

Example:
- \(c_1, c_2, c_3 \in Containers = \{c1, c2\}\)
- Suppose that to resolve 3 threats, PSP chooses these resolvers:
 - \(c_1 \neq c_2, c_2 \neq c_3, c_1 \neq c_3\)
 - No solutions in this part of the search space, but PSP searches it anyway
Constraint Management in TemPlan

- At various points, check consistency of C
 - If C is inconsistent, then (T, C) is inconsistent
 - Can prune this part of the search space
 - If C is consistent then (T, C) may or may not be consistent

- Example of a case where C is consistent but (T, C) isn’t:
 - $T = \{[t_1, t_2] \text{ loc}(r1) = \text{loc1},
 [t_3, t_4] \text{ loc}(r1) = \text{loc2}\}$
 - $C = (t_1 < t_3 < t_4 < t_2)$
 - Gives loc(r1) two values during $[t_3, t_4]$
Consistency of C

- C contains two kinds of constraints
 - Object constraints
 - $\text{loc}(r) \neq l_2$, $l \in \{\text{loc3, loc4}\}$, $r = r_1$, $o \neq o'$
 - Temporal constraints
 - $t_1 < t_3$, $a < t$, $t < t'$, $a \leq t' - t \leq b$

- Assume object constraints are independent of temporal constraints and vice versa
 - exclude things like $t < f(l,r)$

- Then two separate subproblems
 - (1) check consistency of object constraints
 - (2) check consistency of temporal constraints
 - C is consistent iff both are consistent
Object Constraints

- Constraint-satisfaction problem (CSP) – NP-hard
- Can write an algorithm that’s *complete* but runs in exponential time
 - If there’s an inconsistency, always finds it
 - Might do a lot of pruning, but spend lots of time at each node

- Instead, use a constraint-satisfaction technique that’s incomplete but takes *polynomial* time
 - arc consistency, path consistency
- Detects some inconsistencies but not others
 - Runs much faster, but prunes fewer nodes
Time Constraints

To represent time constraints:

- Simple Temporal Networks (STNs)
 - Networks of constraints on time points

- Synthesize incrementally them starting from ϕ_0
 - Templan can check time constraints in time $O(n^3)$

- Incrementally instantiated at acting time
- Kept consistent throughout planning and acting
Time Constraints

- **Simple Temporal Network (STN):**
 - a pair \((V, E)\), where
 - \(V = \{\text{a set of temporal variables } \{t_1, \ldots, t_n\}\)
 - \(E \subseteq V^2\) is a set of arcs
 - Each arc \((t_i, t_j)\) is labeled with an interval \([a, b]\)
 - Represents constraint \(a \leq t_j - t_i \leq b\)
 - Equivalently, \(-b \leq t_i - t_j \leq -a\)
 - Representing unary constraints: dummy variable \(t_0 = 0\)
 - Arc \(r_{0i} = (t_0, t_i)\) labeled with \([a, b]\) represents \(a \leq t_i - 0 \leq b\)

- **Solution** to an STN: integer value for each \(t_i\), all constraints satisfied
- **Consistent** STN: has a solution
- **Minimal** STN: for every arc \((t_i, t_j)\) with label \([a, b]\), for every \(t \in [a, b]\)
 - there’s at least one solution such that \(t_j - t_i = t\)
- Shorthand: instead of \(a \leq t_j - t_i \leq b\), write \(r_{ij} = [a_{ij}, b_{ij}]\)
Operations on STNs

- Intersection, \(\cap \)
 \[
 t_j - t_i \in r_{ij} = [a_{ij}, b_{ij}]
 \]
 \[
 t_j - t_i \in r'_{ij} = [a'_{ij}, b'_{ij}]
 \]
 Infer \(t_j - t_i \in r_{ij} \cap r'_{ij} = [\max(a_{ij}, a'_{ij}), \min(b_{ij}, b'_{ij})] \)

- Composition, \(\cdot \)
 \[
 t_k - t_i \in r_{ik} = [a_{ik}, b_{ik}]
 \]
 \[
 t_j - t_k \in r_{kj} = [a_{kj}, b_{kj}]
 \]
 Infer \(t_j - t_i \in r_{ik} \cdot r_{kj} = [a_{ik} + a_{kj}, b_{ik} + b_{kj}] \)
 Reason: shortest and longest times for the two intervals

- Consistency checking
 \(r_{ik}, r_{kj}, r_{ij} \) are consistent if \(r_{ij} \cap (r_{ik} \cdot r_{kj}) \neq \emptyset \)
Two Examples

- STN \((\mathcal{V}, \mathcal{E})\), where
 - \(\mathcal{V} = \{t_1, t_2, t_3\}\)
 - \(\mathcal{E} = \{r_{12}=[1,2], \ r_{23}=[3,4], \ r_{13}=[2,3]\}\)
- Composition:
 - \(r'_{13} = r_{12} \cdot r_{23} = [4,6]\)
- Can’t satisfy both \(r_{13}\) and \(r'_{13}\)
 - \(r_{13} \cap r'_{13} = [2,3] \cap [4,6] = \emptyset\)
- \((\mathcal{V}, \mathcal{E})\) is inconsistent

- STN \((\mathcal{V}, \mathcal{E})\), where
 - \(\mathcal{V} = \{t_1, t_2, t_3\}\)
 - \(\mathcal{E} = \{r_{12}=[1,2], \ r_{23}=[3,4], \ r_{13}=[2,5]\}\)
- As before, \(r'_{13} = [4,6]\)
- This time, \((\mathcal{V}, \mathcal{E})\) is consistent
 - \(r_{13} \cap r'_{13} = [4,5]\)
- Minimal network: change \(r_{13}\) to \([4,5]\)
Operations on STNs

PC(V,E):

for $1 \leq k \leq n$ do
 for $1 \leq i < j \leq n$, $i \neq k$, $j \neq k$ do
 $r_{ij} \leftarrow r_{ij} \cap [r_{ik} \cdot r_{kj}]$
 if $r_{ij} = \emptyset$ then
 return inconsistent

- **PC** (*Path Consistency*) algorithm:
 - Consistency checking on all triples
 - If an arc has no constraint, use $[-\infty, +\infty]$
 - n constraints
 => n^3 triples
 => time $O(n^3)$

- **Example:** $k = 2$, $i = 1$, $j = 2$

 $r_{12} = [1,2]$
 $r_{24} = [3,4]$
 $r_{14} = [-\infty, \infty]$
 $r_{12} \cdot r_{24} = [1+3, 2+4] = [4,6]$
 $r_{14} \leftarrow [\max(-\infty,4), \min(\infty,6)] = [4,6]$
Operations on STNs

\[
\text{PC}(V, E): \quad \text{for } 1 \leq k \leq n \text{ do} \\
\quad \text{for } 1 \leq i < j \leq n, \ i \neq k, \ j \neq k \text{ do} \\
\quad \quad r_{ij} \leftarrow r_{ij} \cap [r_{ik} \cdot r_{kj}] \\
\quad \quad \text{if } r_{ij} = \emptyset \text{ then} \\
\quad \quad \quad \text{return inconsistent}
\]

- Detects inconsistent networks
 - \(r_{ij} = [a_{ij}, b_{ij}] \) empty \(\Rightarrow \) inconsistent
- Makes STN minimal
 - Shrinks each \(r_{ij} \) to exclude values that aren’t in any solution
- Can modify it to make it incremental
 - Input: a consistent, minimal STN, and a new constraint \(r'_{ij} \)
 - Incorporate \(r'_{ij} \) in time \(O(n^2) \)

Example: \(k = 2, i = 1, j = 2 \)

\[
\begin{align*}
\quad r_{12} &= [1, 2] \\
\quad r_{24} &= [3, 4] \\
\quad r_{14} &= [-\infty, \infty] \\
\quad r_{12} \cdot r_{24} &= [1+3, 2+4] = [4, 6] \\
\quad r_{14} &\leftarrow \text{max}(-\infty, 4), \text{min}(\infty, 6) = [4, 6]
\end{align*}
\]
Pruning TemPlan’s search space

- Take the time constraints in C
 - Write them as an STN
 - Use Path Consistency to check whether STN is consistent
 - If it’s inconsistent, TemPlan can backtrack
Controllability

- Section 4.4.3 of the book
- Suppose TemPlan gives you a chronicle and you want to execute it
 - Constraints on time points
 - Need to reason about these in order to decide when to start each action

![Diagram showing time points and actions:]
- t_1 to t_2: [30, 50] bring&move
- t_2 to t_3: [5, 10] uncover
- t_3 to t_4: [5, 10] uncover

Nau – Lecture slides for Automated Planning and Acting
Controllability

- Solid lines: duration constraints
 - Robot will do bring&move, will take 30 to 50 time units
 - Crane will do uncover, will take 5 to 10 time units

- Dashed line: synchronization constraint
 - Don’t want either the crane or robot to wait long
 - At most 5 seconds between the two ending times

- Objective
 - Choose time points that will satisfy all the constraints
Controllability

- Suppose we run PC
- PC returns a minimal and consistent network
- There exist time points that satisfy all the constraints
- Would work if we could choose all four time points
 - But we can’t choose t_2 and t_4

- t_1 and t_3 are controllable
 - Actor can control when each action starts

- t_2 and t_4 are contingent
 - Can’t control how long the actions take
 - Random variables that are known to satisfy the duration constraints
 - $t_2 \in [t_1+30, t_1+50]$
 - $t_4 \in [t_3+5, t_3+10]$
Controllability

- Can’t guarantee that all of the constraints will be satisfied
- Start bring&move at time $t_1 = 0$
- Suppose the durations are
 - bring&move 30, uncover 10
 - $t_2 = 0 + 30 = 30$
 - $t_4 = t_3 + 10$
 - $t_4 - t_2 = t_3 - 20$
-Constraint $-5 \leq t_4 - t_2 \leq 5$
 - $-5 \leq t_3 - 20 \leq 5$
- Need to start uncover at $t_3 \leq 25$
 - If $t_3 > 25$ then $t_4 - t_2 > 5$
- But if we start uncover at $t_3 \leq 25$, neither action has finished yet
 - We don’t yet know how long they’ll take
- Might instead get this:
 - bring&move 50, uncover 5
 - $t_2 = 0 + 50 = 50$
 - $t_4 = t_3 + 5 \leq 25 + 5 = 30$
 - $t_4 - t_2 \leq 30 - 50 = -20$
STNU (Simple Temporal Network with Uncertainty):

- A 4-tuple \((V, \tilde{V}, E, \tilde{E})\)
 - \(V = \{\text{controllable time points}\} = \{\text{starting times of actions}\}\)
 - \(\tilde{V} = \{\text{contingent time points}\} = \{\text{ending times of actions}\}\)
 - \(E = \{\text{controllable constraints}\}, \tilde{E} = \{\text{contingent constraints}\}\)

- Controllable and contingent constraints:
 - Synchronization between two starting times: controllable
 - Duration of an action: contingent
 - Synchronization between ending points of two actions: contingent
 - Synchronization between end of one action, start of another:
 - Controllable if the new action starts after the old one ends
 - Contingent if the new action starts before the old one ends

- Want a way for the actor to choose time points in \(V\) (starting times) that guarantee that the constraints are satisfied
Dynamic Execution

- $(\mathcal{V}, \mathcal{V}', \mathcal{E}, \mathcal{E}')$ is *strongly controllable* if the actor can choose values for \mathcal{V} such that for every choice of values for \mathcal{V}', success will occur
 - Actor can choose the values for \mathcal{V} offline
 - The right choice will work regardless of \mathcal{V}'

- $(\mathcal{V}, \mathcal{V}', \mathcal{E}, \mathcal{E}')$ is *weakly controllable* if the actor can choose values for \mathcal{V} such that for at least one choice of values for \mathcal{V}', success will occur
 - Actor can choose the values for \mathcal{V} only if the actor knows in advance what the values of \mathcal{V}' will be

- Want *dynamic controllability*
 - Choose values for \mathcal{V} online by observing what has happened so far
 - Need a strategy for how to choose the values
Dynamic Execution

For $t = 0, 1, 2, \ldots$

1. Actor chooses time points $\mathcal{V}_t \subseteq \mathcal{V}$ that can be triggered at time t without violating any synchronization constraints
 - actions that the actor chooses to start

2. Simultaneously, environment chooses time points $\tilde{\mathcal{V}}_t \subseteq \tilde{\mathcal{V}}$ that can be triggered at time t without violating any duration constraints
 - actions that the environment chooses to finish

3. They trigger the time points they’ve chosen, and remove them from \mathcal{V} and $\tilde{\mathcal{V}}$
 - history $h = \text{record of all that has happened} = \{\mathcal{V}_t, \tilde{\mathcal{V}}_t\}$ for $i = 1, \ldots, t$

4. Failure if any of the constraints are violated
 - $r_{ij} = [l,u]$ is violated if t_i and t_j have values (step 3) and $t_j - t_i \not\in [l,u]$

5. Success if no constraints violated, and $\mathcal{V} = \tilde{\mathcal{V}} = \emptyset$

- Dynamic execution strategy $\sigma_A(h)$ for actor, $\sigma_E(h)$ for environment
 - What to choose next, given h

- $(\mathcal{V},\tilde{\mathcal{V}},E,\tilde{E})$ is dynamically controllable if there exists a σ_A that will guarantee success for every σ_E
Example

- Instead of a single bring&move task, two separate bring and move tasks

 ![Diagram]

 - Dynamic execution strategy
 - trigger t_1 at whatever time you want
 - wait and observe t
 - trigger t' at any time from t to $t + 5$
 - trigger $t_3 = t' + 10$
 - for every $t_2 \in [t' + 15, t' + 20]$ and every $t_4 \in [t_3 + 5, t_3 + 10]$
 - $t_4 \in [t' + 15, t' + 20]$
 - so $t_4 - t_3 \in [-5, 5]$
 - So all the constraints are satisfied
Dynamic Controllability Checking

- How to check whether an STNU is dynamically controllable
 - Extension of consistency checking

- For a chronicle $\phi = (A, S_\tau, T, C)$
 - Temporal constraints in C correspond to an STNU
 - Put code into TemPlan to keep the STNU dynamically controllable

- If Path Consistency reduces a contingent constraint
 - then not dynamically controllable

- Otherwise
 - test dynamic controllability as an extension of Path Consistency
 - additional constraint propagation rules

PC(\mathcal{V}, \mathcal{E}):
for $1 \leq k \leq n$ do
 for $1 \leq i < j \leq n$, $i \neq k$, $j \neq k$ do
 $r_{ij} \leftarrow r_{ij} \cap [r_{ik} \cdot r_{kj}]$
 if $r_{ij} = \emptyset$ then
 return inconsistent
Dynamic Controllability Checking

- How to check whether an STNU is dynamically controllable
 - Extension of consistency checking
- For a chronicle $\phi = (A, S_T, T, C)$
 - Temporal constraints in C correspond to an STNU
- TemPlan keep the STNU dynamically controllable using the incremental version of Path Consistency
- If Path Consistency reduces the size of a contingent constraint r_{ij}
 - Then the STNU isn’t dynamically controllable
 - prunes this path in the search space
 - Otherwise test dynamic controllability using an extension of Path Consistency
 - additional constraint propagation rules

PC(\mathcal{V}, \mathcal{E}):

\[
\text{for } 1 \leq k \leq n \text{ do} \\
\text{for } 1 \leq i < j \leq n, \ i \neq k, \ j \neq k \text{ do} \\
\quad r_{ij} \leftarrow r_{ij} \cap [r_{ik} \cdot r_{kj}] \\
\quad \text{if } r_{ij} = \emptyset \text{ then} \\
\quad \quad \text{return inconsistent}
\]
Dynamic Controllability Checking

- If $u \geq 0$, a composition constraint
 \[[a, b] \cdot [-u, -v] = [a - u, b - v] \]
- This is what PC already does

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Propagated constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_s \overset{[a,b]}{\rightarrow} t_e$, $t \overset{[u,v]}{\rightarrow} t_e$, $u \geq 0$</td>
<td>$t_s \overset{[b',a']}{\rightarrow} t$</td>
</tr>
<tr>
<td>$t_s \overset{[a,b]}{\rightarrow} t_e$, $t \overset{[u,v]}{\rightarrow} t_e$, $u < 0$, $v \geq 0$</td>
<td>$t_s \overset{[\min{a,u},\infty]}{\rightarrow} t$</td>
</tr>
<tr>
<td>$t_s \overset{[a,b]}{\rightarrow} t_e$, $t_s \overset{\langle t_e, u \rangle}{\rightarrow} t$</td>
<td>$t_s \overset{\langle t_e, b' \rangle}{\rightarrow} t'$</td>
</tr>
<tr>
<td>$t_s \overset{\langle t_e, b \rangle}{\rightarrow} t$, $t' \overset{[u,v]}{\rightarrow} t$</td>
<td>$t_s \overset{\langle t_e, b' \rangle}{\rightarrow} t'$</td>
</tr>
<tr>
<td>$t_s \overset{\langle t_e, b \rangle}{\rightarrow} t$, $t' \overset{[u,v]}{\rightarrow} t$, $t_e \neq t$</td>
<td>$t_s \overset{\langle t_e, b-u \rangle}{\rightarrow} t'$</td>
</tr>
</tbody>
</table>

\[a' = a - u, b' = b - v \]
Dynamic Controllability Checking

- If \(u < 0 \) and \(v \geq 0 \) then add a \textit{wait} constraint
 - \(t \) should wait until either \(t_s + b - v \)
 - or \(t_e \) occurs, whichever comes first

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Propagated constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_s \xrightarrow{[a,b]} t_e, t \xrightarrow{[u,v]} t_e, u \geq 0)</td>
<td>(t_s \xrightarrow{[b',a']} t)</td>
</tr>
<tr>
<td>(t_s \xrightarrow{[a,b]} t_e, t \xrightarrow{[u,v]} t_e, u < 0, v \geq 0)</td>
<td>(t_s \xrightarrow{\langle t_e,b' \rangle} t)</td>
</tr>
<tr>
<td>(t_s \xrightarrow{[a,b]} t_e, t_s \xrightarrow{\langle t_e,u \rangle} t)</td>
<td>(t_s \xrightarrow{\min{a,u},\infty} t)</td>
</tr>
<tr>
<td>(t_s \xrightarrow{\langle t_e,b \rangle} t, t' \xrightarrow{[u,v]} t)</td>
<td>(t_s \xrightarrow{\langle t_e,b' \rangle} t')</td>
</tr>
<tr>
<td>(t_s \xrightarrow{\langle t_e,b \rangle} t, t' \xrightarrow{[u,v]} t, t_e \neq t)</td>
<td>(t_s \xrightarrow{\langle t_e,b-u \rangle} t')</td>
</tr>
</tbody>
</table>

\[a' = a - u, b' = b - v \]
Outline

✓ Introduction
✓ Representation
✓ Temporal planning
✓ Consistency and controllability

● 4.5 Acting with temporal models
 ➢ Acting with atemporal refinement
 ➢ Dispatching
 ➢ Observation actions
Atemporal Refinement of Primitive Actions

- Templan’s action templates may correspond to compound tasks
 - In RAE, refine into commands with refinement methods

- Action template (descriptive model)
 \[
 \text{leave}(r, d, w)
 \]
 assertions: \([t_s, t_e] \text{loc}(r):(d, w) \)
 \([t_s, t_e] \text{occupant}(d):(r, \text{empty}) \)
 constraints: \(t_e \leq t_s + \delta_1 \)
 \(\text{adjacent}(d, w) \)

- Refinement method (operational model)
 \[
 \text{m-leave}(r, d, w, e)
 \]
 task: \(\text{leave}(r, d, w) \)
 pre: \(\text{loc}(r)=d, \text{adjacent}(d, w), \text{exit}(e, d, w) \)
 body: until \(\text{empty}(e) \)
 \(\text{wait}(1) \)
 \(\text{goto}(r, e) \)
Atemporal Refinement of Primitive Actions

- Templan’s action templates may correspond to compound tasks
 - In RAE, refine into commands with refinement methods

- Action template (descriptive model)
 - unstack \((k,c,p)\)
 - assertions: …
 - constraints: …

- Refinement method (operational model)
 - m-unstack \((k,c,p)\)
 - task: unstack \((k,c,p)\)
 - pre: \(\text{pos}(c) = p, \text{top}(p) = c, \text{grip}(k) = \text{empty}\)
 - body: locate-grasp-position \((k,c,p)\)
 - move-to-grasp-position \((k,c,p)\)
 - grasp \((k,c,p)\)
 - until firm-grasp \((k,c,p)\) ensure-grasp \((k,c,p)\)
 - lift-vertically \((k,c,p)\)
 - move-to-neutral-position \((k,c,p)\)
Discussion

- Pros
 - Simple online refinement with RAE
 - Avoids breaking down uncertainty of contingent duration
 - Can be augmented with temporal monitoring functions in RAE
 - E.g., watchdogs, methods with duration preferences

- Cons
 - Does not handle temporal requirements at the command level, e.g., concurrency synchronization

- Can augment RAE to include temporal reasoning
 - Call it eRae
 - One essential component: a *dispatching* function
Acting With Temporal Models

- Dispatching procedure: a dynamic execution strategy
 - Controls when to start each action
 - Given a dynamically controllable plan with executable primitives, triggers corresponding commands from online observations

- Example
 - robot r2 needs to leave dock d2 before robot r1 can enter d2
 - crane k needs to uncover c then put it onto r1

```
navigate(r1)
leave(r1,d1)
leave(r2,d2)
enter(r1,d2)
unstack(k,c)
stack(k,c',q)
putdown(k,c,r1)
leave(r1,d2)
```

Diagram:
- Nodes: t1, t2, t3, t4, t5, t6, t7, t8, t9
- Edges:
 - t1 to leave(r1,d1)
 - t2 to navigate(r1)
 - t3 to leave(r2,d2)
 - t4 to unstack(k,c',p)
 - t5 to enter(r1,d2)
 - t6 to stack(k,c',q)
 - t7 to unstack(k,c)
 - t8 to putdown(k,c,r1)
 - t9 to leave(r1,d2)
Dispatching

- Let \((\mathcal{V}, \bar{\mathcal{V}}, \mathcal{E}, \bar{\mathcal{E}})\) be a controllable STNU that’s \textit{grounded}.
- Different from a grounded expression in logic
 - At least one time point \(t\) is instantiated
- This bounds each time point \(t\) within an interval \([l_t, u_t]\)

Controllable time point \(t\) in the future:
- \(t\) is \textit{alive} if current time \(\text{now} \in [l_t, u_t]\)
- \(t\) is \textit{enabled} if
 - it’s alive
 - for every precedence constraint \(t' < t, t'\) has occurred
 - for every wait constraint \(\langle t_e, \alpha \rangle, t_e\) has occurred or \(\alpha\) has expired

Dispatch \((\mathcal{V}, \bar{\mathcal{V}}, \mathcal{E}, \bar{\mathcal{E}})\)

- initialize the network
- while there are time points in \(\mathcal{V}\) that haven’t yet been triggered, do
 - update \text{now}
 - update the time points in \(\bar{\mathcal{V}}\) that were triggered since the last iteration
 - \(\text{enabled} \leftarrow \{t \in \mathcal{V} \mid t\) hasn’t yet been triggered, and \(l_t \leq \text{now} \leq u_t\}\}
 - for every \(t \in \text{enabled}\) such that \(\text{now} = u_t\)
 - trigger \(t\)
 - arbitrarily choose other time points in \(\text{enabled}\), and trigger them
 - in the network, propagate values of triggered timepoints
 - This changes \([l_t, u_t]\) for each future timepoint \(t\)
Example

- trigger t_1, observe leave finish
- enable and trigger t_2, this enables t_3, t_4
- trigger t_3 (start leave(r2,d2)) soon enough to allow enter(r1,d2) at time t_5
- trigger t_4 (start unstack(k,c')) soon enough to allow stack(k,c') at time t_6
- rest of plan is linear: choose each t_i after the previous action ends

- Dispatch($\mathcal{V}, \mathcal{V}', \mathcal{E}, \mathcal{E}'$)
 - initialize the network
 - while there are time points in \mathcal{V} that haven’t yet been triggered, do
 - update now
 - update the time points in \mathcal{V}' that were triggered since the last iteration
 - $enabled \leftarrow \{ t \in \mathcal{V} \mid t \text{ hasn’t yet been triggered, and } l_t \leq \text{now} \leq u_t \}$
 - for every $t \in enabled$ such that now = u_t
 - trigger t
 - arbitrarily choose other time points in $enabled$, and trigger them
 - in the network, propagate values of triggered timepoints
 - This changes $[l_t, u_t]$ for each future timepoint t
Example

- trigger t_1 at time 0
- wait and observe t
- trigger t' at any time from t to $t+5$
- trigger t_3 at time $t' + 10$
 - $t_2 \in [t' + 15, t' + 20]$
 - $t_4 \in [t_3 + 5, t_3 + 10] = [t' + 15, t' + 20]$
 - so $t_4 - t_3 \in [-5, 5]$
- So all the constraints are satisfied

Dispatch($\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}}$)

- initialize the network
- while there are time points in \mathcal{V} that haven’t yet been triggered, do
 - update now
 - update the time points in $\tilde{\mathcal{V}}$ that were triggered since the last iteration
 - $enabled \leftarrow \{t \in \mathcal{V} \mid t$ hasn’t yet been triggered, and $l_t \leq now \leq u_t\}$
 - for every $t \in enabled$ such that $now = u_t$
 - trigger t
 - arbitrarily choose other time points in $enabled$, and trigger them
 - in the network, propagate values of triggered timepoints
 - This changes $[l_t, u_t]$ for each future timepoint t
Deadline Failures

- Suppose something makes it impossible to start an action on time
- Do one of the following:
 - stop the delayed action, and look for new plan
 - let the delayed action finish; try to repair the plan by resolving violated constraints at the STNU propagation level
 - e.g., accommodate a delay in navigate by delaying the whole plan
 - let the delayed action finish; try to repair the plan some other way
Partial Observability

- Tacit assumption: all occurrences of contingent events are observable
 - Observation needed for dynamic controllability
 - In general not all events are observable
- POSTNU (Partially Observable STNU)

- Dynamically controllable?
Observation Actions

- Controllable
- Contingent
 - Invisible
 - Observable

- t_0: [19:00, 19:30]
- t_1: working
- t: [1, 2]
- t': driving
- t_2: [-5, 10]
- t_3: cooking
- t_4: [25, 30]
Dynamic Controllability

- A POSTNU is dynamically controllable if
 - there exists an execution strategy that chooses future controllable points to meet all the constraints, given the observation of past visible points
- Observable ≠ visible
- Observable means it will be known when observed
- It can be temporarily hidden
Outline

✓ Introduction
✓ Representation
✓ Temporal planning
✓ Consistency and controllability
✓ Acting with executable primitives

● Summary
Summary

- Managing constraints in TemPlan: like CSPs
 - Temporal constraints: STNs, PC algorithm (path consistency)
- Acting
 - Dynamic controllability
 - STNUs
 - RAE and eRAE
 - Dispatching