Chapter 4
Deliberation with Temporal Domain Models

Section 4.4: Constraint Management
Section 4.5: Acting with Temporal Models

Dana S. Nau
University of Maryland
Outline

✓ Introduction
✓ Representation
✓ Temporal planning

● 4.4 Constraint Management
 ➢ Consistency of object constraints and time constraints
 ➢ Controlling the actions when we don’t know how long they’ll take

● 4.5 Acting with temporal models
Constraint Management

- Each time TemPlan applies a resolver, it modifies \((T,C)\)
 - Some resolvers will make \((T,C)\) inconsistent
 - No solution in this part of the search space
 - Detect inconsistency => prune this part of the search space
 - Don’t detect it => waste time looking for a solution

- Analogy: PSP checked simple cases of inconsistency
 - E.g., can’t create a constraint \(a<b\) if there’s already a constraint \(b<a\)
 - Ignored more complicated cases
 - Example: \(c_1, c_2, c_3 \in Containers = \{c1, c2\}\)
 - Threats involving \(c_1, c_2, c_3\)
 - For resolvers, suppose PSP chooses
 - \(c_1 \neq c_2, c_2 \neq c_3, c_1 \neq c_3\)
 - No solutions in this part of the search space, but PSP searches it anyway
Constraint Management in TemPlan

- At various points, check consistency of C
 - If C is inconsistent, then (T, C) is inconsistent
 - Can prune this part of the search space

- If C is consistent then (T, C) may or may not be consistent
 - Example:
 - $T = \{[t_1, t_2] \mid \text{loc}(r1) = \text{loc1},$
 $[t_3, t_4] \mid \text{loc}(r1) = \text{loc2}\}$
 - $C = (t_1 < t_3 < t_4 < t_2)$
 - Gives $\text{loc}(r1)$ two values during $[t_3, t_4]$
Consistency of C

- C contains two kinds of constraints
 - Object constraints
 - $\text{loc}(r) \neq l_2, \ l \in \{\text{loc3, loc4}\}, \ r = r_1, \ o \neq o'$
 - Temporal constraints
 - $t_1 < t_3, \ a < t, \ t < t', \ a \leq t' - t \leq b$

- Assume object constraints are independent of temporal constraints and vice versa
 - Exclude things like $t < f(l,r)$

- Then two separate subproblems
 - (1) check consistency of object constraints
 - (2) check consistency of temporal constraints
 - C is consistent iff both are consistent
Object Constraints

- Constraint-satisfaction problem (CSP) – NP-hard
- Can write an algorithm that’s *complete* but runs in exponential time
 - If there’s an inconsistency, always finds it
 - Might do a lot of pruning, but spend lots of time at each node

- Instead, use a technique that’s incomplete but takes *polynomial* time
 - arc consistency, path consistency
- Detects some inconsistencies but not others
 - Runs much faster, but prunes fewer nodes
Time Constraints

To represent time constraints:

- Simple Temporal Networks (STNs)
 - Networks of constraints on time points

- Synthesize incrementally them starting from ϕ_0
 - Templan can check time constraints in time $O(n^3)$

- Incrementally instantiated at acting time
- Kept consistent throughout planning and acting
Time Constraints

- **Simple Temporal Network (STN):**
 - a pair \((V, E)\), where
 - \(V = \{\text{a set of temporal variables } \{t_1, \ldots, t_n\}\}
 - \(E \subseteq V^2\) is a set of arcs
 - Each arc \((t_i, t_j)\) is labeled with an interval \([a, b]\)
 - Represents constraint \(a \leq t_j - t_i \leq b\)
 - Equivalently, \(-b \leq t_i - t_j \leq -a\)
 - Representing unary constraints: dummy variable \(t_0 = 0\)
 - Arc \(r_{0i} = (t_0, t_i)\) labeled with \([a, b]\) represents \(a \leq t_i - 0 \leq b\)
 - Shorthand: instead of \(a \leq t_j - t_i \leq b\), write \(r_{ij} = [a_{ij}, b_{ij}]\)

- **Solution** to an STN: integer value for each \(t_i\), all constraints satisfied
- **Consistent STN:** has a solution

Poll: Is the network at the top of the page consistent?

1. yes 2. no
Time Constraints

- Minimal STN:
 for every arc (t_i, t_j) with label $[a, b]$,
 for every $t \in [a, b]$,
 there’s at least one solution such that $t_j - t_i = t$

- Can’t make any of the time intervals shorter without excluding some solutions

\[\begin{align*}
[1,2] & \quad t_2 \\
[3,7] & \quad t_1 \quad t_3 \\
[3,4] & \end{align*} \]

Poll: Is the above network minimal?
1. yes 2. no
Operations on STNs

- Intersection, \(\cap \)
 \[
 t_j - t_i \in r_{ij} = [a_{ij}, b_{ij}]

 t_j - t_i \in r'_{ij} = [a'_{ij}, b'_{ij}]

 \text{Infer } t_j - t_i \in r_{ij} \cap r'_{ij} = [\max(a_{ij}, a'_{ij}), \min(b_{ij}, b'_{ij})]

- Composition, \(\cdot \)
 \[
 t_k - t_i \in r_{ik} = [a_{ik}, b_{ik}]

 t_j - t_k \in r_{kj} = [a_{kj}, b_{kj}]

 \text{Infer } t_j - t_i \in r_{ik} \cdot r_{kj} = [a_{ik} + a_{kj}, b_{ik} + b_{kj}]

 \text{Reason: shortest and longest times for the two intervals}

- Consistency checking
 - \(r_{ik}, r_{kj}, r_{ij} \) are consistent only if \(r_{ij} \cap (r_{ik} \cdot r_{kj}) \neq \emptyset \)

- Special case for networks with just three nodes
 - Consistent iff if \(r_{ij} \cap (r_{ik} \cdot r_{kj}) \neq \emptyset \)
Two Examples

- **STN** \((\mathcal{V}, \mathcal{E})\), where
 - \(\mathcal{V} = \{t_1, t_2, t_3\}\)
 - \(\mathcal{E} = \{r_{12}=[1,2], \ r_{23}=[3,4], \ r_{13}=[2,3]\}\)
- **Composition:**
 - \(r'_{13} = r_{12} \cdot r_{23} = [4,6]\)
- Can’t satisfy both \(r_{13}\) and \(r'_{13}\)
 - \(r_{13} \cap r'_{13} = [2,3] \cap [4,6] = \emptyset\)
- \((\mathcal{V}, \mathcal{E})\) is inconsistent

- STN \((\mathcal{V}, \mathcal{E})\), where
 - \(\mathcal{V} = \{t_1, t_2, t_3\}\)
 - \(\mathcal{E} = \{r_{12}=[1,2], \ r_{23}=[3,4], \ r_{13}=[2,5]\}\)
- As before, \(r'_{13} = [4,6]\)
 - \(r_{13} \cap r'_{13} = [4,5]\)
- This time, \((\mathcal{V}, \mathcal{E})\) is consistent
- Minimal network: \(r_{13} \leftarrow [4,5]\)
Operations on STNs

PC(V,E):

\[
\text{for } 1 \leq k \leq n \text{ do }
\]

\[
\text{for } 1 \leq i < j \leq n, \ i \neq k, \ j \neq k \text{ do }
\]

\[
r_{ij} \leftarrow r_{ij} \cap [r_{ik} \cdot r_{kj}]
\]

if \(r_{ij} = \emptyset \) then

return inconsistent

- **PC (Path Consistency) algorithm:**
 - Consistency checking on all triples
 - If an arc has no constraint, use \([-\infty, +\infty]\)
 - \(n\) constraints
 => \(n^3\) triples
 => time \(O(n^3)\)

- **Example:** \(k = 2, i = 1, j = 2\)
 \[r_{12} = [1,2]\]
 \[r_{24} = [3,4]\]
 \[r_{14} = [-\infty, \infty]\]
 \[r_{12} \cdot r_{24} = [1 + 3, 2 + 4] = [4,6]\]
 \[r_{14} \leftarrow [\max(-\infty, 4), \min(\infty, 6)] = [4,6]\]
Operations on STNs

PC(\(V, E\)):
for 1 \(\leq k \leq n\) do
 for 1 \(\leq i < j \leq n\), \(i \neq k\), \(j \neq k\) do
 \(r_{ij} \leftarrow r_{ij} \cap [r_{ik} \cdot r_{kj}]\)
 if \(r_{ij} = \emptyset\) then
 return inconsistent

- PC makes network minimal
 - Shrinks each \(r_{ij}\) to exclude values that aren’t in any solution
- Also detects inconsistent networks
 - \(r_{ij} = [a_{ij}, b_{ij}]\) empty \(\Rightarrow\) inconsistent

- Dashed lines:
 - constraints that were shrunk

- Can modify PC to make it incremental
 - Input:
 - a consistent, minimal STN
 - a new constraint \(r'_{ij}\)
 - Incorporate \(r'_{ij}\) in time \(O(n^2)\)
Pruning TemPlan’s search space

- Take the time constraints in \(C \)
 - Write them as an STN
 - Use Path Consistency to check whether STN is consistent
 - If it’s inconsistent, TemPlan can backtrack
Controllability

- Section 4.4.3 of the book
- Suppose TemPlan gives you a chronicle and you want to execute it
 - Constraints on time points
 - Need to reason about these in order to decide when to start each action
Controllability

- Solid lines: duration constraints
 - Robot will do bring&move, will take 30 to 50 time units
 - Crane will do uncover, will take 5 to 10 time units

- Dashed line: synchronization constraint
 - Don’t want either the crane or robot to wait long
 - At most 5 seconds between the two ending times

- Objective
 - Choose time points that will satisfy all the constraints
Controllability

- Suppose we run PC
- PC returns a minimal and consistent network
- There exist time points that satisfy all the constraints
- Would work if we could choose all four time points
 - But we can’t choose \(t_2 \) and \(t_4 \)

- \(t_1 \) and \(t_3 \) are controllable
 - Actor can control when each action starts
- \(t_2 \) and \(t_4 \) are contingent
 - can’t control how long the actions take
 - random variables that are known to satisfy the duration constraints
 - \(t_2 \in [t_1+30, t_1+50] \)
 - \(t_4 \in [t_3+5, t_3+10] \)
Controllability

- Can’t guarantee that all of the constraints will be satisfied
- Start bring&move at time \(t_1 = 0 \)
- Suppose the durations are
 - bring&move 30, uncover 10
 - \(t_2 = t_1 + 30 = 30 \)
 - \(t_4 = t_3 + 10 \)
 - \(t_4 - t_2 = t_3 - 20 \)
- Constraint \(r_{34} \): \(-5 \leq t_4 - t_2 \leq 5\)
 - \(-5 \leq t_3 - 20 \leq 5\)
 - \(15 \leq t_3 \leq 25\)
- Must start uncover at \(t_3 \leq 25 \)
- But if we start uncover at \(t_3 \leq 25 \), neither action has finished yet
 - We don’t yet know how long they’ll take
- Durations might instead be
 - bring&move 50, uncover 5
 - \(t_2 = t_1 + 50 = 50 \)
 - \(t_4 = t_3 + 5 \leq 25 + 5 = 30 \)
 - \(t_4 - t_2 \leq 30 - 50 = -20 \)
 - Violates \(r_{34} \)
STNU (Simple Temporal Network with Uncertainty):

- A 4-tuple $(V, \tilde{V}, E, \tilde{E})$
 - $V = \{\text{controllable time points}\}$, e.g., starting times of actions
 - $\tilde{V} = \{\text{contingent time points}\}$, e.g., ending times of actions
 - $E = \{\text{controllable constraints}\}$, $\tilde{E} = \{\text{contingent constraints}\}$

Controllable and contingent constraints:

- Synchronization between two starting times: controllable
- Duration of an action: contingent
- Synchronization between ending points of two actions: contingent
- Synchronization between end of one action, start of another:
 - Controllable if the new action starts after the old one ends
 - Contingent if the new action starts before the old one ends

Want a way for the actor to choose time points in V (starting times) that guarantee that the constraints are satisfied
Three kinds of controllability

- $(\mathcal{V}, \mathcal{V}, \mathcal{E}, \mathcal{E})$ is strongly controllable if the actor can choose values for \mathcal{V} such that success will occur for all values of \mathcal{V} that satisfy \mathcal{E}
 - Actor can choose the values for \mathcal{V} offline
 - The right choice will work regardless of \mathcal{V}

- $(\mathcal{V}, \mathcal{V}, \mathcal{E}, \mathcal{E})$ is weakly controllable if the actor can choose values for \mathcal{V} such that success will occur for at least one combination of values for \mathcal{V}
 - Actor can choose the values for \mathcal{V} only if the actor knows in advance what the values of \mathcal{V} will be

- Dynamic controllability:
 - Game-theoretic model: actor vs. environment
 - A player’s strategy: a function σ telling what to do in every situation
 - Choices may differ depending on what has happened so far
 - $(\mathcal{V}, \mathcal{V}, \mathcal{E}, \mathcal{E})$ is dynamically controllable if \exists strategy for actor that will guarantee success regardless of the environment’s strategy

Two player, zero sum, extensive form, imperfect information
Dynamic Execution

For $t = 0, 1, 2, \ldots$

1. Actor chooses an unassigned set of variables $V_t \subseteq V$ that all can be assigned the value t without violating any constraints in E
 - \approx actions the actor chooses to start at time t

2. Simultaneously, environment chooses an unassigned set of variables $\tilde{V}_t \subseteq \tilde{V}$ that all can be assigned the value t without violating any constraints in \tilde{E}
 - \approx actions that finish at time t

3. Each chosen time point v is assigned $v \leftarrow t$

4. Failure if any of the constraints in $E \cup \tilde{E}$ are violated
 - There might be violations that neither V_t nor \tilde{V}_t caused individually

5. Success if all variables in $V \cup \tilde{V}$ have values and no constraints are violated

- **Dynamic execution strategies** σ_A for actor, σ_E for environment
 - $\sigma_A(h_{t-1}) = \{\text{what events in } V \text{ to trigger at time } t, \text{ given } h_{t-1}\}$
 - $\sigma_E(h_{t-1}) = \{\text{what events in } \tilde{V} \text{ to trigger at time } t, \text{ given } h_{t-1}\}$
 - $h_t = h_{t-1} \cdot (\sigma_A(h_{t-1}) \cup \sigma_E(h_{t-1}))$
 - $(V, \tilde{V}, E, \tilde{E})$ is dynamically controllable if $\exists \sigma_A$ that will guarantee success $\forall \sigma_E$

$r_{ij} = [l,u]$ is violated if t_i and t_j have values and $t_j - t_i \notin [l,u]$
Example

- Instead of a single bring&move task, two separate bring and move tasks

- Actor’s dynamic execution strategy
 - trigger \(t_1 \) at whatever time you want
 - wait and observe \(t \)
 - trigger \(t' \) at any time from \(t \) to \(t + 5 \)
 - trigger \(t_3 = t' + 10 \)
 - for every \(t_2 \in [t' + 15, t' + 20] \) and every \(t_4 \in [t_3 + 5, t_3 + 10] \)
 - \(t_4 \in [t' + 15, t' + 20] \)
 - so \(t_4 - t_3 \in [-5, 5] \)
 - So all the constraints are satisfied
Dynamic Controllability Checking

- For a chronicle $\phi = (A, \mathcal{S}, \mathcal{T}, C)$
 - Temporal constraints in C correspond to an STNU
 - Put code into TemPlan to keep the STNU dynamically controllable
- If we detect cases where it isn’t dynamically controllable, then backtrack
- If $PC(\mathcal{V} \cup \tilde{\mathcal{V}}, \mathcal{E} \cup \tilde{\mathcal{E}})$ reduces a contingent constraint then $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ isn’t dynamically controllable
 - \Rightarrow can prune this branch
- If it doesn’t reduce any contingent constraints, we don’t know whether $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is dynamically controllable
- Two options
 - Either continue down this branch and backtrack later if necessary, or
 - Extend PC to detect more cases where $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ isn’t dynamically controllable

PC(\mathcal{V}, \mathcal{E}):

\[
\text{for } 1 \leq k \leq n \text{ do} \\
\text{for } 1 \leq i < j \leq n, \ i \neq k, \ j \neq k \text{ do} \\
r_{ij} \leftarrow r_{ij} \cap [r_{ik} \cdot r_{kj}] \\
\text{if } r_{ij} = \emptyset \text{ then} \\
\text{return inconsistent}
\]
Additional Constraint Propagation Rules

- Case 1: $u \geq 0$
 - t must come before t_e
 - Add a composition constraint $[a',b']$
 - Find $[a',b']$ such that $[a',b'] \cdot [u,v] = [a,b]$
 - $[a'+u, b'+v] = [a,b]$
 - $a' = a - u, \ b' = b - v$

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Propagated constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_s \xrightarrow{[a,b]} t_e \ , \ t \xrightarrow{[u,v]} t_e \ , \ u \geq 0$</td>
<td>$t_s \xrightarrow{[b',a']} t$</td>
</tr>
<tr>
<td>$t_s \xrightarrow{[a,b]} t_e \ , \ t \xrightarrow{[u,v]} t_e \ , \ u < 0 \ , \ v \geq 0$</td>
<td>$t_s \xrightarrow{\langle t_e, b' \rangle} t$</td>
</tr>
<tr>
<td>$t_s \xrightarrow{[a,b]} t_e \ , \ t_s \xrightarrow{\langle t_e, u \rangle} t$</td>
<td>$t_s \xrightarrow{\min{a,u},\infty} t$</td>
</tr>
<tr>
<td>$t_s \xrightarrow{\langle t_e, b \rangle} t \ , \ t' \xrightarrow{[u,v]} t$</td>
<td>$t_s \xrightarrow{\langle t_e, b' \rangle} t'$</td>
</tr>
<tr>
<td>$t_s \xrightarrow{\langle t_e, b \rangle} t \ , \ t' \xrightarrow{[u,v]} t \ , \ t_e \neq t$</td>
<td>$t_s \xrightarrow{\langle t_e, b-u \rangle} t'$</td>
</tr>
</tbody>
</table>

\Rightarrow contingent
\rightarrow controllable

$\ a' = a - u, \ b' = b - v$
Case 2: $u < 0$ and $v \geq 0$

- t may be either before or after t_e

Add a *wait* constraint

- Wait until either t_e occurs or current time is $t_s + b - v$, whichever comes first

Additional Constraint Propagation Rules

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Propagated constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_s \xrightarrow{[a,b]} t_e$, $t \xrightarrow{[u,v]} t_e$, $u \geq 0$</td>
<td>$t_s \xrightarrow{[b',a']} t$</td>
</tr>
<tr>
<td>$t_s \xrightarrow{[a,b]} t_e$, $t \xrightarrow{[u,v]} t_e$, $u < 0$, $v \geq 0$</td>
<td>$t_s \xrightarrow{\langle t_e, b' \rangle} t$</td>
</tr>
<tr>
<td>$t_s \xrightarrow{[a,b]} t$, $t_s \xrightarrow{\langle t_e, u \rangle} t$</td>
<td>$t_s \xrightarrow{\text{min}{a, u}, \infty} t$</td>
</tr>
<tr>
<td>$t_s \xrightarrow{\langle t_e, b \rangle} t$, $t' \xrightarrow{[u,v]} t$</td>
<td>$t_s \xrightarrow{\langle t_e, b' \rangle} t'$</td>
</tr>
<tr>
<td>$t_s \xrightarrow{\langle t_e, b \rangle} t$, $t' \xrightarrow{[u,v]} t$, $t_e \neq t$</td>
<td>$t_s \xrightarrow{\langle t_e, b - u \rangle} t'$</td>
</tr>
</tbody>
</table>

⇒ contingent

→ controllable

$a' = a - u$, $b' = b - v$
We want a fast algorithm that TemPlan can run at each node, to decide whether to backtrack.

There’s an extended version of PC that runs in polynomial time, but it has high overhead.

Possible compromise: use ordinary PC most of the time.

Run extended version occasionally, or at end of search before returning plan.

Conditions

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Propagated constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_s \xrightarrow{[a,b]} t_e$, $t \xrightarrow{[u,v]} t_e$, $u \geq 0$</td>
<td>$t_s \xrightarrow{[b',a']} t$</td>
</tr>
<tr>
<td>$t_s \xrightarrow{[a,b]} t_e$, $t \xrightarrow{[u,v]} t_e$, $u < 0$, $v \geq 0$</td>
<td>$t_s \xrightarrow{\langle t_e, b' \rangle} t$</td>
</tr>
<tr>
<td>$t_s \xrightarrow{[a,b]} t_e$, $t_s \xrightarrow{\langle t_e, u \rangle} t$</td>
<td>$t_s \xrightarrow{\langle \min{a,u}, \infty \rangle} t$</td>
</tr>
<tr>
<td>$t_s \xrightarrow{\langle t_e, b \rangle} t$, $t' \xrightarrow{[u,v]} t$</td>
<td>$t_s \xrightarrow{\langle t_e, b' \rangle} t'$</td>
</tr>
<tr>
<td>$t_s \xrightarrow{\langle t_e, b \rangle} t$, $t' \xrightarrow{[u,v]} t$, $t_e \neq t$</td>
<td>$t_s \xrightarrow{\langle t_e, b-u \rangle} t'$</td>
</tr>
</tbody>
</table>
Outline

✓ Introduction
✓ Representation
✓ Temporal planning
✓ Consistency and controllability

● 4.5 Acting with temporal models
 ➢ Acting with atemporal refinement
 ➢ Dispatching
 ➢ Observation actions
Atemporal Refinement of Primitive Actions

- Templan’s action templates may correspond to compound tasks
 - In RAE, refine into commands with refinement methods

 - Templan’s action template (descriptive model)
 - \(\text{leave}(r, d, w) \)
 - assertions: \([t_s, t_e] \text{loc}(r) : (d, w)\)
 - \([t_s, t_e] \text{occupant}(d) : (r, \text{empty})\)
 - constraints: \(t_e \leq t_s + \delta_1\)
 - \(\text{adjacent}(d, w)\)

 - RAE’s refinement method (operational model)
 - \(\text{m-leave}(r, d, w, e) \)
 - task: \(\text{leave}(r, d, w) \)
 - pre: \(\text{loc}(r) = d, \text{adjacent}(d, w), \text{exit}(e, d, w) \)
 - body: until \(\text{empty}(e) \) wait(1)
 goto\((r, e) \)
Atemporal Refinement of Primitive Actions

- Templan’s action templates may correspond to compound tasks
 - In RAE, refine into commands with refinement methods

- Templan’s action template (descriptive model)
 - unstack\((k, c, p)\)
 - assertions: …
 - constraints: …

- RAE’s refinement method (operational model)
 - m-unstack\((k, c, p)\)
 - task: unstack\((k, c, p)\)
 - pre: pos\((c)\) = \(p\), top\((p)\) = \(c\), grip\((k)\) = empty
 - attached\((k, d)\), attached\((p, d)\)
 - body: locate-grasp-position\((k, c, p)\)
 - move-to-grasp-position\((k, c, p)\)
 - grasp\((k, c, p)\)
 - until firm-grasp\((k, c, p)\) ensure-grasp\((k, c, p)\)
 - lift-vertically\((k, c, p)\)
 - move-to-neutral-position\((k, c, p)\)
Discussion

● Pros
 ➢ Simple online refinement with RAE
 ➢ Avoids breaking down uncertainty of contingent duration
 ➢ Can be augmented with temporal monitoring functions in RAE
 • E.g., watchdogs, methods with duration preferences

● Cons
 ➢ Does not handle temporal requirements at the command level,
 • e.g., synchronize two robots that must act concurrently

● Can augment RAE to include temporal reasoning
 ➢ Call it eRae
 ➢ One essential component: a dispatching function
Acting With Temporal Models

- Dispatching procedure: a dynamic execution strategy
 - Controls when to start each action
 - Given a dynamically controllable plan with executable primitives, triggers corresponding commands from online observations

- Example
 - robot \(r_2 \) needs to leave dock \(d_2 \) before robot \(r_1 \) can enter \(d_2 \)
 - crane \(k \) needs to uncover \(c \) then put \(c \) onto \(r_1 \)

\[
\begin{align*}
\text{navigate}(r_1) & \quad \text{leave}(r_1,d_1) \\
\text{unstack}(k,c') & \quad \text{stack}(k,c',q) \\
\text{unstack}(k,c) & \quad \text{putdown}(k,c,r_1) \\
\text{leave}(r_2,d_2) & \quad \text{enter}(r_1,d_2) \\
\text{leave}(r_1,d_2) & \quad \text{unstack}(k,c) \\
\text{leave}(r_2,d_2) & \quad \text{putdown}(k,c,r_1) \\
\end{align*}
\]
Dispatching

- Let \((V, \tilde{V}, E, \tilde{E})\) be a controllable STNU that’s *grounded*
- Different from a grounded expression in logic
 - At least one time point \(t\) is instantiated
- This bounds each time point \(t\) within an interval \([l_t, u_t]\)

Controllable time point \(t\) in the future:

- \(t\) is *alive* if current time \(\text{now} \in [l_t, u_t]\)
- \(t\) is *enabled* if
 - it’s alive
 - for every precedence constraint \(t' < t\), \(t'\) has occurred
 - for every wait constraint \(\langle t_e, \alpha \rangle\), \(t_e\) has occurred or \(\alpha\) has expired

Dispatch\((V, \tilde{V}, E, \tilde{E})\)

- initialize the network
- while there are time points in \(V\) that haven’t been triggered, do
 - update \(\text{now}\)
 - update the time points in \(\tilde{V}\) that were triggered since the last iteration
 - update \(\text{enabled}\)
 - trigger every \(t \in \text{enabled}\) such that \(\text{now} = u_t\)
 - arbitrarily choose other time points in \(\text{enabled}\), and trigger them
 - propagate values of triggered timepoints (change \([l_t, u_t]\) for each future timepoint \(t\))
Example

- trigger t_1, observe leave finish
- enable and trigger t_2, this enables t_3, t_4
- trigger t_3 soon enough to allow enter($r1,d2$) at time t_5
- trigger t_4 soon enough to allow stack(k,c') at time t_6
- rest of plan is linear: choose each t_i after the previous action ends

Dispatch($\mathcal{V},\mathcal{V}',\mathcal{E},\mathcal{E}'$)

- initialize the network
- while there are time points in \mathcal{V} that haven’t been triggered, do
 - update \mathcal{V}
 - update the time points in \mathcal{V}' that were triggered since the last iteration
 - update \mathcal{E}'
 - trigger every $t \in \mathcal{E}'$ such that $\mathcal{V}' = u_t$
 - arbitrarily choose other time points in \mathcal{E}', and trigger them
 - propagate values of triggered timepoints (change $[l_t,u_t]$ for each future timepoint t)

What about a more detailed example?
Dispatch($\mathcal{V}, \mathcal{V}, \mathcal{E}, \mathcal{E}$)

- initialize the network
- while there are time points in \mathcal{V} that haven’t been triggered, do
 - update now
 - update the time points in $\tilde{\mathcal{V}}$ that were triggered since the last iteration
 - update enabled
 - trigger every $t \in enabled$ such that $now = u_t$
 - arbitrarily choose other time points in $enabled$, and trigger them
 - propagate values of triggered timepoints (change $[l_t, u_t]$ for each future timepoint t)

- trigger t_1 at time 0
- wait and observe t; this enables t'
- trigger t' at any time from t to $t+5$
- trigger t_3 at time $t' + 10$
 - $t_2 \in [t' + 15, t' + 20]$
 - $t_4 \in [t_3 + 5, t_3 + 10] = [t' + 15, t' + 20]$
- so $t_4 - t_3 \in [-5, 5]$

Example from slide 21

- t_1 [15, 25] bring
- t [0, 5] t'
- t_2 [15, 20] move
- t_3 [5, 10] uncover
- t_4 [-5, 5]
Example from slide 21

Dispatch(\(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}}\))

- initialize the network
- while there are time points in \(\mathcal{V}\) that haven’t been triggered, do
 - update now
 - update the time points in \(\tilde{\mathcal{V}}\) that were triggered since the last iteration
 - update enabled
 - trigger every \(t \in \text{enabled}\) such that \(\text{now} = u_t\)
 - arbitrarily choose other time points in \(\text{enabled}\), and trigger them
 - propagate values of triggered timepoints (change \([l_t, u_t]\) for each future timepoint \(t\))

- trigger \(t_1\) at time 0
- wait and observe \(t\); this enables \(t\)
- trigger \(t'\) at any time from \(t\) to \(t+5\)
- trigger \(t_3\) at time \(t' + 10\)
 \[t_2 \in [t' + 15, t' + 20]\]
 \[t_4 \in [t_3 + 5, t_3 + 10] = [t' + 15, t' + 20]\]
- so \(t_4 - t_3 \in [-5, 5]\)

To use the extended PC algorithm here, I think we would need additional rule(s)
- Current ones seem inapplicable

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Propagated constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_s \xrightarrow{[a,b]} t_e), (t \xrightarrow{[u,v]} t_e, u \geq 0)</td>
<td>(t_s \xrightarrow{[b',a']} t)</td>
</tr>
<tr>
<td>(t_s \xrightarrow{[a,b]} t_e), (t \xrightarrow{[u,v]} t_e, u < 0, v \geq 0)</td>
<td>(t_s \xrightarrow{\langle t_e, b' \rangle} t)</td>
</tr>
<tr>
<td>(t_s \xrightarrow{[a,b]} t_e), (t_s \xrightarrow{\langle t_e, u \rangle} t)</td>
<td>(t_s \xrightarrow{\langle \min{a, u}, \infty \rangle} t)</td>
</tr>
<tr>
<td>(t_s \xrightarrow{\langle t_e, b \rangle} t), (t' \xrightarrow{[u,v]} t)</td>
<td>(t_s \xrightarrow{\langle t_e, b' \rangle} t')</td>
</tr>
<tr>
<td>(t_s \xrightarrow{\langle t_e, b \rangle} t), (t' \xrightarrow{[u,v]} t), (t_e \neq t)</td>
<td>(t_s \xrightarrow{\langle t_e, b - u \rangle} t')</td>
</tr>
</tbody>
</table>
Deadline Failures

- Suppose something makes it impossible to start an action on time
- Do one of the following:
 - stop the delayed action, and look for new plan
 - let the delayed action finish; try to repair the plan by resolving violated constraints at the STNU propagation level
 - e.g., accommodate a delay in navigate by delaying the whole plan
 - let the delayed action finish; try to repair the plan some other way

```
leave(r1,d1)  navigate(r1)  enter(r1,d2)  unstack(k,c)  putdown(k,c,r1)  leave(r1,d2)
```

```
t_1
leave(r1,d1)  
```

```
t_2
```

```
t_3  leave(r2,d2)
```

```
t_4
unstack(k,c',p)  
```

```
t_5
```

```
t_6
stack(k,c',q)
```

```
t_7
```

```
t_8
```

```
t_9
```

Nau – Lecture slides for Automated Planning and Acting
Partial Observability

- Tacit assumption: all occurrences of contingent events are observable
 - Observation needed for dynamic controllability
- In general, not all events are observable
- POSTNU (Partially Observable STNU)

- Dynamically controllable?
Observation Actions

Controllable

Contingent

Invisible

Observable
A POSTNU is dynamically controllable if

- there exists an execution strategy that chooses future controllable points to meet all the constraints, given the observation of past visible points

- Observable ≠ visible

- Observable means it will be known *when observed*

- It can be temporarily hidden
Outline

✓ Introduction
✓ Representation
✓ Temporal planning
✓ Consistency and controllability
✓ Acting with executable primitives

● Summary
Summary

- Managing constraints in TemPlan: like CSPs
 - Temporal constraints: STNs, PC algorithm (path consistency)
- Acting
 - Dynamic controllability
 - STNUs
 - RAE and eRAE
 - Dispatching