Chapter 6

Deliberation with Probabilistic Domain Models

Dana S. Nau
University of Maryland
Motivation

- Situations where actions have multiple possible outcomes and each outcome has a probability

- Several possible action representations
 - Bayes nets, probabilistic actions, ...

- Book doesn’t commit to any representation
 - Mainly concentrates on the underlying semantics

roll-die(d)
pre: holding(d) = true
eff:
1/6: top(d) ← 1
1/6: top(d) ← 2
1/6: top(d) ← 3
1/6: top(d) ← 4
1/6: top(d) ← 5
1/6: top(d) ← 6
Probabilistic planning domain

Definitions
\[\Sigma = (S, A, \gamma, \Pr, \text{cost}) \]
- \(S = \{\text{states}\} \)
- \(A = \{\text{actions}\} \)
- \(\gamma : S \times A \rightarrow 2^S \)
- \(\Pr(s' | s, a) = \text{probability of going to state } s' \text{ if we apply } a \text{ in } s \)
 - \(\Pr(s' | s, a) \neq 0 \text{ iff } s' \in \gamma(s, a) \)
- \(\text{cost} : S \times A \rightarrow \mathbb{R}_{\geq 0} \)
 - \(\text{cost}(s, a) = \text{cost of action } a \text{ in state } s \)
 - may omit, default is \(\text{cost}(s, a) = 1 \)
- \(\text{Applicable}(s) = \{a | \gamma(s, a) \neq \emptyset\} \)

Example
- Start at \(d1 \), want to get to \(d4 \)
- Some roads are one-way, some are two-way
- Unreliable steering, especially on hills
 - may slip and go elsewhere
- Simplified state and action names:
 - write \(\{\text{loc}(r1) = d2\} \) as \(d2 \)
 - write \(\text{move}(r1, d2, d3) \) as \(m23 \)
- \(\gamma(d1, m12) = \{d2\} \)
 - \(\Pr(d2 | d1, m12) = 1 \)
- \(m21, m34, m41, m43, m45, m52, m54: \)
 - like \(m12 \)
- \(\gamma(d1, m14) = \{d1, d4\} \)
 - \(\Pr(d4 | d1, m14) = 0.5 \)
 - \(\Pr(d1 | d1, m14) = 0.5 \)
- \(\gamma(d2, m23) = \{d3, d5\} \)
 - \(\Pr(d3 | d2, m23) = 0.8 \)
 - \(\Pr(d5 | d2, m23) = 0.2 \)
- No \(m11, \) no \(m25 \)
Probabilistic planning domain

Definitions
\[\Sigma = (S, A, \gamma, \Pr, \text{cost}) \]
- \(S = \{\text{states}\} \)
- \(A = \{\text{actions}\} \)
- \(\gamma : S \times A \rightarrow 2^S \)
- \(\Pr(s' | s, a) = \text{probability of going to state } s' \text{ if we apply } a \text{ in } s \)
 - \(\Pr(s' | s, a) \neq 0 \iff s' \in \gamma(s,a) \)
- \(\text{cost: } S \times A \rightarrow \mathbb{R}_{\geq 0} \)
 - \(\text{cost}(s,a) = \text{cost of action } a \text{ in state } s \)
 - may omit, default is cost\((s,a) = 1 \)
- \(\text{Applicable}(s) = \{a | \gamma(s,a) \neq \emptyset \} \)

Example
- \(\gamma(d1,m12) = \{d2\} \)
 - \(\Pr(d2 | d1,m12) = 1 \)
- \(m21, m34, m41, m43, m45, m52, m54: \)
 - like m12
- \(\gamma(d1,m14) = \{d1,d4\} \)
 - \(\Pr(d4 | d1,m14) = 0.5 \)
 - \(\Pr(d1 | d1,m14) = 0.5 \)
- \(\gamma(d2,m23) = \{d3,d5\} \)
 - \(\Pr(d3 | d2,m23) = 0.8 \)
 - \(\Pr(d5 | d2,m23) = 0.2 \)
- there’s no m25

Poll: Can a plan (sequence of actions) be a solution for this problem?
1. yes
2. no
Policies, Problems

- Same as in Chapter 5:

- **Policy**
 - partial function $\pi : S \rightarrow A$ such that
 - for every $s \in \text{Dom}(\pi) \subseteq S$,
 $\pi(s) \in \text{Applicable}(s)$

- **Transitive closure**
 - $\hat{\gamma}(s, \pi) = \{s \text{ and all states reachable from } s \text{ using } \pi\}$

- Graph(s, π) = rooted graph induced by π at s
 - nodes: $\hat{\gamma}(s, \pi)$
 - edges: state transitions

- $\text{leaves}(s, \pi) = \hat{\gamma}(s, \pi) \setminus \text{Dom}(\pi)$

$p_i = \{(d_1, m_{12}), (d_2, m_{23}), (d_3, m_{34})\}$

$\text{Dom}(p_i) = \{d_1, d_2, d_3\}$

$\hat{\gamma}(d_1, p_i) = \{d_1, d_2, d_3, d_4, d_5\}$

$\text{leaves}(d_1, p_i) = \hat{\gamma}(d_1, p_i) \setminus \text{Dom}(p_i)$

$= \{d_4, d_5\}$
Solutions

- **Stochastic shortest path (SSP) problem:**
 - a triple \((\Sigma, s_0, S_g)\)

- **Solution** for \((\Sigma, s_0, S_g)\):
 - A policy \(\pi\) for \(\Sigma\) such that \(\hat{\gamma}(s_0, \pi) \cap S_g \neq \emptyset\)

- Unlike Chapter 5, don’t require \(\pi\) to end at \(S_g\)

- A solution policy \(\pi\) is **closed** if it doesn’t stop at non-goal states unless there’s no way to continue
 - for every state in \(\hat{\gamma}(s, \pi)\), either
 - \(s \in \text{Dom}(\pi)\) (i.e., \(\pi(s)\) is defined)
 - or \(s \in S_g\)
 - or Applicable\((s) = \emptyset\)

- For the rest of this chapter we require all solutions to be closed

\[
\pi_1 = \{(d1, m12), (d2, m23), (d3, m34)\}
\]

\[
\pi_2 = \{(d1, m12), (d2, m23), (d3, m34), (d5, m54)\}
\]

\[
\pi_3 = \{(d1, m12), (d2, m23), (d3, m34), (d5, m56)\}
\]

\[
\pi_4 = \{(d1, m12), (d2, m23), (d3, m34), (d5, m57), (d7, m75)\}
\]
Histories

- **History**: sequence of states \(\sigma = \langle s_0, s_1, s_2, \ldots \rangle \)
 - May be finite or infinite
 \(\langle d_1, d_2, d_3, d_4 \rangle \)
 \(\langle d_1, d_2, d_1, d_2, \ldots \rangle \)

- Let \(H(s, \pi) = \) set of all possible histories if we start at \(s \) and follow \(\pi \)
 - Stop if we reach a state \(s' \) such that \(s' \notin \text{Dom}(\pi) \) or \(s' \in S_g \)

- If \(\sigma \in H(s, \pi) \) then
 - \(\Pr(\sigma | s, \pi) = \prod_{s_i, s_{i+1} \in \sigma} \Pr(s_{i+1} | s_i, \pi(s_i)) \)
 - Product of the probabilities of the state transitions
 - \(\sum_{\sigma \in H(s, \pi)} \Pr(\sigma | s, \pi) = 1 \)

\[\begin{align*}
\pi_3 &= \{(d_1,m_{12}), (d_2,m_{23}), (d_3,m_{34}), (d_5,m_{56})\} \\
H(s_0, \pi_3) &= \{\sigma_1, \sigma_2\}, \text{ where:} \\
&\quad \sigma_1 = \langle d_1, d_2, d_3, d_4 \rangle \\
&\quad \sigma_2 = \langle d_1, d_2, d_5, d_6 \rangle \\
&\quad \Pr(\sigma_1 | s_0, \pi_3) = 1 \times 0.8 \times 1 = 0.8 \\
&\quad \Pr(\sigma_2 | s_0, \pi_3) = 1 \times 0.2 \times 1 = 0.2
\end{align*}\]
Unsafe Solutions

- Probability of reaching a goal state:
 \[\Pr(S_g \mid s, \pi) = \sum_{\sigma \in H(s, \pi)} \Pr(\sigma \mid s, \pi) \mid \sigma \text{ ends at a state in } S_g \}

- Formula in book is equivalent but more complicated

- A solution is unsafe if \(0 < \Pr(S_g \mid s_0, \pi) < 1 \)

- \(\pi_3 = \{(d1,m12), (d2,m23), (d3,m34), (d5,m56)\} \)

- \(H(s_0, \pi_3) = \{\sigma_1, \sigma_2\} \), where:
 - \(\sigma_1 = \langle d1,d2,d3,d4 \rangle \)
 - \(\sigma_2 = \langle d1,d2,d5,d6 \rangle \)

- \(\Pr(\sigma_1 \mid s_0, \pi_3) = 1 \times 0.8 \times 1 = 0.8 \)
- \(\Pr(\sigma_2 \mid s_0, \pi_3) = 1 \times 0.2 \times 1 = 0.2 \)

- \(d6 \) is an explicit dead end
 - no applicable actions

- \(\Pr(S_g \mid s_0, \pi_3) = \Pr(\sigma_1 \mid s_0, \pi_1) = 0.8 \)
Unsafe Solutions

- Probability of reaching a goal state:
 - $\Pr(S_g \mid s, \pi) = \sum_{\sigma \in H(s, \pi)} \{\Pr(\sigma \mid s, \pi) \mid \sigma \text{ ends at a state in } S_g\}$

- Formula in book is equivalent but more complicated

- A solution is unsafe if $0 < \Pr(S_g \mid s_0, \pi) < 1$

- $\pi_4 = \{(d1,m12), (d2,m23), (d3,m34), (d5,m57), (d7,m75)\}$

- $H(s_0, \pi_3) = \{\sigma_1, \sigma_2\}$, where:
 - $\sigma_1 = \langle d1,d2,d3,d4 \rangle$
 - $\sigma_3 = \langle d1,d2,d5,d6,d5,d6,\ldots \rangle$

- $\Pr(\sigma_1 \mid s_0, \pi_2) = 1 \times .8 \times 1 = .8$
- $\Pr(\sigma_3 \mid s_0, \pi_2) = 1 \times .2 \times 1 \times 1 \times 1 \times 1 \times \ldots = .2$

- $\langle d5, d6, d5, d6, \ldots \rangle$ is an implicit dead end
 - Applicable actions, but no way to reach goal

- $\Pr(S_g \mid s_0, \pi_3) = \Pr(\sigma_1 \mid s_0, \pi_1) = 0.8$
Safe Solutions

• A solution is safe if $\Pr(S_g | s_0, \pi) = 1$

• An acyclic safe solution:
 ▷ $\pi_2 = \{(d_1, m_{12}), (d_2, m_{23}), (d_3, m_{34}), (d_5, m_{54})\}$

• $H(s_0, \pi_2)$ contains two histories:
 ▷ $\sigma_1 = (d_1, d_2, d_3, d_4)$ \hspace{1cm} $\Pr(\sigma_1 | s_0, \pi_2) = 1 \times .8 \times 1 = .8$
 ▷ $\sigma_4 = (d_1, d_2, d_5, d_4)$ \hspace{1cm} $\Pr(\sigma_4 | s_0, \pi_2) = 1 \times .2 \times 1 = .2$

• $\Pr(S_g | s_0, \pi_2) = .8 + .2 = 1$
\textbf{Safe Solutions}

- A solution is \textit{safe} if $\Pr(S_g|s_0, \pi) = 1$

- A cyclic safe solution:
 - $\pi_5 = \{d1, m14\}$

- $H(\pi_5)$ contains infinitely many histories:
 - $\sigma_5 = \langle d1, d4 \rangle$ \hspace{1cm} $\Pr(\sigma_5|s_0, \pi_5) = \frac{1}{2}$
 - $\sigma_6 = \langle d1, d1, d4 \rangle$ \hspace{1cm} $\Pr(\sigma_6|s_0, \pi_5) = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$
 - $\sigma_7 = \langle d1, d1, d1, d4 \rangle$ \hspace{1cm} $\Pr(\sigma_7|s_0, \pi_5) = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$
 - $\sigma_\infty = \langle d1, d1, d1, d1, d1, \ldots \rangle$

- $\Pr(S_g|s_0, \pi_5) = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots = 1$

\textbf{Poll: what is $\Pr(\sigma_\infty|s_0, \pi_5)$?}
1. 1
2. 0
3. a number between 0 and 1
4. undefined
Safe Solutions

- A solution is *safe* if $\Pr(S_g|s_0, \pi) = 1$

- Another cyclic safe solution:
 $\pi_6 = \{(d1, m54), (d4, m41)\}$

- We stop when we reach a goal, so $(d4, m41)$ doesn’t matter
 - Same histories and probabilities as for π_5
- \(\text{cost}(s,a) = \text{cost of using } a \text{ in } s \)
- **Example:**
 - each “horizontal” action costs 1
 - each “vertical” action costs 100
- Let \(\sigma = \langle s_0, s_1, s_2, \ldots \rangle \in H(s_0, \pi) \)
 - \(\text{cost}(\sigma \mid s_0, \pi) = \sum \{ \text{cost}(s_i, \pi(s_i)) \mid s_i, \pi(s_i) \in \sigma \} \)
- Let \(\pi \) be a safe solution
- At each state \(s \in \text{Dom}(\pi) \), expected cost of following \(\pi \) to goal:
 - Weighted sum of history costs:
 - \(V_{\pi}(s) = \sum_{\sigma \in H(s, \pi)} \Pr(\sigma \mid s, \pi) \text{cost}(\sigma \mid s, \pi) \)
 - Recursive equation
 - \(V_{\pi}(s) = \begin{cases}
 0, & \text{if } s \in S_g \\
 \text{cost}(s, \pi(s)) + \sum_{s' \in \gamma(s, \pi(s))} \Pr(s' \mid s, \pi(s)) V_{\pi}(s'), & \text{otherwise}
 \end{cases} \)

Poll: Which is correct?
1. weighted sum of history costs
2. recursive equation
3. both
4. neither

Poll: Is this needed?
1. yes
2. no

Goal:
\(S_g = \{d_4\} \)
Example

- \(\pi_3 = \{(d_1, m_{12}), (d_2, m_{23}), (d_3, m_{34}), (d_5, m_{54})\} \)

- Weighted sum of history costs:
 - \(\sigma_1 = \langle d_1, d_2, d_3, d_4 \rangle \)
 - \(\Pr(\sigma_1 | s_0, \pi_3) = 0.8 \)
 - \(\text{cost}(\sigma_1 | s_0, \pi_3) = 100 + 1 + 100 = 201 \)
 - \(\sigma_2 = \langle d_1, d_2, d_5, d_4 \rangle \)
 - \(\Pr(\sigma_2 | s_0, \pi_3) = 0.2 \)
 - \(\text{cost}(\sigma_2 | s_0, \pi_3) = 100 + 1 + 100 = 201 \)

- \(V^{\pi_3}(d_1) = 0.8(201) + 0.2(201) = 201 \)

- Recursive equation:
 \[
 V^{\pi_3}(d_1) = 100 + 1(V^{\pi_3}(d_2)) \\
 = 100 + 1 + 0.8(V^{\pi_3}(d_3)) + 0.2(V^{\pi_3}(d_5)) \\
 = 100 + 1 + 0.8(100) + 0.2(100) \\
 = 201
 \]
Example

- \(\pi_7 = \{ (d1, m14), (d2, m23), (d3, m34), (d5, m54) \} \)

- Weighted sum of history costs:
 - \(\sigma_5 = \langle d1, d4 \rangle \)
 \[
 \begin{align*}
 \Pr(\sigma_5 | \pi_7) &= \frac{1}{2} \\
 \text{cost}(\sigma_5 | \pi_7) &= 1
 \end{align*}
 \]
 - \(\sigma_6 = \langle d1, d1, d4 \rangle \)
 \[
 \begin{align*}
 \Pr(\sigma_6 | \pi_7) &= \left(\frac{1}{2}\right)^2 \\
 \text{cost}(\sigma_6 | \pi_7) &= 2
 \end{align*}
 \]
 - \(\sigma_7 = \langle d1, d1, d1, d4 \rangle \)
 \[
 \begin{align*}
 \Pr(\sigma_7 | \pi_7) &= \left(\frac{1}{2}\right)^3 \\
 \text{cost}(\sigma_7 | \pi_7) &= 3
 \end{align*}
 \]

 ...

- \(V^{\pi_7}(d1) = (\frac{1}{2})1 + (\frac{1}{2})^2 2 + (\frac{1}{2})^3 3 + \ldots = 2 \)

- Recursive equation:
 \[
 V^{\pi_7}(d1) = 1 + \frac{1}{2}(0) + \frac{1}{2}(V^{\pi_7}(d1))
 \]

 \(\frac{1}{2}V^{\pi_7}(d1) = 1 \)

 \(V^{\pi_7}(d1) = 2 \)

- Recursive equation is easier computationally
- Given safe solution \(\pi \),
 - Compute \(V^{\pi} \) by solving \(n \) linear equations, \(n \) unknowns
 - \(n = |\hat{\gamma}(s_0,\pi)| \)
Planning as Optimization

- Let π and π' be safe solutions
 - π dominates π' if at every state s where they’re both defined (i.e., $s \in \text{Dom}(\pi) \cap \text{Dom}(\pi')$), $V^\pi(s) \leq V^{\pi'}(s)$
 - On the previous two slides
 - $\pi_3 = \{(d1,m12), (d2,m23), (d3,m34), (d5,m54)\}$
 - $\pi_7 = \{(d1, m14), (d2, m23), (d3, m34), (d5, m54)\}$
 - $d1$ is the only state where they differ
 - $V^{\pi_3}(d1) = 201$; $V^{\pi_7}(d1) = 2$
 - π_7 dominates π_3

- π is optimal if π dominates every safe solution
- If π and π' are both optimal, then $V^\pi(s) = V^{\pi'}(s)$ at every state where they’re both defined
 - On slide 11, $\pi_5 = \{(d1,m14)\}$
 - π_5 and π_7 both dominate each other
Planning as Optimization

- Recall:
 \[V^\pi(s) = \begin{cases}
 0, & \text{if } s \text{ is a goal} \\
 \text{cost}(s, \pi(s)) + \sum_{s' \in \gamma(s, \pi(s))} \Pr(s' | s, \pi(s)) V^\pi(s'), & \text{otherwise}
\end{cases} \]

- Let \(V^*(s) \) = expected cost using an optimal safe solution

- *Optimality principle* (Bellman’s theorem):

 \[V^*(s) = \begin{cases}
 0, & \text{if } s \text{ is a goal} \\
 \min_{a \in \text{Applicable}(s)} \left\{ \text{cost}(s, a) + \sum_{s' \in \gamma(s, a)} \Pr(s' | s, a) V^*(s') \right\}, & \text{otherwise}
\end{cases} \]

- Intuition:
 - At state d1
 - Applicable actions m12 and m14
 - Suppose we know
 - \(V^*(d2), V^*(d4), V^*(d6) \)
 - What’s the best choice at d1?

\[V^*(d2) = 115 \]
\[V^*(d6) = 1 \]
Cost to Go

- Let \((\Sigma, s_0, S_g)\) be a safe SSP
 - i.e., \(S_g\) is reachable from every state
 - same as safely exploriable in Chapter 5

- Let \(\pi\) be a safe solution that’s defined at all non-goal states
 - i.e., \(\text{Dom}(\pi) = S \setminus S_g\)

- Compute \(V^\pi\) as \(|S|\) equations, \(|S|\) unknowns

- Let \(s \in S, a \in \text{Applicable}(s)\)
 - Cost-to-go:
 - expected cost at \(s\) if we first use \(a\),
 then use \(\pi\) afterward
 - \(Q^\pi(s,a) = \text{cost}(s,a) + \sum_{s' \in \gamma(s,a')} \Pr(s' | s,a') \cdot V^\pi(s')\)

- For every \(s \in S \setminus S_g\)
 let \(\pi'(s) \in \arg\min_{a \in \text{Applicable}(s)} Q^\pi(s,a')\)

Poll: Does \(\pi'\) dominate \(\pi\)?
1. always
2. sometimes
3. never
Example

\[\pi = \{ (d_1,m_{12}), (d_2,m_{23}), (d_3,m_{34}), (d_5,m_{54}) \} \]

\[V^{\pi}(d_4) = 0 \]
\[V^{\pi}(d_3) = 100 + V^{\pi}(d_4) = 100 \]
\[V^{\pi}(d_5) = 100 + V^{\pi}(d_4) = 100 \]
\[V^{\pi}(d_2) = 1 + (0.8 V^{\pi}(d_3) + 0.2 V^{\pi}(d_5)) \]
\[= 101 \]
\[V^{\pi}(d_1) = 100 + V^{\pi}(d_2) = 201 \]

\[Q^{\pi}(d_1,m_{12}) = 100 + 101 = 201 \]
\[Q^{\pi}(d_1,m_{14}) = 1 + \frac{1}{2}(201) + \frac{1}{2}(0) = 101.5 \]
\[\arg\min_a Q^{\pi}(d_1,a) = m_{14} \]
\[Q^{\pi}(d_2,m_{23}) = 1 + (0.8(100) + 0.2(100)) = 101 \]
\[Q^{\pi}(d_2,m_{21}) = 1 + 101 = 301 \]
\[\arg\min_a Q^{\pi}(d_2,a) = m_{23} \]
\[Q^{\pi}(d_3,m_{34}) = 100 + 0 = 100 \]
\[Q^{\pi}(d_3,m_{32}) = 1 + 101 = 102 \]
\[\arg\min_a Q^{\pi}(d_3,a) = m_{34} \]
\[Q^{\pi}(d_5,m_{54}) = 100 + 0 = 100 \]
\[Q^{\pi}(d_5,m_{52}) = 1 + 101 = 102 \]
\[\arg\min_a Q^{\pi}(d_5,a) = m_{54} \]

\[\pi' = \{ (d_1,m_{14}), (d_2,m_{23}), (d_3,m_{34}), (d_5,m_{54}) \} \]

\[V^{\pi'}(d_4) = 0 \]
\[V^{\pi'}(d_3) = 100 + V^{\pi'}(d_4) = 100 \]
\[V^{\pi'}(d_5) = 100 + V^{\pi'}(d_4) = 100 \]
\[V^{\pi'}(d_2) = 1 + (0.8 V^{\pi'}(d_3) + 0.2 V^{\pi'}(d_5)) \]
\[= 101 \]
\[V^{\pi'}(d_1) = 1 + \frac{1}{2} V^{\pi'}(d_1) + \frac{1}{2} V^{\pi'}(d_4) \]
\[\Rightarrow V^{\pi'}(d_1) = 2 \]
Policy Iteration

- \(\text{PI}(\Sigma, s_0, S_g, \pi_0) \)
 \[
 \pi \leftarrow \pi_0
 \]
 loop
 compute \(\{ V^\pi(s) \mid s \in S \} \) \(n \) equations, \(n \) unknowns, where \(n = |S| \)
 for every \(s \in S \setminus S_g \) do
 \(\pi'(s) \leftarrow \text{argmin}_{a \in \text{Applicable}(s)} Q^\pi(s, a) \)
 \(E(\text{cost of using } a \text{ then } \pi) \)
 if \(\pi' = \pi \) then
 return \(\pi \)
 \(\pi \leftarrow \pi' \)

- Converges in a finite number of iterations
- Example:

\[
\begin{align*}
\text{Start: } s_0 &= d1 \\
\text{Goal: } S_g &= \{d4\}
\end{align*}
\]
Value Iteration

- V_0 is a heuristic function
 - e.g., adapt an h heuristic from Chapter 2
 - for each $s \in S$
 - $V_0(s)$ is an estimate of the expected cost of getting from s to a goal state
 - must have $V_0(s) = 0$ for every $s \in S_g$
- $\eta > 0$: for testing approximate convergence

- V is an array
 - $V(s)$ = updated estimate of expected cost of getting from s to a goal state
- π = policy computed from V

- Difference from the book:
 - In the book, VI computes r as a separate step, not in $Bellman$-$Update$

$\text{VI}(\Sigma, s_0, S_g, V_0, \eta)$
- global $V \leftarrow V_0$
- global $\pi \leftarrow \emptyset$
- loop
 - $r \leftarrow \max \{\text{Bellman-Update}(s) \mid s \in S \setminus S_g\}$
 - if $r \leq \eta$ then return π

$\text{Bellman-Update}(s)$
- global V, π
- $v_{old} \leftarrow V(s)$
- for every $a \in \text{Applicable}(s)$ do
 - $Q(s,a) \leftarrow \text{cost}(s,a) + \sum_{s' \in S} \Pr(s'|s,a) V(s')$
 - $V(s) \leftarrow \min_{a \in \text{Applicable}(s)} Q(s,a)$
 - $\pi(s) \leftarrow \arg\min_{a \in \text{Applicable}(s)} Q(s,a)$
- return $|V(s) - v_{old}|$
VI(\(\Sigma, s_0, S_g, V_0, \eta\))

global \(V \leftarrow V_0\)
global \(\pi \leftarrow \emptyset\)

loop

\(r \leftarrow \max\{\text{Bellman-Update}(s) \mid s \in S \setminus S_g\}\)

if \(r \leq \eta\) then return \(\pi\)

Bellman-Update\((s)\)

global \(V, \pi\)

\(v_{\text{old}} \leftarrow V(s)\)

for every \(a \in \text{Applicable}(s)\) do

\(Q(s,a) \leftarrow \text{cost}(s,a) + \sum_{s' \in S} \Pr(s'|s,a) V(s')\)

\(V(s) \leftarrow \min_{a \in \text{Applicable}(s)} Q(s,a)\)

\(\pi(s) \leftarrow \arg\min_{a \in \text{Applicable}(s)} Q(s,a)\)

return \(|V(s) - v_{\text{old}}|\)
Iteration 2

\[Q(d_1, m_{12}) = 100 + 1 = 101 \]
\[Q(d_1, m_{14}) = 1 + \left(\frac{1}{2}(1) + \frac{1}{2}(0) \right) = 1 \]
\[V(d_1) = 1; \pi(d_1) = m_{14} \]

\[Q(d_2, m_{21}) = 100 + 1 \frac{1}{2} = 101 \frac{1}{2} \]
\[Q(d_2, m_{23}) = 1 + .8(2) + .2(2) = 3 \]
\[V(d_2) = 3; \pi(d_2) = m_{23} \]

\[Q(d_3, m_{32}) = 1 + 3 = 4 \]
\[Q(d_3, m_{34}) = 100 + 0 = 100 \]
\[V(d_3) = 4; \pi(d_3) = m_{32} \]

\[Q(d_5, m_{52}) = 1 + 3 = 4 \]
\[Q(d_5, m_{54}) = 100 + 0 = 100 \]
\[V(d_5) = 4; \pi(d_5) = m_{52} \]

\[r = \max(1 \frac{1}{2} - 1, 3 - 1, \quad 4 - 2, 4 - 2) = 2 \]

\[\eta = 0.2 \]
\[V(d_1) = 1 \]
\[V(d_2) = 1 \]
\[V(d_3) = 2 \]
\[V(d_5) = 2 \]
\[\pi(d_1) = m_{14} \]
\[\pi(d_2) = m_{23} \]
\[\pi(d_2) = m_{32} \]
\[\pi(d_5) = m_{52} \]
\[V(\Sigma, s_0, S_g, V_0, \eta) \]

global \(V \leftarrow V_0 \)
global \(\pi \leftarrow \emptyset \)

loop

\[r \leftarrow \max \{ \text{Bellman-Update}(s) \mid s \in S \setminus S_g \} \]
if \(r \leq \eta \) then return \(\pi \)

Bellman-Update(\(s \))

global \(V, \pi \)
\(v_{\text{old}} \leftarrow V(s) \)

for every \(a \in \text{Applicable}(s) \) do

\[Q(s,a) \leftarrow \text{cost}(s,a) + \sum_{s' \in S} \Pr(s'|s,a) V(s') \]

\(V(s) \leftarrow \min_{a \in \text{Applicable}(s)} Q(s,a) \)

\(\pi(s) \leftarrow \text{argmin}_{a \in \text{Applicable}(s)} Q(s,a) \)

return \(|V(s) - v_{\text{old}}| \)

Iteration 3

\[\eta = 0.2 \]
\[V(d1) = 1\frac{1}{2} \]
\[V(d2) = 3 \]
\[V(d3) = 4 \]
\[V(d5) = 4 \]
\[\pi(d1) = m14 \]
\[\pi(d2) = m23 \]
\[\pi(d2) = m32 \]
\[\pi(d5) = m52 \]

\[Q(d1,m12) = 100 + 3 = 103 \]
\[Q(d1,m14) = 1 + (\frac{1}{2}(1\frac{1}{2}) + \frac{1}{2}(0)) = 1\frac{3}{4} \]
\[V(d1) = 1\frac{3}{4}; \pi(d1) = m14 \]

\[Q(d2,m21) = 100 + 1\frac{3}{4} = 101\frac{3}{4} \]
\[Q(d2,m23) = 1 + .8(4) + .2(4) = 5 \]
\[V(d2) = 5; \pi(d2) = m23 \]

\[Q(d3,m32) = 1 + 5 = 6 \]
\[Q(d3,m34) = 100 + 0 = 100 \]
\[V(d3) = 6; \pi(d3) = m32 \]

\[Q(d5,m52) = 1 + 5 = 6 \]
\[Q(d5,m54) = 100 + 0 = 100 \]
\[V(d5) = 6; \pi(d5) = m52 \]

\[r = \max(1\frac{3}{4} - 1\frac{1}{2}, 5 - 3, 6 - 4, 6 - 4) = 2 \]
\[Q(d_1, m_{12}) = 100 + 5 = 105 \]
\[Q(d_1, m_{14}) = 1 + \left(\frac{1}{2} \left(\frac{3}{4} \right) + \frac{1}{2} (0) \right) = \frac{17}{8} \]
\[V(d_1) = \frac{17}{8} ; \pi(d_1) = m_{14} \]
\[Q(d_2, m_{21}) = 100 + \frac{17}{8} = 101\frac{7}{8} \]
\[Q(d_2, m_{23}) = 1 + .8(6) + .2(6) = 7 \]
\[V(d_2) = 7 ; \pi(d_2) = m_{23} \]
\[Q(d_3, m_{32}) = 1 + 7 = 8 \]
\[Q(d_3, m_{34}) = 100 + 0 = 100 \]
\[V(d_3) = 8 ; \pi(d_3) = m_{32} \]
\[Q(d_5, m_{52}) = 1 + 7 = 8 \]
\[Q(d_5, m_{54}) = 100 + 0 = 100 \]
\[V(d_5) = 8 ; \pi(d_5) = m_{52} \]
\[r = \max(1\frac{7}{8} - 1\frac{3}{4}, 7 - 5, 8 - 6, 8 - 6) = 2 \]
Iteration 1, with a better V_0

$V(I(s_0, S_g, V_0, \eta))$

global $V \leftarrow V_0$
global $\pi \leftarrow \emptyset$

loop

$r \leftarrow \max \{\text{Bellman-Update}(s) \mid s \in S \setminus S_g\}$

if $r \leq \eta$ then return π

Bellman-Update(s)

global V, π

$v_{\text{old}} \leftarrow V(s)$

for every $a \in \text{Applicable}(s)$ do

$Q(s,a) \leftarrow \text{cost}(s,a) + \sum_{s' \in S} \Pr(s'|s,a) \; V(s')$

$V(s) \leftarrow \min_{a \in \text{Applicable}(s)} Q(s,a)$

$\pi(s) \leftarrow \text{argmin}_{a \in \text{Applicable}(s)} Q(s,a)$

return $|V(s) - v_{\text{old}}|$

$\eta = 0.2$

$V(d1) = 2$
$V(d2) = 101$
$V(d3) = 100$
$V(d5) = 100$

$Q(d1,m12) = 100 + 101 = 201$

$Q(d1,m14) = 1 + (0.5(0) + 0.5(2)) = 2$

$V(d1) = 2; \; \pi(d1) = m14$

$Q(d2,m21) = 100 + 2 = 102$

$Q(d2,m23) = 1 + 0.8(100) + 0.2(100) = 101$

$V(d2) = 101; \; \pi(d2) = m23$

$Q(d3,m32) = 1 + 101 = 102$

$Q(d3,m34) = 100 + 0 = 100$

$V(d3) = 100; \; \pi(d3) = m34$

$Q(d5,m52) = 1 + 101 = 102$

$Q(d5,m54) = 100 + 0 = 100$

$V(d5) = 100; \; \pi(d5) = m54$

$r = \max(0, 0, 0, 0) = 0 < \eta$

$V(I)$ returns π

Nau – Lecture slides for Automated Planning and Acting
Discussion

- Policy iteration computes new π in each iteration; computes V^π from π
 - More work per iteration than value iteration
 - Needs to solve a set of simultaneous equations
 - Usually converges in a smaller number of iterations
- Value iteration
 - Computes new V in each iteration; chooses π based on V
 - New V is a revised set of heuristic estimates
 - Not V^π for π or any other policy
 - Less work per iteration: doesn’t need to solve a set of equations
 - Usually takes more iterations to converge

- At each iteration, both algorithms need to examine the entire state space
 - Number of iterations polynomial in $|S|$, but $|S|$ may be quite large
- Next: use search techniques to avoid searching the entire space
Suppose \(\text{Frontier} = \{s_4, s_6\} \) and \(f(s_4) < f(s_6) \)

- expand \(s_4 \)
- if its children have larger \(f \) values than \(f(s_6) \)
 then expand \(s_6 \) next
Equivalent Approach Using Policies

- At each state s,
 - $\pi(s) = $ the action that currently looks best
 - $V(s) = $ estimated cost of following π to goal

\[
\begin{align*}
V(s_5) &= c(a_6) + V(s_6) \\
V(s_6) &= h(s_6)
\end{align*}
\]

- Expand s_4, update $V(s_4)$, update $V(s_3)$
- If $c(a_3) + V(s_3) > c(a_5) + V(s_5)$, then revise $\pi(s_2)$
- Update $V(s_2)$, $V(s_1)$, $V(s_0)$

- AO*: generalization of A* for acyclic SSPs
 - Updating like above, but trees rather than paths
AO* Search

- An acyclic SSP can be represented as an AND/OR graph
 - OR nodes: choose an action
 - AND nodes: action’s outcomes
 - $V(s_0) = c(a_1) + V(s_1) + V(s_2)$
 - $V(s_1) = c(a_3) + V(s_5) + V(s_6)$
 - $V(s_2) = c(a_4) + V(s_7) + V(s_8)$

- leaves(s_0, π) = \{s_5, s_6, s_7, s_8\}
- Expand one of them, e.g., s_5
- Going bottom-up:
 - Update V and π values for s_5 and its ancestors
AO*(Σ, s_0, S_g, V_0)

global $\pi \leftarrow \emptyset$

global $Envelope \leftarrow \{s_0\}$

global $V; V(s_0) \leftarrow V_0(s_0)$

while ($\gamma(s_0, \pi) \setminus S_g) \cap Fringe \neq \emptyset$ do

select $s \in (\gamma(s_0, \pi) \setminus S_g) \cap Fringe$

for all $a \in Applicable(s)$ and $s' \in \gamma(s, a)$ do

if $s' \in \gamma(s, a) \notin Envelope$ then

add s' to $Envelope$

$V(s') \leftarrow V_0(s')$

AO-Update(s)

return π

AO-Update(s) // update V and π values of s and its ancestors

$Z \leftarrow \{s\}$ // nodes that need updating

while $Z \neq \emptyset$ do

select $s \in Z$ such that $\gamma(s, \pi(s)) \cap Z = \{s\}$

remove s from Z

Bellman-Update(s)

$Z \leftarrow Z \cup \{s' \in Envelope \mid s \in \gamma(s', \pi)\}$

add the states “just above” s

Bellman-Update(s)

global V, π

$v_{old} \leftarrow V(s)$

for every $a \in Applicable(s)$ do

$Q(s, a) \leftarrow cost(s, a) + \sum_{s' \in S} Pr(s'|s, a) V(s')$

$V(s) \leftarrow \min_{a \in Applicable(s)} Q(s, a)$

$\pi(s) \leftarrow \arg\min_{a \in Applicable(s)} Q(s, a)$

return $|V(s) - v_{old}|$

AO* is similar to Expanded \cup Frontier in A*

Fringe \equiv Envelope \setminus Dom(π)

• like Frontier in A*, but updated in Bellman-Update

AO-Update(s) // update V and π values of s and its ancestors

$Z \leftarrow \{s\}$ // nodes that need updating

while $Z \neq \emptyset$ do

select $s \in Z$ such that $\gamma(s, \pi(s)) \cap Z = \{s\}$

remove s from Z

Bellman-Update(s)

$Z \leftarrow Z \cup \{s' \in Envelope \mid s \in \gamma(s', \pi)\}$

add the states “just above” s

Bellman-Update(s)

global V, π

$v_{old} \leftarrow V(s)$

for every $a \in Applicable(s)$ do

$Q(s, a) \leftarrow cost(s, a) + \sum_{s' \in S} Pr(s'|s, a) V(s')$

$V(s) \leftarrow \min_{a \in Applicable(s)} Q(s, a)$

$\pi(s) \leftarrow \arg\min_{a \in Applicable(s)} Q(s, a)$

return $|V(s) - v_{old}|$

AO* (Sigma, s0, Sg, V0)

local pi <- ∅

local Envelope <- \{s0\}

local V; V(s0) <- V0(s0)

while (γ(s0, π) \ Sg) \ Cap Fringe \= ∅ do

select s ∈ (γ(s0, π) \ Sg) \ Cap Fringe

for all a ∈ Applicable(s) and s’ ∈ γ(s, a) do

if s’ ∈ γ(s, a) \ Envelope then

add s’ to Envelope

V(s’) <- V0(s’)

AO-Update(s)

return π

AO-Update(s) // update V and π values of s and its ancestors

Z <- \{s\} // nodes that need updating

while Z \= ∅ do

select s ∈ Z such that γ(s, π(s)) \ Cap Z = \{s\}

remove s from Z

Bellman-Update(s)

Z <- Z \∪ \{s’ ∈ Envelope \mid s ∈ γ(s’, π)\}

add the states “just above” s

Bellman-Update(s)

global V, π

v_{old} <- V(s)

for every a ∈ Applicable(s) do

Q(s, a) <- cost(s, a) + ∑_{s’ ∈ S} Pr(s’|s, a) V(s’)

V(s) <- min_{a ∈ Applicable(s)} Q(s, a)

π(s) <- argmin_{a ∈ Applicable(s)} Q(s, a)

return |V(s) - v_{old}|

not needed this time

• like Frontier in A*, but updated in Bellman-Update

Fringe ≡ Envelope \ Dom(π)

AO* (Sigma, s0, Sg, V0)

local pi <- ∅

local Envelope <- \{s0\}

local V; V(s0) <- V0(s0)

while (γ(s0, π) \ Sg) \ Cap Fringe \= ∅ do

select s ∈ (γ(s0, π) \ Sg) \ Cap Fringe

for all a ∈ Applicable(s) and s’ ∈ γ(s, a) do

if s’ ∈ γ(s, a) \ Envelope then

add s’ to Envelope

V(s’) <- V0(s’)

AO-Update(s)

return π

AO-Update(s) // update V and π values of s and its ancestors

Z <- \{s\} // nodes that need updating

while Z \= ∅ do

select s ∈ Z such that γ(s, π(s)) \ Cap Z = \{s\}

remove s from Z

Bellman-Update(s)

Z <- Z \∪ \{s’ ∈ Envelope \mid s ∈ γ(s’, π)\}

add the states “just above” s

Bellman-Update(s)

global V, π

v_{old} <- V(s)

for every a ∈ Applicable(s) do

Q(s, a) <- cost(s, a) + ∑_{s’ ∈ S} Pr(s’|s, a) V(s’)

V(s) <- min_{a ∈ Applicable(s)} Q(s, a)

π(s) <- argmin_{a ∈ Applicable(s)} Q(s, a)

return |V(s) - v_{old}|

not needed this time

• like Frontier in A*, but updated in Bellman-Update

Fringe ≡ Envelope \ Dom(π)

AO* (Sigma, s0, Sg, V0)

local pi <- ∅

local Envelope <- \{s0\}

local V; V(s0) <- V0(s0)

while (γ(s0, π) \ Sg) \ Cap Fringe \= ∅ do

select s ∈ (γ(s0, π) \ Sg) \ Cap Fringe

for all a ∈ Applicable(s) and s’ ∈ γ(s, a) do

if s’ ∈ γ(s, a) \ Envelope then

add s’ to Envelope

V(s’) <- V0(s’)

AO-Update(s)

return π

AO-Update(s) // update V and π values of s and its ancestors

Z <- \{s\} // nodes that need updating

while Z \= ∅ do

select s ∈ Z such that γ(s, π(s)) \ Cap Z = \{s\}

remove s from Z

Bellman-Update(s)

Z <- Z \∪ \{s’ ∈ Envelope \mid s ∈ γ(s’, π)\}

add the states “just above” s

Bellman-Update(s)

global V, π

v_{old} <- V(s)

for every a ∈ Applicable(s) do

Q(s, a) <- cost(s, a) + ∑_{s’ ∈ S} Pr(s’|s, a) V(s’)

V(s) <- min_{a ∈ Applicable(s)} Q(s, a)

π(s) <- argmin_{a ∈ Applicable(s)} Q(s, a)

return |V(s) - v_{old}|

not needed this time

• like Frontier in A*, but updated in Bellman-Update

Fringe ≡ Envelope \ Dom(π)
AO* (Σ, s_0, S_g, V_0)

global $\pi \leftarrow \emptyset$

global $Envelope \leftarrow \{s_0\}$

global V; $V(s_0) \leftarrow V_0(s_0)$

while $(\hat{\gamma}(s_0, \pi) \setminus S_g) \cap Fringe \neq \emptyset$ do

select $s \in (\hat{\gamma}(s_0, \pi) \setminus S_g) \cap Fringe$

for all $a \in \text{Applicable}(s)$ and $s' \in \gamma(s, a)$ do

if $s' \in \gamma(s, a) \notin Envelope$ then

add s' to $Envelope$

$V(s') \leftarrow V_0(s')$

AO-Update(s)

return π

AO-Update(s) // update V and π values of s and its ancestors

$Z \leftarrow \{s\}$ // nodes that need updating

while $Z \neq \emptyset$ do

select $s \in Z$ such that $\hat{\gamma}(s, \pi(s)) \cap Z = \{s\}$

remove s from Z

Bellman-Update(s)

$Z \leftarrow Z \cup \{s' \in Envelope | s \in \gamma(s', \pi)\}$

Bellman-Update(s)

global V, π

$v_{old} \leftarrow V(s)$

for every $a \in \text{Applicable}(s)$ do

$Q(s, a) \leftarrow \text{cost}(s, a) + \sum_{s' \in S} \text{Pr}(s'|s, a) \cdot V(s')$

$V(s) \leftarrow \min_{a \in \text{Applicable}(s)} Q(s, a)$

$\pi(s) \leftarrow \text{argmin}_{a \in \text{Applicable}(s)} Q(s, a)$

return $|V(s) - v_{old}|$

Example: $V_0(s) = 0$ for all s

Start: $s_0 = d1$

Goal: $S_g = \{d4\}$
AO*(\(\Sigma, s_0, S_g, V_0\))

- Global \(\pi \leftarrow \emptyset\)
- Global \(\text{Envelope} \leftarrow \{s_0\}\)
- Global \(V; V(s_0) \leftarrow V_0(s_0)\)

While \((\gamma(s_0, \pi) \setminus S_g) \cap \text{Fringe} \neq \emptyset\) do

- Select \(s \in (\gamma(s_0, \pi) \setminus S_g) \cap \text{Fringe}\)
- For all \(a \in \text{Applicable}(s)\) and \(s' \in \gamma(s, a)\) do
 - If \(s' \in \gamma(s, a) \notin \text{Envelope}\) then
 - Add \(s'\) to \(\text{Envelope}\)
 - \(V(s') \leftarrow V_0(s')\)
- \(\text{AO-Update}(s)\)

AO-Update(s) // update \(V\) and \(\pi\) values of \(s\) and its ancestors

- \(Z \leftarrow \{s\}\) // nodes that need updating
- While \(Z \neq \emptyset\) do
 - Select \(s \in Z\) such that \(\gamma(s, \pi(s)) \cap Z = \{s\}\)
 - Remove \(s\) from \(Z\)
 - Bellman-Update(s)
 - \(Z \leftarrow Z \cup \{s' \in \text{Envelope} | s \in \gamma(s', \pi)\}\)

Bellman-Update(s)

- Global \(V, \pi\)
- \(v_{\text{old}} \leftarrow V(s)\)
- For every \(a \in \text{Applicable}(s)\) do
 - \(Q(s, a) \leftarrow \text{cost}(s, a) + \sum_{s' \in S} \text{Pr}(s'|s, a) \cdot V(s')\)
 - \(V(s) \leftarrow \min_{a \in \text{Applicable}(s)} Q(s, a)\)
- \(\pi(s) \leftarrow \text{argmin}_{a \in \text{Applicable}(s)} Q(s, a)\)
- Return \(|V(s) - v_{\text{old}}|\)

Example: \(V_0(s) = 0\) for all \(s\)

Start: \(s_0 = d1\)

Goal: \(S_g = \{d4\}\)
AO* (Σ, s_0, S_g, V_0)

- `global $\pi \leftarrow \emptyset$`
- `global $Envelope \leftarrow \{s_0\}$`
- `global V; $V(s_0) \leftarrow V_0(s_0)$`

while ($\hat{\gamma}(s_0, \pi) \setminus S_g \cap Fringe \neq \emptyset$) do
 select $s \in (\hat{\gamma}(s_0, \pi) \setminus S_g \cap Fringe$
 for all $a \in \text{Applicable}(s)$ and $s' \in \gamma(s, a)$ do
 if $s' \in \gamma(s, a) \notin Envelope$ then
 add s' to $Envelope$
 $V(s') \leftarrow V_0(s')$
 AO-Update(s)

return π

AO-Update(s) // update V and π values of s and its ancestors

$Z \leftarrow \{s\}$ // nodes that need updating

while $Z \neq \emptyset$ do
 select $s \in Z$ such that $\hat{\gamma}(s, \pi(s)) \cap Z = \{s\}$
 remove s from Z
 Bellman-Update(s)

$Z \leftarrow Z \cup \{s' \in Envelope \mid s \in \gamma(s', \pi)\}$

Bellman-Update(s)

- `global V, π`
- `$v_{old} \leftarrow V(s)$`

for every $a \in \text{Applicable}(s)$ do
 $Q(s, a) \leftarrow \text{cost}(s, a) + \sum_{s' \in S} \text{Pr}(s' | s, a) \times V(s')$
 $V(s) \leftarrow \min_{a \in \text{Applicable}(s)} Q(s, a)$
 $\pi(s) \leftarrow \arg\min_{a \in \text{Applicable}(s)} Q(s, a)$

return $|V(s) - v_{old}|$

Example: $V_0(s) = 0$ for all s

Start: $s_0 = d_1$

Goal: $S_g = \{d_4\}$

\[V(d_1) = 10 \]
\[\pi(d_1) = m_{14} \]
\[V(d_2) = 15 \]
\[\pi(d_2) = m_{23} \]
\[V(d_3) = 0 \]
\[V(d_4) = 0 \]
\[V(d_5) = 0 \]
\[V(d_6) = 0 \]
AO* (Σ, s_0, S_g, V_0)

- Global $\pi \leftarrow \emptyset$
- Global $Envelope \leftarrow \{ s_0 \}$
- Global V; $V(s_0) \leftarrow V_0(s_0)$
- While $(\hat{\gamma}(s_0, \pi) \setminus S_g) \cap Fringe \neq \emptyset$
 - Select $s \in (\hat{\gamma}(s_0, \pi) \setminus S_g) \cap Fringe$
 - For all $a \in \text{Applicable}(s)$ and $s' \in \gamma(s, a)$ do
 - If $s' \in \gamma(s, a) \notin Envelope$ then
 - Add s' to $Envelope$
 - $V(s') \leftarrow V_0(s')$
 - AO-Update(s)

AO-Update(s) // update V and π values of s and its ancestors
- $Z \leftarrow \{ s \}$ // nodes that need updating
- While $Z \neq \emptyset$
 - Select $s \in Z$ such that $\hat{\gamma}(s, \pi(s)) \cap Z = \{ s \}$
 - Remove s from Z
 - Bellman-Update(s)
- $Z \leftarrow Z \cup \{ s' \in Envelope \mid s \in \gamma(s', \pi) \}$

Bellman-Update(s)

- Global V, π
- $v_{old} \leftarrow V(s)$
- For every $a \in \text{Applicable}(s)$ do
 - $Q(s, a) \leftarrow \text{cost}(s, a) + \sum_{s' \in S} \Pr(s'|s, a) \cdot V(s')$
 - $V(s) \leftarrow \min_{a \in \text{Applicable}(s)} Q(s, a)$
 - $\pi(s) \leftarrow \arg\min_{a \in \text{Applicable}(s)} Q(s, a)$
- Return $|V(s) - v_{old}|$

Example:

- $V(d_1) = 15$
- $\pi(d_1) = m_{23}$
- $V(d_2) = 15$
- $\pi(d_2) = m_{23}$
- $V(d_3) = 0$
- $\pi(d_3) = m_{23}$
- $V(d_4) = 0$
- $\pi(d_4) = m_{14}$
- $V(d_5) = 0$
- $\pi(d_5) = m_{12}$

Start: $s_0 = d_1$
Goal: $S_g = \{ d_4 \}$

Example: $V_0(s) = 0$ for all s
What to do about dead ends?

AO* \((\Sigma, s_0, S_g, V_0)\)

- global \(\pi \leftarrow \emptyset\)
- global \(Envelope \leftarrow \{s_0\}\)
- global \(V; V(s_0) \leftarrow V_0(s_0)\)

while \((\hat{\gamma}(s_0, \pi) \setminus S_g) \cap Fringe \neq \emptyset\) do
 - select \(s \in (\hat{\gamma}(s_0, \pi) \setminus S_g) \cap Fringe\)
 - for all \(a \in \text{Applicable}(s)\) and \(s' \in \gamma(s,a)\) do
 - if \(s' \in \gamma(s,a) \notin Envelope\) then
 - add \(s'\) to \(Envelope\)
 - \(V(s') \leftarrow V_0(s')\)
 - AO-Update(s)

return \(\pi\)

AO-Update(s) // update \(V\) and \(\pi\) values of \(s\) and its ancestors

\(Z \leftarrow \{s\}\) // nodes that need updating

while \(Z \neq \emptyset\) do
 - select \(s \in Z\) such that \(\hat{\gamma}(s, \pi(s)) \cap Z = \{s\}\)
 - remove \(s\) from \(Z\)
 - Bellman-Update(s)

\(Z \leftarrow Z \cup \{s' \in Envelope \mid s \in \gamma(s', \pi)\}\)

Recall how Guided-Find-Safe-Solution (Chap. 5) made actions inapplicable if they went to dead ends? AO* can be modified to do this too.
Heuristics through Determinization

What to use for V_0?

- classical heuristic function h on the determinized domain Σ_d

- If h is admissible for Σ_d then also admissible for Σ

- Why:
 - Let π be any optimal solution for Σ
 - Let p be any acyclic execution of π
 - p is a plan in Σ_d
 - $h(s_0) \leq \text{cost}(p) \leq \text{cost}(\pi)$
Heuristics through Determinization

What to use for V_0?

- Call classical planner on the determinized problem
 - Get plan $p = \langle a_1, a_2, \ldots, a_n \rangle$
 - Return $V_0(s) = \text{cost}(p)$

- If the classical planner always returns optimal plans, then V_0 is admissible

- Outline of proof:
 - Let π be any solution in Σ
 - Every execution of π corresponds to a solution plan p' in Σ_d
 - Suppose $\text{cost}(p') < V_0(s)$
 - then the planner would have chosen p' instead of p
 - Thus $\text{cost}(p') \geq V_0(s)$

\[m_{23} = 0.2 \quad m_{23_1} = 15 \quad m_{23_2} = 0.8 \]
\[m_{12} = c = 10 \quad m_{12} = 100 \quad m_{14} = 0.5 \quad m_{14_1} = 0.5 \quad m_{14_2} = 20 \]
\[m_{34} = c = 1 \quad m_{34} = 1 \quad m_{54} = c = 100 \]
LAO* \((\Sigma, s_0, S_g, V_0)\)

\[
global \pi \leftarrow \emptyset \\
global Envelope \leftarrow \{s_0\} \\
global V; V(s_0) \leftarrow V_0(s_0) \\
while (\hat{\gamma}(s_0, \pi) \setminus S_g) \cap Fringe \neq \emptyset do \\
select s \in (\hat{\gamma}(s_0, \pi) \setminus S_g) \cap Fringe \\
for all \ a \in \text{Applicable}(s) and s' \in \gamma(s, a) do \\
if s' \in \gamma(s, a) \notin Envelope then \\
add s' to Envelope \\
V(s') \leftarrow V_0(s') \\
LAO-Update(s) \\
return \pi
\]

LAO-Update(s)

\[
Z \leftarrow \{s\} \cup \{s' \in Envelope \mid s \in \hat{\gamma}(s', \pi)\} \\
loop until \ r \leq \eta \ or \ new \ states \ added \ to \ (\hat{\gamma}(s_0, \pi) \setminus S_g) \cap Fringe \\
r \leftarrow \max \{\text{Bellman-Update}(s) \mid s \in Z\}
\]

Bellman-Update(s)

\[
global V, \pi \\
v_{\text{old}} \leftarrow V(s) \\
for every \ a \in \text{Applicable}(s) \ do \\
Q(s, a) \leftarrow \text{cost}(s, a) + \sum_{s' \in S} \Pr(s' | s, a) \ V(s') \\
V(s) \leftarrow \min_{a \in \text{Applicable}(s)} Q(s, a) \\
\pi(s) \leftarrow \arg\min_{a \in \text{Applicable}(s)} Q(s, a) \\
return |V(s) - v_{\text{old}}|
\]

Example: \(V_0(s) = 0\) for all \(s\)

Start: \(s_0 = d1\)

Goal: \(S_g = \{d4\}\)
Example

LAO* (Σ, s_0, S_g, V_0)

Global $\pi \leftarrow \emptyset$

Global $\text{Envelope} \leftarrow \{s_0\}$

Global V; $V(s_0) \leftarrow V_0(s_0)$

while ($\hat{\gamma}(s_0, \pi) \setminus S_g$) \cap Fringe $\neq \emptyset$ do

select $s \in (\hat{\gamma}(s_0, \pi) \setminus S_g) \cap$ Fringe

for all $a \in \text{Applicable}(s)$ and $s' \in \gamma(s, a)$ do

if $s' \in \gamma(s, a) \notin \text{Envelope}$ then

add s' to Envelope

$V(s') \leftarrow V_0(s')$

end

end

LAO-Update(s)

return π

LAO-Update(s)

$Z \leftarrow \{s\} \cup \{s' \in \text{Envelope} \mid s \in \hat{\gamma}(s', \pi)\}$

loop until $r \leq \eta$ or new states added to $\hat{\gamma}(s_0, \pi) \cap$ Fringe

$r \leftarrow \max\{\text{Bellman-Update}(s) \mid s \in Z\}$

Bellman-Update(s)

Global V, π; $v_{old} \leftarrow V(s)$

for every $a \in \text{Applicable}(s)$ do

$Q(s, a) \leftarrow \text{cost}(s, a) + \sum_{s' \in S} \Pr (s'|s, a) \cdot V(s')$

$V(s) \leftarrow \min_{a \in \text{Applicable}(s)} Q(s, a)$

$\pi(s) \leftarrow \text{argmin}_{a \in \text{Applicable}(s)} Q(s, a)$

return $|V(s) - v_{old}|$

return π

$\eta = 0.2$

$V_0(s) = 0$ for all s

Envelope = $\{d_1\}$

Iteration 1 of LAO*'s loop:

select $s = d_1$

Applicable(d1) = $\{m_{12}, m_{14}\}$

add d_2 to Envelope; $V(d_2) \leftarrow 0$

add d_4 to Envelope; $V(d_4) \leftarrow 0$

Call LAO-Update(d1)

π is empty, so $Z = \{d_1\}$

Iteration 1 of LAO-Update's loop:

Call Bellman-update(d1):

$Q(d_1, m_{12}) = 100 + 0 = 100$

$Q(d_1, m_{14}) = 1 + (\frac{1}{2}(0) + \frac{1}{2}(0)) = 1$

$V(d_1) = 1; \pi(d_1) = m_{14}$

$r = V(d_1) - 0 = 1$

Keep iterating until $r \leq 0.2$

$V(d_1) = 1.875; r = 0.0625$

Iteration 2 of LAO*'s loop:

($\hat{\gamma}(s_0, \pi) \setminus S_g$) \cap Fringe $= \emptyset$

so return $\pi = \{(d_1, m_{14})\}$
Nau – Lecture slides for Automated Planning and Acting

\[\text{Modified Example} \]

\[\text{Goal: } S_g = \{d4\} \]

Iteration 1 of L AO \(^*\) 's loop:
- select \(s = d1 \); Applicable\((d1) = \{m12, m14\} \)
- \(V(d2) \leftarrow 0 \); add \(d2 \) to \(\text{Envelope} \)
- \(V(d4) \leftarrow 0 \); add \(d4 \) to \(\text{Envelope} \)

Call L AO-Update\((d1) \)
- \(\pi \) is empty, so \(Z = \{d1\} \)

Iteration 1 of L AO-Update 's loop:
- Call Bellman-update\((d1) \):
 - \(Q(d1,m12) = 100 + 0 = 100 \)
 - \(Q(d1,m14) = 80 + \left(\frac{1}{2}(0) + \frac{1}{2}(0) \right) = 80 \)
 - \(V(d1) = 80; \pi(d1) = m14 \)
- \(r = V(d1) - 0 = 80 \)

Iteration 2 of L AO-Update 's loop:
- Call Bellman-update\((d1) \):
 - \(Q(d1,m12) = 100 + 0 = 100 \)
 - \(Q(d1,m14) = 80 + \left(\frac{1}{2}(80) + \frac{1}{2}(0) \right) = 120 \)
 - \(V(d1) = 100; \pi(d1) = m12 \)
- \(r = V(d1) - 80 = 20 \)

State \(d2 \) added to \((\hat{\gamma}(s_0,\pi) \setminus S_g) \cap \text{Fringe} \)

L AO-Update returns

After more iterations, L AO\(^*\) eventually returns
- \(\pi = \{d1,m12\}, \{d2,m23\}, \{d3,m34\} \)
Skipping Ahead

- Skipping ILAO*, HDP, LDFS$_{a}$, LRTDP, SLATE
 - I’ll come back to these if there’s time
Planning and Acting

Differences:
- Takes explicit starting state s_0
 - Not necessary, could observe s_0 instead
- Doesn’t abstract s (to simplify the presentation)
- Lookahead returns an action instead of a plan

What to use for Lookahead?
- AO*, LAO*, …
 - Modify to search part of the space
- Classical planner searching a determinized domain
 - next page
- Stochastic sampling algorithms

Run-Lookahead(Σ, g) // Chapter 2
$s \leftarrow$ abstraction of observed state ξ
while $s \neq g$ do
 $\pi \leftarrow$ Lookahead(Σ, s, g)
 if $\pi =$ failure then return failure
 $a \leftarrow$ pop-first-action(π); perform(a)
 $s \leftarrow$ abstraction of observed state ξ

Run-Lookahead(Σ, s_0, S_g) // Chapter 6
$s \leftarrow s_0$
while $s \not\in S_g$ and Applicable(s) $\neq \emptyset$ do
 $a \leftarrow$ Lookahead(s, θ)
 perform action a
 $s \leftarrow$ observe resulting state
Planning and Acting

FS-Replan(Σ, s, S_g)

$\pi_d \leftarrow \emptyset$

while $s \not\in S_g$ and Applicable(s) $\neq \emptyset$ do

if $\pi_d(s)$ is undefined then do

$\pi_d \leftarrow \text{Plan2policy(Forward-search (Σ_d, s, S_g))}$

if $\pi_d = \text{failure}$ then return failure

perform action $\pi_d(s)$

$s \leftarrow \text{observe resulting state}$

- FS-Replan (Chapter 5)
 - Run-Lazy-lookahead, with Lookahead = classical planner on determinized domain
 - Generalization of FF-Replan (which used FastForward)
- Problem: classical planner may choose a plan that depends on low-probability outcome
- RFF algorithm (see book) attempts to alleviate this
Multi-Arm Bandit Problem

- Statistical model of sequential experiments
 - Name comes from a traditional slot machine (one-armed bandit)
- Multiple actions a_1, a_2, \ldots, a_n
 - Each a_i provides a reward from an unknown probability distribution p_i
 - Assume each p_i is stationary
 - Same every time, regardless of history
- Objective: maximize expected utility of a sequence of actions
- Exploitation vs exploration dilemma:
 - *Exploitation*: choose action that has given you high rewards in the past
 - *Exploration*: choose action that’s less familiar, in hopes that it might produce a higher reward
UCB (Upper Confidence Bound) Algorithm

- Assume all rewards are between 0 and 1
 - If they aren’t, normalize them
- For each action a, let
 - $r(a) =$ average reward you’ve gotten from a
 - $n(a) =$ number of times you’ve tried a
 - $n_t = \sum_a n(a)$
 - $Q(a) = r(a) + \sqrt{2 \ln n_t / n(a)}$

UCB:
 - if there are untried actions:
 - $\tilde{a} \leftarrow$ any untried action
 - else:
 - $\tilde{a} \leftarrow \operatorname{argmax}_a Q(a)$
 - perform \tilde{a}
 - update $r(\tilde{a}), n(\tilde{a}), n_t, Q(a)$

Theorem (given some assumptions):
As the number of calls to UCB $\to \infty$,
UCB’s choice at each call \to optimal choice

<table>
<thead>
<tr>
<th>Actions:</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of tries:</td>
<td>n(a1) = 5</td>
<td>n(a2) = 3</td>
<td>n(a3) = 2</td>
</tr>
<tr>
<td>Rewards:</td>
<td>r(a1) = 0.4</td>
<td>0.3333</td>
<td>0</td>
</tr>
<tr>
<td>Q values:</td>
<td>Q(a1) = 1.35971</td>
<td>1.5723</td>
<td>1.5174</td>
</tr>
<tr>
<td>Payoffs:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10th</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UCT Algorithm

- **UCT\((s,h)\)**: recursive UCB computation on an SSP
 - Adapted for minimization rather than maximization
- **Monte Carlo rollout**:
 - At \(s\), choose action \(\tilde{a}\) using UCB computation
 - Perform \(\tilde{a}\), get state \(s'\)
 - Do the same thing recursively at \(s'\)
 - Continue until reaching a goal, dead end, or depth \(h\)
 - At each state visited, keep statistics on choices, utilities
Using UCT Offline

\[
\text{loop} \\
\quad \text{call } UCT(s_0, \infty) \\
\quad \forall s, \pi(s) \leftarrow \text{argmax}\{Q(s, a) | a \in \text{Applicable}(s)\}
\]

- As number of calls to UCT $\rightarrow \infty$, π converges to optimal
 - Problem: finding optimal π may take many iterations
- Better for online planning (e.g., Run-Lookahead)
 - $\pi(s_0)$ approaches optimal must faster than the rest of π
Using UCT Online

- Lookahead procedure for Run-Lookahead:
 - call UCT\((s, h)\) multiple times at current state \(s\)
 - e.g., until
 - allotted time runs out, or
 - \(\max\{\text{last change in } Q(s, a) \mid a \in \text{Applicable}(s)\} \leq \eta\)
 - return \(\arg\max\{Q(s, a) \mid a \in \text{Applicable}(s)\}\)

\[
\text{UCT}(s, h) \\
\text{if } s \in S_g \text{ then return } 0 \text{ if } h = 0 \text{ then return } V_0(s) \text{ if } s \notin \text{Envelope} \text{ then do} \text{ add } s \text{ to } \text{Envelope} \quad n(s) \leftarrow 0 \\
\quad \text{for all } a \in \text{Applicable}(s) \text{ do} \quad Q(s, a) \leftarrow 0; \quad n(s, a) \leftarrow 0 \quad Untried \leftarrow \{a \in \text{Applicable}(s) \mid n(s, a) = 0\} \quad \text{if } Untried \neq \emptyset \text{ then } \tilde{a} \leftarrow \text{Choose}(\text{Untried}) \quad \text{else } \tilde{a} \leftarrow \arg\min_{a \in \text{Applicable}(s)} \{Q(s, a) - C \times \lfloor \log(n(s))/n(s, a) \rfloor^{1/2} \} \quad s' \leftarrow \text{Sample}(\Sigma, s, \tilde{a}) \quad \text{cost-rollout} \leftarrow \text{cost}(s, \tilde{a}) + \text{UCT}(s', h - 1) \quad Q(s, \tilde{a}) \leftarrow [n(s, \tilde{a}) \times Q(s, \tilde{a}) + \text{cost-rollout}] / (1 + n(s, \tilde{a})) \quad n(s) \leftarrow n(s) + 1 \quad n(s, \tilde{a}) \leftarrow n(s, \tilde{a}) + 1 \quad \text{return cost-rollout}
\]
Using UCT Online

- Lookahead procedure for Run-Lazy-Lookaahead:
 - loop:
 - call UCT many times at current state
 - At state \(s \) visited, \(\pi(s) \leftarrow \) action with highest expected utility
 - Problem: the farther you follow \(\pi \), the less likely that \(\pi(s) \) is optimal
 - Near the bottom of the tree, \(\pi(s) \) might be \(\approx \) random choice
 - Possible workaround?
 - Modify Run-Lazy-Lookahead to call UCT more frequently

\[
\text{UCT}(s, h)
\]
if \(s \in S_g \) then return 0
if \(h = 0 \) then return \(V_0(s) \)
if \(s \notin Envelope \) then do
 add \(s \) to \(Envelope \)
 \(n(s) \leftarrow 0 \)
 for all \(a \in \text{Applicable}(s) \) do
 \(Q(s, a) \leftarrow 0; \ n(s, a) \leftarrow 0 \)
 \(\text{Untried} \leftarrow \{ a \in \text{Applicable}(s) \mid n(s, a) = 0 \} \)
 if \(\text{Untried} \neq \emptyset \) then \(\tilde{a} \leftarrow \text{Choose}(\text{Untried}) \)
 else \(\tilde{a} \leftarrow \text{argmin}_{a \in \text{Applicable}(s)} \{ Q(s, a) - C \times \left[\log(n(s)) / n(s, a) \right]^{\frac{1}{2}} \} \)
 \(s' \leftarrow \text{Sample}(\Sigma, s, \tilde{a}) \)
 \(\text{cost-rollout} \leftarrow \text{cost}(s, \tilde{a}) + \text{UCT}(s', h - 1) \)
 \(Q(s, \tilde{a}) \leftarrow [n(s, \tilde{a}) \times Q(s, \tilde{a}) + \text{cost-rollout}] / (1 + n(s, \tilde{a})) \)
 \(n(s) \leftarrow n(s) + 1 \)
 \(n(s, \tilde{a}) \leftarrow n(s, \tilde{a}) + 1 \)
return \(\text{cost-rollout} \)
Using UCT with a Simulator

- Suppose you don’t know the probabilities and costs
 - But you have a fast, accurate simulator for the environment
- Lookahead procedure (see previous slides)
 - Run UCT multiple times in the simulated environment
 - Learn state-transition probabilities, expected utilities

\[
\text{UCT}(s, h) \\
\text{if } s \in S_g \text{ then return } 0 \\
\text{if } h = 0 \text{ then return } V_0(s) \\
\text{if } s \notin \text{Envelope} \text{ then do} \\
\quad \text{add } s \text{ to } \text{Envelope} \\
\quad n(s) \leftarrow 0 \\
\quad \text{for all } a \in \text{Applicable}(s) \text{ do} \\
\quad \quad Q(s, a) \leftarrow 0; \; n(s, a) \leftarrow 0 \\
\quad \text{Untried} \leftarrow \{a \in \text{Applicable}(s) \mid n(s, a) = 0\} \\
\text{if } \text{Untried} \neq \emptyset \text{ then } \tilde{a} \leftarrow \text{Choose}(\text{Untried}) \\
\text{else } \tilde{a} \leftarrow \text{argmin}_{a \in \text{Applicable}(s)} \{Q(s, a) - C \times [\log(n(s))/n(s, a)]^{1/2}\} \\
\quad s' \leftarrow \text{Sample}(\Sigma, s, \tilde{a}) \\
\quad \text{cost-rollout} \leftarrow \text{cost}(s, \tilde{a}) + \text{UCT}(s', h - 1) \\
\quad Q(s, \tilde{a}) \leftarrow [n(s, \tilde{a}) \times Q(s, \tilde{a}) + \text{cost-rollout}]/(1 + n(s, \tilde{a})) \\
\quad n(s) \leftarrow n(s) + 1 \\
\quad n(s, \tilde{a}) \leftarrow n(s, \tilde{a}) + 1 \\
\text{return cost-rollout }
\]
Using UCT for Exploration

- Suppose you don’t know the probabilities and costs
- Suppose you can restart your actor as many times as you want
 - Caveat: usually not very feasible in real environments
- Can modify UCT to be an acting procedure, use it to explore the environment

\[
\text{UCT}(s, h) \\
\text{if } s \in S_g \text{ then return } 0 \\
\text{if } h = 0 \text{ then return } V_0(s) \\
\text{if } s \notin Envelope \text{ then do} \\
\quad \text{add } s \text{ to } Envelope \\
\quad n(s) \leftarrow 0 \\
\quad \text{for all } a \in \text{Applicable}(s) \text{ do} \\
\quad \quad Q(s, a) \leftarrow 0; \ n(s, a) \leftarrow 0 \\
\quad \text{Untried} \leftarrow \{a \in \text{Applicable}(s) \mid n(s, a) = 0\} \\
\text{if } \text{Untried} \neq \emptyset \text{ then } \tilde{a} \leftarrow \text{Choose(Untried)} \\
\text{else } \tilde{a} \leftarrow \text{argmin}_{a \in \text{Applicable}(s)} \{Q(s, a) - C \times \log(n(s))/n(s, a)\}^{1/2} \\
\text{s'} \leftarrow \text{Sample}(\Sigma, s, \tilde{a}) \\
\text{cost-rollout} \leftarrow \text{cost}(s, \tilde{a}) + \text{UCT}(s', h - 1) \\
\text{Q}(s, \tilde{a}) \leftarrow [n(s, \tilde{a}) \times Q(s, \tilde{a}) + \text{cost-rollout}]/(1 + n(s, \tilde{a})) \\
\text{n}(s) \leftarrow n(s) + 1 \\
\text{n}(s, \tilde{a}) \leftarrow n(s, \tilde{a}) + 1 \\
\text{return } \text{cost-rollout}
\]
UCT in Two-Player Games

- Generate Monte Carlo rollouts using a modified version of UCT
- Main differences:
 - Instead of choosing actions that minimize accumulated cost, choose actions that maximize payoff at the end of the game
 - UCT for player 1 recursively calls UCT for player 2
 - Choose opponent’s action
 - UCT for player 2 recursively calls UCT for player 1
- First competent computer programs for go
 - \(\approx 2008-2012 \)
- Monte Carlo rollout techniques similar to UCT were used to train AlphaGo
Summary

- SSPs
- solutions, closed solutions, histories
- unsafe solutions, acyclic safe solutions, cyclic safe solutions
- expected cost, planning as optimization
- policy iteration
- value iteration (asynchronous version)
 - Bellman-update
- AO*, LAO*
- Planning and Acting
 - Run-Lookahead
 - FS-Replan
- UCB, UCT