Errata

Last updated May 6, 2020

This list is a work in progress. Some of the following corrections are tentative and may be revised, and additional corrections will probably be added.

Section 2.2.7. In the first bullet, *Children* should be *Frontier*.

Section 2.3.2. Figure 2.8 should be as shown below. The dashed lines indicate situations where an assertion in an r-state \(\hat{s}_i \) is used to r-satisfy the goal \(\hat{g}_{i+1} \) of a later iteration.

Section 2.3.3. In Step 1 of RPG-landmark, replace the phrase “and the only landmark is \(\phi \) itself, so return \(\phi \)” with “and there are no intermediate states, so return \(\emptyset \).”

Example 2.28. The last assignment statement should be

\[
\pi \leftarrow \text{move}(r1, d3, d1), \text{load}(r1, c1, d1), \text{move}(r1, d1, d3)).
\]

Exercise 3.19. Part (a) should be

What sequence of commands will Refine-lookahead, Refine-lazy-lookahead, and Refine-concurrent-lookahead execute?
Definition 4.4. The first sentence of the definition should be

A ground instance of \((\mathcal{T}', \mathcal{C}')\) of \((\mathcal{T}, \mathcal{C})\) is **consistent** if \(\mathcal{T}'\) satisfies \(\mathcal{C}'\) and does not specify two different values for a state variable at the same time.

Example 4.5. The second paragraph should be

The assertions \([t_1, t_2] \\text{loc}(r1) = \text{loc1}\) and \([t_2, t_3] \\text{loc}(r1) : (\text{loc1, loc2})\) are nonconflicting: they have no inconsistent instances.

Example 4.11. For consistency with Examples 4.12 and 4.17, put \((k', r, c, p')\) and take \((k', r, c, p')\), respectively.

Example 4.12. In \(m\)-move1, \text{navigate}(w, w)\) should be \text{navigate}(r, w, w).

Section 4.2.1, near the end of the section.

Let \((\mathcal{T}, \mathcal{C}) = (\mathcal{T}_1, \mathcal{C}_1) \cup \ldots \cup (\mathcal{T}_k, \mathcal{C}_k)\). If (i) each timeline \((\mathcal{T}_i, \mathcal{C}_i)\) is secure and (ii) no pair of timelines \((\mathcal{T}_j, \mathcal{C}_j)\) and \((\mathcal{T}_j, \mathcal{C}_j)\) have any unground variables in common, then \((\mathcal{T}, \mathcal{C})\) is secure. The book omits part (ii).

Exercise 4.8. The reference to Exercise 4.4 should instead be a reference to Exercise 4.3.

Section 5.2.3. The definition of a reachability graph should be this:

\[
\text{Graph}(s, \pi) = (\hat{\gamma}(s, \pi), \{(s', s'') \mid s' \in \hat{\gamma}(s, \pi) \text{ and } s'' \in \gamma(s', \pi(s'))\})
\]

or perhaps more clearly,

\[
\text{Graph}(s, \pi) = (V, E), \text{ where } V = \hat{\gamma}(s, \pi), E = \{(s', s'') \mid s' \in \hat{\gamma}(s, \pi) \text{ and } s'' \in \gamma(s', \pi(s'))\}
\]

Section 5.2.3. The last line before Example 5.5 should be

We let \(\hat{\Gamma}(s)\) be the set of all states that are reachable from \(s\), i.e., \(\Gamma(s) = \bigcup\pi \hat{\gamma}(s, \pi)\).

Exercise 5.7(b). Remove the words “by drawing the And/Or search tree.”

Section 6.2.1. Where definition 6.3 says \(\text{leaves}(s_0, \pi) \cap S_g \neq \emptyset\), it should instead say \(\hat{\gamma}(s_0, \pi) \cap S_g \neq \emptyset\).
Section 6.2.3. The paragraph after Equation 6.3 should be

A closed policy π' dominates a close policy π if and only if $V^{\pi'}(s) \leq V^\pi(s)$ at every state s where both π and π' are defined. A closed policy π^* is optimal if it dominates all other closed policies. At every state s where π^* is defined, it has a minimal expected cost: $V^*(s) = \min_\pi V^\pi(s)$. Under our assumption of probabilistic planning in a domain without dead ends, π^* is guaranteed to exist.

Algorithm 6.8. V, π, and Envelope should be global variables. Also, the following line should be added at the beginning of the algorithm:

$$V_0(s_0) \leftarrow V(s_0)$$

Section 6.4.2. RFF, Algorithm 6.16, should be as follows:

<table>
<thead>
<tr>
<th>Algorithm 1: A determinization planning algorithm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$RFF(\Sigma, s_0, S_g, \theta)$</td>
</tr>
<tr>
<td>$\pi \leftarrow $ Det-Plan(Σ_d, s_0, S_g)</td>
</tr>
<tr>
<td>if $\pi = \text{failure}$ then return failure</td>
</tr>
<tr>
<td>while $\exists s \in \tilde{\gamma}(s_0, \pi) \setminus (\text{Dom}(\pi) \cup S_g)$ such that $\Pr(s</td>
</tr>
<tr>
<td>$\pi' \leftarrow $ Det-Plan$(\Sigma_d, s, S_g \cup \text{Targets}(\pi, s))$</td>
</tr>
<tr>
<td>if $\pi = \text{failure}$ then return failure</td>
</tr>
<tr>
<td>$\pi \leftarrow \pi \cup {(s, a) \in \pi' \mid s \notin \text{Dom}(\pi)}$</td>
</tr>
</tbody>
</table>