
1Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Last update: 11:09 PM, March 7, 2025

Acting, Planning,
and Learning

Malik Ghallab, Dana Nau,
and Paolo TraversoChapter 11

Acting with Nondeterministic Models

Dana S. Nau
University of Maryland

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Motivation

● In Chapters 8–10, we had probability distributions over the
possible outcomes of actions

● Sometimes we want to reason about nondeterminism without
the probability distributions
▸ Probabilities might not be available
▸ We might want policies that satisfy safety conditions:

• Guaranteed to work for all possible action outcomes

a
c
b

grasp(c)

a

c

b

a b c

Credit: Dennis Hill, CC BY 2.0 Credit: David Wilson, CC BY 2.0Credit: Airtuna08, CC BY-SA 3.0

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://www.flickr.com/people/7888217@N04
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/people/32693718@N07
https://creativecommons.org/licenses/by/2.0/
https://en.wikipedia.org/wiki/User:Airtuna08
https://creativecommons.org/licenses/by-sa/3.0

3Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

● Very simple harbor management domain
▸ Unload a single item from a ship
▸ Move it around a harbor

● One state variable: pos(item)
▸ Simplified names for states
▸ For {pos(item)=on_ship}, just write on_ship

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Credit: Slaunger, CC BY-SA 3.0

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://en.m.wikipedia.org/wiki/User:Slaunger
https://creativecommons.org/licenses/by-sa/3.0/deed.en

4Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Nondeterministic Planning Domains

● 3-tuple (S, A, γ)
▸ S and A – finite sets of states and actions
▸ γ: S × A → 2S

● γ(s,a) = {all possible “next states” after
 applying action a in state s}
▸ a is applicable in state s iff γ(s,a) ≠ ∅

● Applicable(s) = {all actions applicable in s}
 = {a ∈ A | γ(s,a) ≠ ∅}

● Example:
▸ Applicable(at_harbor) = {park}
▸ park has three possible outcomes

• put item in parking1 or parking2 if one of them has space
• or in transit1 if there’s no parking space

▸ γ(at_harbor, park) = {parking1, parking2, transit1}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

5Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Nondeterministic Planning Domains
● One possible action representation:

▸ like classical, but with n mutually exclusive “effects” lists
● e.g., park:

 pre: pos(item) = at_harbor
 eff1: pos(item) ← parking1
 eff2: pos(item) ← parking2
 eff3: pos(item) ← transit1

● Problem:
▸ number of effects lists may be combinatorially large
▸ Suppose a can cause any possible

combination of effects e1, e2, …, ek

▸ Need eff1 , eff2 , …, eff2k
• One for for each combination

▸ Section 12.3: a different representation that can alleviate this
● For now, ignore most of that, just look at the underlying semantics

▸ states, actions ⇔ nodes, edges in a graph

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

6Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Nondeterministic Planning Domains

● For deterministic planning problems, search
space was a graph

● Now it’s an AND/OR graph
▸ OR branch:

• several applicable actions,
which one to choose?

▸ AND branch:
• multiple possible outcomes,

must handle all of them
● Analogy to PSP in Chapter 2

▸ OR branch ⇔ action selection
▸ AND branch ⇔ flaw selection

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

7Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Policies
● Policy: a function π : S′ → A

▸ S′ ⊆ S
▸ For every s ∈ Domain(π),

require π(s) ∈ Applicable(s)
● Two equivalent notations:

● That’s just the notation
▸ implementation could be quite different

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

π1 = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver)}

π1(on_ship) = unload,
π1 (at_harbor) = park,
π1 (parking1) = deliver

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

8Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Definitions Over Policies
● Transitive closure:

▸ %γ(s,π) = {all states reachable from s using π}
▸ %γ(s,π) = S0 ∪ S1 ∪ S2 ∪ …

S0 = {s}
S1 = S0 ∪{γ(s0,π(s0)) | s0 ∈ S0}
S2 = S1 ∪{γ(s1,π(s1)) | s1 ∈ S1}
…

● Reachability graph: Graph(s,π) = (V,E)
▸ V = %γ(s,π)
▸ E = {(s1,s2) | s1∈V, s2∈ γ(s1,π(s1))}

● leaves(s,π) = γ̂(s, π) ∖ Dom(π)
▸ may be empty

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

π1 = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver)}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

9Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Acting with a Policy

● ActPolicy(π)
 s ← observe current state
 while s ∈ Domain(π) do
 perform action π(s)
 s ← observe current state

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

π1 = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver)}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

10Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

s0

π1 = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver)}

Types of Policies

● Acting (or planning) problem P = (Σ,s0,Sg)
▸ planning domain Σ = (S,A,γ), initial state s0 ∈ S,

set of goal states Sg ⊆ S (shown in green)
● π is a solution if at least one execution ends at a

goal
▸ leaves(s,π) ∩ Sg ≠ ∅

● A policy π is safe if
∀s ∈ γ̂(s0,π), leaves(s,π) ∩ Sg ≠ ∅
▸ at every state in γ̂(s0,π),

at least one of the execution paths
from s using π stops at a goal state.

● Otherwise, unsafe policy

Sg

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Poll: Is π1 safe or unsafe?

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

11Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Safe Policies
● Acyclic safe policy

▸ Graph(s0,π) is acyclic, and leaves(s,π) ⊆ Sg

● If we run ActPolicy(π) starting at s0,
we’re guaranteed to stop at a goal

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

● ActPolicy(π)
 s ← observe current state
 while s ∈ Domain(π) do
 perform action π(s)
 s ← observe current state

π2 = {(on_ship, unload), (at_harbor, park),
 (parking1, deliver), (parking2, deliver),
 (transit1, move), (transit2, move),
 (transit3, move)}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

12Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Safe Policies
● Cyclic safe policy

▸ Graph(s0, π) is cyclic, and leaves(s,π) ⊆ Sg ,
and ∀s ∈ γ̂(s0,π), leaves(s,π) ∩ Sg ≠ ∅
• At every state s in γ̂(s0,π),

at least one of the execution
paths from s using π
ends at a goal state

▸ Will never get caught in
a dead end

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

back Poll: Let π be a cyclic
safe solution. Suppose
we run ActPolicy(π)
starting at s0.
1. Are there situations

where we can be sure
π will reach a goal?

2. Are there situations
where we can’t be
sure π will reach a
goal?

● ActPolicy(π)
 s ← observe current state
 while s ∈ Domain(π) do
 perform action π(s)
 s ← observe current state

move
move

π3 = {(on_ship, unload), (at_harbor, park),
 (parking1, deliver), (parking2, back),
 (transit1, move), (transit2, move),
 (gate1, back)}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

13Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Safe Policies
● Cyclic safe policy

▸ Graph(s0, π) is cyclic, and leaves(s,π) ⊆ Sg,
and ∀s ∈ γ̂(s0,π), leaves(s,π) ∩ Sg ≠ ∅
• At every state s in γ̂(s0,π),

at least one of the execution
paths from s using π
ends at a goal state

▸ Will never get caught in
a dead end

▸ Every “fair”
execution will
reach a goal

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

back Poll:
1. Can you think of a

real-world situation
in which all
executions are “fair”?

2. Can you think of a
real-world situation
in which there are
“unfair” executions?

● ActPolicy(π)
 s ← observe current state
 while s ∈ Domain(π) do
 perform action π(s)
 s ← observe current state

move
move

π3 = {(on_ship, unload), (at_harbor, park),
 (parking1, deliver), (parking2, back),
 (transit1, move), (transit2, move),
 (gate1, back)}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

14Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Kinds of Solution Policies

14

Goal States

a
acyclic
policies

bunsafe
policies

ccyclic
policies

safe
policies

solution
policies

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

15Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

open
door

Beyond Policies

● Sometimes we want to give the actor
instructions that can’t be described as a
policy, e.g.,

• Try to open the door twice.
If it opens, go through it.
If it doesn’t, go to another door

● The book describes two other ways to
represent instructions to the actor
▸ Input/Output Automata
▸ Behavior Trees

● I’ll discuss behavior trees in a separate
set of slides

door
closed s2

door
closed

go elsewhere

s3
go thru door

door
closed

door
open

• same state of the world
• actor’s internal state is different

open
door

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

16Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Summary

● Actions, plans, policies, planning problems
● Types of solution policies:

▸ unsafe, safe (acyclic, cyclic)
● Motivation for instructions other than policies

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

