Last update: 11:09 PM, March 7, 2025

Acting, Planning,
and Learning

Chapter 11 e
Acting with Nondeterministic Models

Dana S. Nau
University of Maryland

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Motivation

e In Chapters 810, we had probability distributions over the
possible outcomes of actions

e Sometimes we want to reason about nondeterminism without
the probability distributions &

> Probabilities might not be available
> We might want policies that satisfy safety conditions:

e Guaranteed to work for all possible action outcomes

COUNTY OAD“

BRIDGE CLOSED

< 3000 FEET AHEAD
- LOCAL TRA
«®® S s e
<. ; ;
Credit: Dennis Hill, CC BY 2.0 Creit: Airtuna08, C BY—A 3.0

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://www.flickr.com/people/7888217@N04
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/people/32693718@N07
https://creativecommons.org/licenses/by/2.0/
https://en.wikipedia.org/wiki/User:Airtuna08
https://creativecommons.org/licenses/by-sa/3.0

@ Example

T []

transit3

parking2

Credit: Slaunger, CC BY-SA 3.0

gatel
e Very simple harbor management domain
> Unload a single item from a ship unload
> Move it around a harbor on_ship at_harbor
gate2

e One state variable: pos(item)
> Simplified names for states

» For {pos(item)=on_ship}, just write on_ship
transitl

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 transit2

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://en.m.wikipedia.org/wiki/User:Slaunger
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Nondeterministic Planning Domains

e 3-tuple (S, 4, y)
» S and 4 — finite sets of states and actions
> v S X 425

e v(s,a) = {all possible “next states” after
applying action a in state s}

transit3

back

> a 1s applicable in state s iff y(s,a) # @
e Applicable(s) = {all actions applicable in s}

gatel
={a€Ad|y(sa)# 0}
e Example: unload
> Applicable(at_harbor) = {park} onship at harbor
> park has three possible outcomes gate2

e putitem in parkingl or parking2 if one of them has space
e or in transitl if there’s no parking space

> y(at_harbor, park) = {parkingl, parking2, transit1}

transitl

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 transit2

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Nondeterministic Planning Domains

e One possible action representation:

> like classical, but with » mutually exclusive “effects” lists

¢ c.g, park: transit3
pre: pos(item) =at_harbor
eff;: pos(item) < parkingl
eff,: pos(item) < parking2
eff;: pos(item) < transitl

parking?2

back

e Problem:

] . . gatel
> number of effects lists may be combinatorially large
> Suppose a can cause any possible unload

combination of effects e, e, ..., ¢,
on_ship at_harbor
> Need eff|, eff,, ..., effyx
gate2

e One for for each combination

Section 12.3: a different representation that can alleviate this

v

e For now, ignore most of that, just look at the underlying semantics

. . transitl
> states, actions < nodes, edges in a graph

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

transit2

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Nondeterministic Planning Domains

e For deterministic planning problems, search
space was a graph

e Now it’s an AND/OR graph transit3
» OR branch:

e several applicable actions,
which one to choose?

» AND branch:

parking?2

back

. . gatel
e multiple possible outcomes,
must handle all of them unload
e Analogy to PSP in Chapter 2
)) on_ship at_harbor
» OR branch & action selection gate2

» AND branch & flaw selection

transitl

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 transit2

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Policies

e Policy: afunctionz:S'— A4
» §'c S

» For every s € Domain(rx), transit3
require 7(s) € Applicable(s)

e Two equivalent notations:

parking?2

n;(on_ship) = unload, deliver
n, (at_harbor) = park,

n, (parkingl) = deliver

n; = {(on_ship, unload),
(at_harbor, park),
(parkingl, deliver)}

e That’s just the notation

» implementation could be quite different

transitl

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 transit2

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Definitions Over Policies

e Transitive closure:
> ¥(s,m) = {all states reachable from s using =}
> Y(s,m) =S, US,US, U ... transit3
So = {s}
S1= S0 U{y(s0.7(s0)) | S0 € So}
S, =81 U{y(s,m(s))) | 51 € 51}

parking?2

back deliver

® Reachability graph: Graph(s,n) = (V,E)
> V'=9%(s,m)
> E = {(s19) | i€V, € y(sin(s)y P

at_harbor

® leaves(s,m) = (s,) \ Dom(r) n; = {(on_ship, unload),

> may be empty (at_harbor, park),
(parkingl, deliver)}

transitl

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 transit2

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Acting with a Policy

e ActPolicy(m)
§ «— observe current state
while s € Domain(z) do transit3
perform action 7z(s)
§ «— observe current state

n; = {(on_ship, unload),
(at_harbor, park),
(parkingl, deliver)}

transitl

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 transit2

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Types of Policies

e Acting (or planning) problem P = (X,5,,S,)

> planning domain X = ($,4,y), initial state s, € S,

set of goal states S, § (shown in green) transit3

e s asolution if at least one execution ends at a
goal

> leaves(s,m) N S, # @

parking?2 .
deliver

—_—)

e A policy 7 1s safe if
Vs € J(s¢,m), leaves(s,m) N S, #
> at every state in J(s,,7),
at least one of the execution paths
from s using 7 stops at a goal state.

on_ship at_harbor

e Otherwise, unsafe policy

n; = {(on_ship, unload),
(at_harbor, park),
(parkingl, deliver)}

Poll: Is &, safe or unsafe?

transitl

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 transit2

10

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Safe Policies

e Acyclic safe policy

e ActPolicy(r)

s «— observe current state
while s € Domain(x) do
perform action 7z(s)
s «— observe current state

> Graph(s,,r) is acyclic, and leaves(s,m) € S,

e [fwe run ActPolicy(m) starting at s, transit3

parking?2

we’re guaranteed to stop at a goal back
_
O

©, = {(on_ship, unload), (at_harbor, park),
(parkingl, deliver), (parking2, deliver),
(transitl, move), (transit2, move),
(transit3, move)} transitl

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 transit2

11

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Safe Policies

e (yclic safe policy
> Graph(sy,) is cyclic, and leaves(s,m) € S,
and Vs € J(so,7), leaves(s,m) N S, # @
e At every state s in J(sy,7), back

at least one of the execution
paths from s using ©

ends at a goal state back
> Will never get caught in
a dead end
unload park
on_ship at_harbor
n; = {(on_ship, unload), (at_harbor, park),
(parking1, deliver), (parking2, back),
(transitl, move), (transit2, move),
(gatel, back)} transitl

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

arking2
5 R deliver

deliver

parkingl

move

e ActPolicy(r)
s <— observe current state
while s € Domain(x) do

perform action 7z(s)
s <— observe current state

transit3

7

move

gatel

gate2

move

Poll: Let t be a cyclic
safe solution. Suppose
we run ActPolicy(m)
starting at s,,.

1. Are there situations
where we can be sure
nt will reach a goal?

2. Are there situations
where we can’t be
sure © will reach a
goal?

12

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Safe Policies

e (yclic safe policy

» Graph(s,, m) 1s cyclic, and leaves(s,r) ©
and Vs € y(s¢,m), leaves(s,w) N S, # @

e At every state s in J(sy,7),
at least one of the execution
paths from s using ©
ends at a goal state

> Will never get caught in
a dead end

» Every “fair” unload
execution will
reach a goal on_ship at_harbor

n; = {(on_ship, unload), (at_harbor, park),

(parking1, deliver), (parking2, back),
(transitl, move), (transit2, move),
(gatel, back)}

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Se,

back

back

park

transitl

arking2
5 R deliver

deliver

parkingl

move

e ActPolicy(r)
s «— observe current state
while s € Domain(x) do
perform action 7z(s)
s «— observe current state

transit3
Poll:
CP 1. Can you think of a
move real-world situation

mn which all
executions are “fair”’?

gatel | 2. Can you think of a
real-world situation
in which there are
“unfair” executions?

gate2

move

13

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Kinds of Solution Policies

safe

. policies
solution

policies

-y

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

acyclic
policies

cyclic c
policies (l'_’

unsafe
policies

<)/b'\‘

Goal States

14

14

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Beyond Policies

e Sometimes we want to give the actor

instructions that can’t be described as a * same state of the world
policy, ¢.g., * actor’s internal state is different

l...

e Try to open the door twice. < door 20 elsewhere
If it opens, go through it. AR Spen- closed $2
If 1t doesn’t, go to another door door closed door
. closed " gpen door ¥ go thru door
e The book describes two other ways to door open S3

represent instructions to the actor
> Input/Output Automata

» Behavior Trees

e [’ll discuss behavior trees in a separate
set of slides

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 15

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Summary

e Actions, plans, policies, planning problems
e Types of solution policies:
» unsafe, safe (acyclic, cyclic)

e Motivation for instructions other than policies

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

16

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

