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Motivation Outline

e How to model a complex environment? 2.2. State-Transition Systems

> Generally need simplifying assumptions 2.3. State-Variable Representation

e Classical planning 2.6. Acting

e Finite, static world, just one actor 2.4. Classical Representation

e No concurrent actions, no explicit time : :
.. : 2.5. Computational Complexity

e Determinism, no uncertainty, no exogeneous events

e Full observability

e Unit-cost actions Chapter 2 of Haslum et al. (2019)*
> Sequence of states and actions (s, a;, S, dy, S5, ...) > Classical fragment of PDDL

: .. > Planning domains and problems
e Avoids many complications
> untyped, typed

e Most real-world environments don’t satisfy the assumptions
= Errors in prediction

* Haslum, Lipovetzky, Magazzini, & Muise.
An Introduction to the Planning Domain
Definition Language. Morgan Claypool, 2019.

e OK if they’re infrequent and don’t have severe consequences
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Section 2.1. State-Transition Systems

State-transition system or classical planning domain: ® plan:
o X =(54,y,cost) or (S54,y) > asequence of actions = = (ay, ..., a,)

e 7 is applicable n s if the actions are applicable in
the order given

» S - finite set of states

» A4 - finite set of actions B
> v:SXA4—> S Y(So. @1) = s,

o . o, . S , a = S
prediction (or state-transition) function Y(s1, a2) =5,

e partial function: y(s,a) is not necessarily
defined for every (s,a) Y(Sn1r @) =,
> ais applicable in s iff y(s,a) is defined > In this case define (s, 7) = s,
» Domain(a) = {s € S| a is applicable in
s}
» Range(a) = {y(s,a) | s € Domain(a)}
» cost: §XA4 — R" or cost:4— R*

e optional; default is cost(a) = 1

e Classical planning problem:

> P=(2,50,5,)

» planning domain, initial state, set of goal states
e Solution for P:

: . » a plan 7 such that that y(s,,7) € S
e money, time, something else P ¥(s0.7) € S
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Planning Problems

¢ = (611., cony p) 18 applicaéle in s 1f ® Solution for P: a plan & such that that y(sy,7) € S,
tgl}f];(;tlons are applicable in the order » Minimal solution: no subsequence is also a solution

v(So, @) = > Shortest solution: no solution has fewer actions
0 1) =S5
Y(sy, @) =S, > Optimal solution: no solution has lower cost

”}/(S La,) =S e Example: Suppose P has three solutions

» In this case we define e T =(a)
® Y(S09 7[) — Sn ¢ 7[2 - (Clz, a3> CZ4, Cl5>
¢ ?(SOJTE) — <S09° e e Sn) ¢ 71-3 - <a29 613, al)

» Then mt; is both shortest and optimal
e C(lassical planning problem:

g P:(Z,So, Sg)

> planning domain, initial state, set
of goal states

e Poll: Which solutions are minimal?
A.ry B.wm, C m
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Acting with a Plan

e A simple procedure for running a plan e Ideally, Run-Plan(X, {(a,, ..., a,)) will take X
Run-Plan(Z, 7): through through the sequence of states
while True do ° Y(so,m)=(S,..., S,)
1 s < observe current state then return sUccess
if 7 = () then
2 | return success

e But recall that X is unlikely to be a perfect

a <« pop(rm) model of the actor’s environment
3 if a ¢ Applicable(s) then return failure

perform action a » Later we’ll discuss some things that can go

wrong

e To test whether w has achieved a desired goal S,
> add S, as a third argument
> before line 2, insert this:

ifs & Sg then return failure
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Section 2.2. Representation

e We write Run-Plan(Z, m)

» But what Run-Plan really needs is data
structures that represent X and n

e If S and A4 are small enough
» (Give each state and action a name

» For each s and a, store y(s,a) in a lookup table

e In larger domains, don’t represent all states
explicitly

» Language for describing properties of states

» Language for describing how each action
changes those properties

» Start with initial state, use actions to
produce other states

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0
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Kinds of Representations

e Domain-specific representation: e Advantage: can use whatever works best for that
> tailor-made for a specific environment particular domain
e State: arbitrary data structure e Disadvantage: for each new domain, need new

. .. representation, new algorithms
e Action: (head, preconditions, effects, cost) P 5

> head: name and parameter list

: : . e Alternative: domain-independent representation
e (et actions by instantiating the parameters

» A “standard format” that can be used for many

R S
preconditions: different planning domains

e Computational tests to predict whether an

, » Limited representational capability, but easy to
action can be performed p p y y

compute
e Should be necessary/sufficient for the action

to run without error

> effects:

* Procedures that modify the current state » We’ll use a state-variable representation ...

> cost: procedure that returns a number

» Domain-independent algorithms that work for
anything in this format

e (Can be omitted, default 1s cost = 1
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Example

e Drilling holes in a metal workpiece
> A state
e geometric model of the workpiece
> annotated with dimensions, tolerances, etc.

e capabilities and status of
drilling machine and drill bit

» Several actions
e clamp the workpiece onto the drilling machine

e Joad a drill bit into the machine
e drill a hole

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Name: drill-hole
Arguments:
» ID codes for the machine and drill bit
» annotated geometric model of the workpiece
» description of the hole to be drilled
Preconditions

» Capabilities: can the machine and drill bit
produce the desired hole?

> Current state: Is the drill bit installed? Is the
workpiece clamped onto the table? Etc.

Effects

» annotated geometric model of modified
workpiece

Cost

> estimate of time or monetary cost
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Discussion

e Advantage of domain-specific representation:

> use whatever works best for that particular
domain

e Disadvantage:

» for each new domain, need new
representation and deliberation algorithms

e Alternative: domain-independent representation

> Try to create a “standard format” that can be
used for many different planning domains

> Deliberation algorithms that work for
anything in this format

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

e State-variable representation

» Simple formats for describing states and
actions

» Limited representational capability

e But easy to compute, easy to reason
about

» Domain-independent search algorithms and
heuristic functions that can be used in all
state-variable planning problems
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State-Variable Representation

e Objects = {names of objects in the environment}

e Organized into an fyped ontology

> sets of object types

d3
® Objects = Robots U Containers U Locs U {nil} %/

d2

> Robots = {r1} orl SR
> Containers = {cl, c2} cll/dl / c2

> Locs = {d1, d2, d3}

e Objects only needs to include objects that matter at the current level of
abstraction

e Can omit lots of details

> physical characteristics of robots, containers, loading docks, roads, ...

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0
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Rigid Properties

e Objects have two kinds of properties
> rigid and varying
® Rigid: stays the same in every state
» Can be described as a mathematical relation

adjacent = {(d1,d2), (d2,d1), (d1,d3),
(d3,d1)}

» Or equivalently, a set of ground atoms
adjacent(d1,d2), adjacent(d2,d1),
adjacent(d1,d3), adjacent(d3,d1)

» I’ll use the two notations interchangeably

% ds3 /
rl ~
0,/

c2 |/ d2

O O
Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0
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Terminology from first-order logic:

® atom = atomic formula = positive literal
= predicate symbol with list of arguments

> e.g., adjacent(x,d2), where x is unbound

e negative literal = negated atom = atom with negation
sign in front of it

> e.g., " adjacent(x,d2)

e an atom that contains no variable symbols is ground (or
fully instantiated)

> e.g., adjacent(d1,d2)

e an atom that contains no constant symbols is lifted
> e.g., adjacent(x,y)

e an atom that contains both is partially instantiated
> e.g., adjacent(x,d2)

e ground instance of any expression: replace every
variable with a value in its range

> e.g., adjacent(dl1,d2) is a ground instance of both
adjacent(x,d2) and adjacent(x,y)

11
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Varying Properties

e Varying property (or fluent):
e a property that may differ in different states
e Represent it using a state variable
> a term that we can assign a value to
e e.g, loc(rl)
e Let X = {all state variables in the environment}
e.g., X = {loc(rl), loc(cl), loc(c2), cargo(rl)}

e FEach state variable x € X has a range
= {all values that can be assigned to x

e Range(loc(rl)) = Locs
e Range(loc(cl)) = Range(loc(c2)) = Robots U Locs
e Range(cargo(rl)) = Containers U {nil}

e To abbreviate the “range” notation often I’ll just say things like

> loc(rl) € Locs
> loc(cl), loc(c2) € Robots U Locs

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0
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e

rl
O
dl

O..

4,
o0/
c2 |/ d2

/

Instead of “domain”,
to avoid confusion
with planning domains
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States as Functions

e Represent each state s as a function that assigns values to state variables

» For each state variable x, s(x) 1s one x’s possible values

si(loc(rl)) =d1, si(cargo(rl)) = nil, %ﬁ/ d3

si(loc(cl)) =d1, si(loc(c2)) =d2 1

d2

. 7
O 0 O
cl|/dl /L c2
e Mathematically, a function is a set of ordered pairs
s; = {(loc(rl), d1), (cargo(rl), nil), (loc(cl), d1), (loc(c2), d2)}

e Equivalently, write it as a set of ground positive literals (or ground atoms):

s; = {loc(rl)=d1, cargo(rl)=nil, loc(cl)=d1, loc(c2)=d2}

> Here, we’re using ‘=’ as a predicate symbol

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0
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Action Schemas

e Action schema (or template): parameterized set

of actions
o = (head, pre, eff, cost)
» head: name, parameters
> pre: precondition literals
eff: effect literals

cost: a number (optional, defaultis 1)

v

v

® c.g.,
> head = take(r,/,c)
» pre = {cargo(r)=nil, loc(r)=l, loc(c)=l}
» eff = {cargo(r)=c, loc(c)=r}

e FEach parameter has a range of possible values.

» Range(r) = Robots = {rl}

» Range(/) = Locs = {d1,d2,d3}

» Range(/) = Range(m) = Locs = {d1,d2,d3}
» Range(c) = Containers = {c1,c2}

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

g

ri

- 4,
o o0 oo/
cl |/dl c2 |/ d2 /

We’ll usually write it
more like pseudocode:

the target
of the
assignment

move(r,[,m)
pre: loc(r)=[, adjacent(/,m)
eff: _loc(r) «— m

— | take(r,/¢)

pre: cargo(r)=nil, loc(r)=l, loc(c)=l
eff: cargo(r) < ¢, loc(c) <« r

put(r,/,c)
pre: loc(r)=[, loc(c)=r
eff: cargo(r) < nil, loc(c) « [

r € Robots = {rl}
[,m € Locs = {d1,d2,d3}
c € Containers = {cl,c2}

14
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® 7 = set of action schemas

move(r,[,m)
pre: loc(r)=[, adjacent(/, m)
eff: loc(r) «— m

take(r,/,c)
pre: cargo(r)=nil, loc(r)=L, loc(c)=l
eff: cargo(r) « ¢, loc(c) <« r

put(r,/,c)
pre: loc(r)=/, loc(c)=r
eff: cargo(r) « nil, loc(c) </

r € Robots = {rl}
[,m € Locs = {d1,d2,d3}

c € Containers = {cl,c2}
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Actions

e Action: ground instance of an o € 4

> replace each parameter with something in its range

e A = {all actions we can get from 4}
= {all ground instances of members of 4}

move(rl,d1,d2)
pre: loc(rl)=d1, adjacent(d1,d2)
eff: loc(rl) «— d2

%‘B /
rl | ~
O 0 O
cl|/dil /ch d2 /

15
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Actions

e 4 =setof action schemas e Action: ground instance a of an action schema a € 4

such that no state variable is a target of more than one
move(r,[,m) effect eff(a)
pre: loc(r)=[, adjacent(/, m)

e A = {all actions we can derive from 4}
eff: loc(r) «— m

= {all ground instances of members of 4}

move(rl,d1,d2)
pre: loc(rl)=d1, adjacent(d1,d2)
eff: loc(rl) «— d2

e We’ll normally refer to an action by writing its head

take(r,/,c)
pre: cargo(r)=nil, loc(r)=L, loc(c)=l
eff: cargo(r) « ¢, loc(c) <« r

pug:é{’fgc(r)=l, loc(c)=r e g vl » move{rl,dl,d2)
eff: cargo(r) < nil, loc(c) « / Answers:
A. 1l F. 6
r € Robots = {r1} Poll. Let: B. 2 G. 7
Lm € Locs = {d1,d2,d3} A = {the action schemas on this page} C. 3 H. 8
¢ € Containers = {c1,c2} A = {all ground instances of members of 4} || D. 4 I. 9
How many move actions in 4? E. 5

J. other

16
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Appllcablllty Poll: How many
o Act h move actions are
® qis applicable in s if CHOT sehetia applicable in s,?
Y move(r,l,m)
> for every positive literal / € pre(a), pre: loc(r)=1, adjacent(l, m) Al F. 6
[ € s or [ 1s in one of the rigid relations eff: loc(r) «— m B. 2 G 7
» for every negative literal —/ € pre(a), r € Robots = {rl} C. 3 H. 8
[ € s and / 1sn’t in any of the rigid relations [,m € Locs = {d1,d2,d3} D 4 [ 9
. . E. 5 J. other
e Rigid relation e Applicable:
. B move(rl,d1,d2)
adjacent= {(d1,d2), (d2,d1), (d1,d3), (d3,d1)} pre: loc(r1)=d1, adjacent(d1,d2)
e State eff: loc(rl) « d2
s; = {loc(rl)=d1, cargo(rl)=nil, loc(cl)=d1,

e Not licable:
loc(c2)= Ot APPHE
O

d2
} 43 / move(rl,d2,d1)
a pre: loc(rl)=d2, adjacent(d2,d1)
eff: loc(rl) « d1
rl | U ~

o/

1 c2 |/ d2 /

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0
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Applying an Action

e Ifaisapplicable in s:

> v(s,a) = {x=w| eff(a) contains x«—w}

U {x=w | x1sn’t a target in eff(a)} / . /%A

e s5,= {loc(rl)=d2, cargo(rl)=nil, loc(cl)=d1, loc(c2)=d2} rl | J——7
cl]/dil /L 2 d2 V

e « = take(rl,c2,d2)
pre: cargo(rl)=nil, loc(rl)=d2, loc(c2)=d2
eff: cargo(rl) < c2, loc(c2) «r1l

® v(s,, take(rl,c2,d2)) = / d3 /%
c2

{loc(rl)=d2, loc(cl)=d1, cargo(rl)=c2, loc(c2)=r1} / rl ) 74

| N o [al)dr 92 ?
from s, from eff(a)

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 18
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Applying a Plan

e A plan & is applicable in a state s if we can apply
the actions in the order that they appear in n

e This produces a sequence of states » 1 ={move(rl,d3,d1), take(rl,c1,d1), move(rl,d1,d3))
® v(s,m) = the last state in the sequence > ¥(S0,7) = 53

> '/Y\ - <S09 S1, 82, S3)

EaP Y Wy , %
take(rl,c1,d1) 22 move(rl,d1,d3) / 22

Jrl o Cg'x, / j )
dl d2 dl d2

so = {loc(rl)=d3, s1 = {loc(rl)=d1, s, = {loc(rl)=d1, s3 = {loc(r1)=d3,
cargo(rl)=nil, cargo(rl)=nil, cargo(rl)=cl, cargo(rl)=cl,
loc(cl)=d1, loc(cl)=d1, loc(cl1)=r1, loc(c1)=r1,
loc(c2)=d2} loc(c2)=d2} loc(c2)=d2} loc(c2)=d2}

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 19
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State-Variable Planning Domain

o [ect
» O = ontology of typed objects
» R = set of rigid relations

» X = set of lifted state variables, including
specifications of their ranges

» A= finite set of action schemas
e (O,R,X, A) represents X = (S, 4, vy, cost), where
» A = {all actions induced by 4}

> y(s,a) = {x=w | eff(a) contains x<—w}
U {x=w | x 1sn’t a target in eff(a)}

> cost(.) is as specified in the action schemas

O: <

(" Objects = Robots U Containers
U Locs U {nil}

Robots = {rl1}
Containers = {c1, c2}

_ Locs = {d1, d2, d3}

R: { adjacent = {(d1,d2), (d2,d1),

so = {loc(rl)=d2, X <
cargo(rl)=cl,
loc(cl)=r1,
loc(c2)=d2}

» § = all states {x; =vy, ..., x, =Vv,}, where

., X, = {all of the ground instances
of members of X}

e cach v;is an object in Range(x;)

o {.X'l, ..

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

(d1,d3), (d3,d1)}
(" loc(c) € Locs U Robots,
loc(r) € Locs,
cargo(r) € Containers U {nil}
_ Where ¢ € Containers, r € Robots

~ move(rl,m)
pre: loc(r)=[, adjacent(l, m)
eff: loc(r) «— m
take(rc,[)
pre: cargo(r)=nil,
loc(r)=[, loc(c)=I
eff: cargo(r) < c, loc(c) « r
put(rc,/)
pre: loc(r)=[, loc(c)=r
q eff: cargo(r) < nil, loc(c) </

20
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State-Variable Planning Domain

e S =allstates {x; =vy, ..., x,=Vv,}, where

> {xy, ..., x,} = {all of the ground instances of
members of X}

» each v; is an object in Range(X;)

e S may contain some nonsensical states

> e.g., states in which both loc(c1)=r1
and cargo(r1)=nil

so = {loc(rl)=d2, X <
cargo(rl)=cl,
loc(cl)=r1,
loc(c2)=d2}

O: <

(" Objects = Robots U Containers
U Locs U {nil}

Robots = {rl1}
Containers = {c1, c2}
_ Locs = {d1, d2, d3}

R: { adjacent = {(d1,d2), (d2,d1),

e Butifsyand 4 are defined properly,
applying a plan in sy will never generate
a nonsensical state

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

(d1,d3), (d3,d1)}
(" loc(c) € Locs U Robots,
loc(r) € Locs,
cargo(r) € Containers U {nil}
_ Where ¢ € Containers, r € Robots

~ move(rl,m)
pre: loc(r)=[, adjacent(l, m)
eff: loc(r) «— m
take(rc,[)
pre: cargo(r)=nil,
loc(r)=l, loc(c)=I
eff: cargo(r) < c, loc(c) « r

put(rc,/)
pre: loc(r)=[, loc(c)=r

q eff: cargo(r) < nil, loc(c) </
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(" Objects = Robots U Containers
State-Variable Planning Problem U Locs U {nil}
O: < Robots = {rl1}
o P=(3,s5,g), where g = {loc(cl)=d1} Containers = {cl, c2}
» X =1s a state-variable planning domain . Locs = 1{d1, d2, d3]
> 5o €S 1s the initial state clli/dl / R: { adjacent = {((ji’jg: 8;’33;

> g 1s a set of ground literals called the goal (" loc(c) € Locs U Robots,

loc(r) € Locs,

e S, = {all states in S that satisfy g} so = {loc(rl)=d2, X: < c _ |
= {s €5 | s UR contains every positive literal rjg(gcci()r—lr)lz(:l' cargo(r) € onta.mers U inil
in g, and none of the negative literals in g} loc( c2); d 2'} - where ¢ € Containers, r € Robots

~ move(rl,m)
pre: loc(r)=[, adjacent(l, m)
eff: loc(r) «— m

e 7 is asolution for P if y(sy,n) satisfies g

Poll: How many solutions take(rc,[)
of length 3? . pre: cargo(r)=nil,
Al B2 C3 a loc(r)=1, loc(c)=1
D 4 B 5 F 6 eff: cargo(r) < c, loc(c) « r
G 7 U8 L9 (move(rl,d2,d1), put(rl,cl,d1)) put(rc,/)
' ' 1s a solution of length 2 pre: loc(r)=1, loc(c)=r
J. other L effi cargo(r) < nil, loc(c) < /

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 22
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Section 2.3. Acting

e For classical planning problems we assumed
e Finite, static world, just one actor
e No concurrent actions, no explicit time

e Determinism, no uncertainty, no exogeneous
events

e Full observability

e Unit-cost actions

» Sequence of states and actions (s, a;, 5, @5, Sy, ..

e Most real-world environments don’t satisfy the
assumptions because of errors in prediction

e This can usually be fine if
> errors occur infrequently, and

> they don’t have severe consequences

e What to do if an error does occur?

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0
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clel

/‘\kk

go(rl,m)

pre: adjacent(/,m), loc(r)=/
eff: loc(r) «— m

navigate(r/,m)
pre: —adjacent(/, m), loc(r)=/

Service Robot

T =(ay,a,,a3,a4,ds)
a; = go(rl,room3,hall)
a, = navigate(r1,hall,room1)
az = take(rl,07,room1)
a4 = navigate(rl,room1,room?2)
as = put(rl,07,roomz2))

ignores how to get from /
to m, e.g., opening the door

ignores how do navigation,

respond to user requests

\
bring 07 to room2

Y
S/ Ay ___d3 ____Qdq____. ds._
go to | | navigate | | fetch | | navigate | | deliver
hallway| [to room1| | o7 | [to room2 o7
---:-"":/fk\‘““]é\:“'jéi""-:"
I L N ] V
| coe
|
r= Y - N\
| |
I |move to door| |open door| | get out| |close door| |
l )

eff: loc(r) «— m localization
take(70,0)
pre: loc(r)=l, loc(o)=l, ignores how to grasp o, lift
cargo(r)=nil it, put it down

eft: loc(o) < r, cargo(r) < o
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identify

type
of

door

ungrasp

1211(0):66 grasp| [curn maintain| | back
to knob | |knob pull pull
knob monitor| (monitor
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| GL?g Service Robot

Fot
\ T = <a11a21a3’a41a5> )
/ a, = go(r1,room3,hall) e Some things that can go wrong:
> Execution failures

a, = navigate(r1,hall,room1)

/ a; = take(rl,07,room1) e robot gripper slips on doorknob
a4 = navigate(rl,room1,room?2) e door is locked or broken
.‘ as = put(rl,07,roomz2)) > Sensor errors
e navigation error causes robot to
g0 to wrong room
go(r,l,m) » Incorrect or partial information
pre: adjacent(/,m), loc(r)=/ e where is 07 ?

eft: loc(r) «— m

v

Events that make actions inapplicable

navigate(r/,m) e someone puts object 06 onto rl
pre: —~adjacent(/, m), loc(r)=/
eft: loc(r) «— m

take(70,0)
pre: loc(r)=l, loc(o)=l,
cargo(r)=nil
eft: loc(o) < r, cargo(r) < o

v

Events that make actions unnecessary

e someone puts object o7 onto rl

e How to detect and recover?

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0
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Acting with Lookahead

e C(all Lookahead, obtain x, perform 1%t action, call
Lookahead again ...

Ru n-Lookahead(.Zl, g) e Useful when unpredictable things are likely to
s «— abstraction of observed state & happen
while s # g do the > Replans immediately

T < Lookahead(Z,s,g) «— | planner
if © = failure then return failure

a «<— pop-first-action(n); perform(a)
s «— abstraction of observed state &

e Also useful with receding horizon search (e.g., as in
chess programs):

» Lookahead looks a limited distance ahead

e Potential problem:
> Lookahead needs to return quickly

Planning stage » Otherwise, may pause repeatedly while waiting

Acting stage for Lookahead to return

» What if § changes during the wait?
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Acting with Lookahead

Run-Lazy-Lookahead(Z, g) e (all Lookahead, execute the plan as far as possible,
< () don’t call Lookahead again unless necessary
while True do e Simulate tests whether the plan will execute correctly
s «— abstraction of observed state ¢ > Could do lower-level refinement, physics-based simulation

if s = g then return success
if T = () or Simulate(X, s, g, ©) = failure then
n < Lookahead(Z, s, 2)

if T = failure then return failure
a < pop-first-action(r) > Simulate needs to return quickly

> Could just test whether y(s,7) = g
> Or just test whether s = y(s', a), where s’ 1s the previous state

e Potential problems

perform(a) e otherwise, may pause repeatedly, & may change

Planning Stage > May might miss opportunities to replace m with a better plan

Acting Stage

Poll: Assuming no action failures during acting,
which approach does more work, in terms of
planning: Run-Lazy-Lookahead or Run-Lookahead?

A. Run-Lazy-Lookahead C. Equal amounts
B. Run-Lookahead D. Unsure
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Acting with Plan Repair

e We may want to repair © rather than get a new plan

> e.g., if we’ve already made commitments or
resource allocations

e Modify Run-Lazy-Lookahead

Planning Stage
Acting Stage

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Run-Lazy-Lookahead(Z, g)
T— ()
while True do
s «— abstraction of observed state &
if s = g then return success
if Tt = () or Simulate(X, s, g, ®) = failure then
n < Lookahead-Repair(X, s, g,7)
if T = failure then return failure
a <— pop-first-action(m)
perform(a)
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How to do Lookahead

Some possibilities (can also combine these)
e Full planning (if the planner can solve the planning problem quickly enough)
e Receding horizon
» Modify Lookahead to search just part of the way to g Planning stage

> E.g., cut off search when one of the following Acting stage
exceeds a maximum threshold:

e plan length, plan cost, computation time
e Sampling
» Modify Lookahead to do a Monte Carlo rollout o
e Depth-first search with random node selection and no backtracking //ié
» Call Lookahead several times, choose the plan that looks best
» Best-known example of this: the UCT algorithm (see Chapter 9)

e Subgoaling
» Tell Lookahead to plan for some subgoal g,, rather than g itself (see next page)
> Once the actor has achieved g, tell Lookahead to plan for the next subgoal g,
> And so forth until the actor reaches g
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SUngaling Examp'e GREATEST HITS

Y > 5
&, PlayStation.Network

Su

e Killzone 2 SivOmERytnton

SEA

> “First-person shooter” game, =~ 2009
» widely acclaimed at the time
e Special-purpose Al planner
> Plans enemy actions at the squad level
e Subproblems; plans are maybe 4—6 actions long

» Different planning algorithm from
what we’ve discussed so far

> HTN planning (see Part II)

e Quickly generates a plan for a subgoal

CONTENT RATED BY
ESRB

e Replans several times per second as the world changes

Online Interactions
Not Rated by the ESRB SOMETERS

e Why it worked: C
» Don’t want to get the best possible plan

» Need actions that appear believable and consistent to human users
» Need them very quickly
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Classical Representation

e Motivation

> The field of Al planning started out as automated theorem

proving
» It still uses a lot of that notation

e C(lassical representation is equivalent to state-variable
representation

> No distinction between rigid and varying properties
» Both represented as logical predicates

» Both are in the current state

adjacent(/,m) - location / 1s adjacent to m
loc(r)=[ — loc(r,[) - robot ris at location /
loc(c)=r — loc(c,r) - container c is on robot r

cargo(r)=c — loaded(r) - there’s a container on r

why not loaded(7,c)?

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

cl)d1 d2

e State s = a set of ground atoms

» Atomaistrueinsiffa €s

s, = {adjacent(d1,d2), adjacent(d2,d1),
adjacent(d1,d3), adjacent(d3,d1),
loc(c1,d1), loc(rl,d2)}

Poll: Should s, also contain
— loaded(rl)?

A: yes B: no

C: unsure
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Classical planning operators

® action schemas

move(r,[,m)
pre: loc(r)=[, adjacent(/, m)
eff: loc(r) «— m

take(r,c,/)
pre: cargo(r)=nil, loc(r)=l, loc(c)=I
eff: cargo(r) « ¢, loc(c) < r

put(r,c,/)
pre: loc(r)=/, loc(c)=r
eff: cargo(r) « nil, loc(c) </

Range(r) = Robots = {rl}
Range(/) = Range(m) = Locs = {d1,d2,d3}
Range(c) = Containers = {c1,c2}
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e C(lassical planning operators

move(r,[,m)

pre: loc(r,/), adjacent(/, m)
eff: =loc(r,/), loc(r,m)

take(r,c,/)

pre: —=loaded(r), loc(r,1), loc(c,/)
eff: loaded(r), -loc(c,/) loc(c,r)

put(r,c,/)

pre: loc(r,/), loc(c,7)
eff: -loaded(r), loc(c,1), =loc(c,r)

Poll: Does move
really need to
include -loc(#/)?

A: yes B: no

C: unsure

cl
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e Planning operator:

o. move(r,[,m)

Classical Actions

pre: loc(r,/), adjacent(/,m)

eff: -loc(r,1), loc(r,m)

e Action:
a;: move(rl,d2,d1)

pre: loc(rl,d2), adjacent(d2,d1)

eff: -loc(rl,d2), loc(r1,d1)

s, = {adjacent(d1,d2),
adjacent(d2,d1),

adjacent(d1,d3), © /
adjacent(d3,d1),

loc(c1,d1), /

ri

@)

d2

O
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0]

o [et

> pre (a) = {a’s negated preconditions}

> pre*(a) = {a’s non-negated preconditions}

® ¢ is applicable in state s iff

sNpre(a)=0 and pre*(a) S s

e If ais applicable in s then
> v(s,a) = (s \ eff(a)) U eff "(a)

loc(c1,d1),
loc(rl,d1)}

T~

v(so, @;) = {adjacent(d1,d2),
adjacent(d2,d1),
adjacent(d1,d3),
adjacent(d3,d1),

meaning?

rl

d3/

cl

dl
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Discussion

x(bla---abn—l):bn = Px(bla'--abn—labn)

State-variable (Classical

I'ep xP(bl,---pbk)zl <« P(blabbk) L

rep.

o EqU.lvaleIlt eXpI'eSSiVe pPOwer \
» Each can be converted to the other in linear time and space

e C(lassical representation
» More natural for logicians

> Don’t require single-valued functions

Poll: Could we instead use
Xp(D1s- b 1)=Dy ?

A: yes B: no

C: unsure

e State variables
» More natural for engineers and computer programmers

> When changing a value, don’t have to explicitly delete the old one

e Historically, classical representation has been more widely used
» That’s starting to change

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0
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PDDL

e [Language for defining planning domains

and problems
e Original version of PDDL = 1996
> Just classical planning

e Multiple revisions and extensions

» Different subsets accommodate

different kinds of planning

e We’ll discuss the classical—planniny

> Chapter 2 of the PDDL book
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Example dOmaln Initial state:
(define (domain example-domain-1)

(requirements :negative-preconditions) ///j/// d3 ///%%ﬂ

(raction  move These are untyped ,

« rl | J—~
:parameters (?r 2?1 ?m) parameters. /// O O OO
:precondition (and (loc 2?r 21) cl |[/d1 S/ d2

(adjacent ?1 ?m))
teffect (and (not (loc ?r ?21))
(loc ?r 2m)))

(:action take Goal: rl cl |y
:parameters (?r 2?21 ?c) 0w
:precondition (and (loc ?r ?1)

(loc ?2c ?1)
(not (loaded 7?r)))
:effect (and (not (loc ?c ?1))
(loc ?c ?r)
(loaded 7?r)))

(define (problem example-problem-1)
(:domain example-domain-1))

(:init

adjacent dl d2
adjacent d2 dil
adjacent dl d3
adjacent d3 dl
loc cl1 dl)

loc rl d2)

(:action put
:parameters (?r 2?21 ?c)
:precondition (and (loc ?r ?1)
(loc ?c ?r))
:effect (and (loc ?c ?1)
(not (loc 7?c ?r))
(not (loaded ?r))))) (:goal (loc cl rl)))
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Example problem

e (lassical representation: (define (problem example-problem-1)

(:domain example-domain-1))

d3 //<%%ﬂ (:init
7;_ adjacent dl d2
/ ﬁ
Or dj 00) adjacent d2 dl
c1l)d1 d2

adjacent dl d3
so = {adjacent(d1,d2), adjacent(d2,d1), adjacent d3 dl
adjacent(d1,d3), adjacent(d3,d1), loc cl dl)
loc(c1,d1), loc(rl,d2)}

loc rl d2)
rl ?%i 4

O (@] (©0)
g = {loc(c1,rl)}

(
(
(
(
(
(

(:goal (loc cl rl)))
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. (:action move
TVpEd domaln :parameters (?r - robot
?1 ?m - location)
:precondition (and (loc ?r ?1)

State-variable representation: (adjacent 21 ?m))

» Objects = Movable objects U Locs ceffect (and (not (loc ?r 21))
> Movable objects = Robots U Containers ///’ (loc 2?r ?m)))
> Robots = {rl} //’7// d3 (raction take
> Containers = {c1} /// Arl :parameters (?r - robot
oy .
> Locs = {d1, d2, d3} LQLﬁ dl_ d2 L - location
?c - contailner)
> r € Robots, [,m € Locs, c € Containers :precondition (and (loc 2?r 21)
(loc ?2c ?1)
(define (domain example-domain-2) (not (loaded ?r)))
(:requirements teffect (and (not (loc 2r ?1))
:negative-preconditions (loc ?r ?m)))
. . : : C Obi
:typing) Locations, Movable objects € Objects oot ) » € Robots,
(:types Robots, Containers € Movable objects '*3¢-+C0 PU I € Locs
location movable-obj - object rparameters| (?r - robot. cEECbnAﬁnaS
robot container - movable-obj) ?l - location
?c — contailner)
(:predicates r € Movable objects :precondition (and (loc ?r ?1)
(loc ?r - movable-obj | je7ocs (loc 2c ?r))
?1 - location) :effect (and (loc ?c ?1)
(loaded ?r - robot) r € Robots (not (loc ?c ?r))
(adjacent 2?1 ?m - location)) (not (loaded ?r)))))
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Typed problem

State-variable representation:

» Objects = Movable objects U Locs (define (problem example-problem-2)

(:domain example-domain-2))
» Movable objects = Robots U Containers

e

> Robots = {rl} (:objects
. 1 -
» Containers = {cl} — Zl _ ZZEE;iner
» Locs = {d1, d2, d3} dl d2 d3 - location)
> 1 € Robots, -

[, m € Locs, / (:init
c € Containers d3 adjacent dl d2

adjacent d2 dl

~— S~ S S~—

(
(
// rl (adjacent dl d3
O O O .
cl|/d1 4 d2 (adjacent d3 dil
(loc cl1 dil)
so = {adjacent(d1,d2), adjacent(d2,d1), (loc rl d2)
adjacent(d1,d3), adjacent(d3,d1),
loc(c1,d1), loc(rl,d2)} (:goal (loc cl rl)))

g={loc(cl,rl)} [l c1]y
(@) O GO

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0



https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Computational Complexity Refresher

e Computational complexity results are normally
given for decision problems

» each decision problem is an infinite set of
questions with yes/no answers
Two decision problems in which P may be
any classical planning problem:

» PLAN EXISTENCE: does P have a solution?

» PLAN LENGTH: does P have a solution of
length < k?
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The Extended Chomsky Hierarchy

oy e - )
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QoI N[U|lz= | | e *
a 8 a § =o| 5 Regular a
S| DL S| Z (2 ||Finite {a.b}
el O|lX| <2~
2122 g e | (S 2)
=y g =)

Prof. Gabriel Robins, UVA
https://www.cs.virginia.edu/~robins/cs6160/

Lectures 19-21 cover the key concepts
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Section 2.5. Computational Complexity

e Suppose P is given in state-variable e If we restrict P to be in a fixed planning domain
representation (rather than enumerating S and > that 1s known 1n advance :
A explicitly): > Both problems are in PSPACE
» PLAN EXISTENCE i1s EXPSPACE-complete » PSPACE-complete for some planning
> PLAN LENGTH i1s NEXPTIME-complete domains

e These are worst-case results, average case 1s
often much lower (e.g., polynomial)

Poll. What is the complexity of PLAN EXISTENCE if P is

As a reminder: P = NP ¢ PSPACE < EXPTIME ¢ NEXPTIME ¢ EXPSPACE given by enumerating S and A4 explicitly?

Need a refresher on complexity? See:

» UVA CS 4102 PSPACE and beyond (Bloomfield, 2011) A. PSPACE-complete B. NP-complete

+ MIT OpenCourseWare 6.006 Computational Complexity Lecture C. Polynomial D. something else

 MIT OpenCourseWare 6.045 Course, specifically lectures 12, 15, & 16
« UVA CS 6160 (Robins, 2022)
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Summary

e Section 2.2. State-transition systems
> Classical planning assumptions
» States, actions, transition function
> Plans, planning problems, solutions

» Run-Plan

e Section 2.3. State-Variable Representation
> Objects, rigid properties
» Varying properties, state variables, states
» Action schemas, actions, applicability, y

> Plans, problems, solutions

e Section 2.4. Classical Representation
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e Section 2.5. Computational Complexity

e Section 2.6. Acting

» Things that can go wrong while acting
» Run-Lookahead, Run-Lazy-Lookahead
> Plan repair

> Interacting with an online planner

e subgoaling, limited horizon, sampling

e Chapter 2 of Haslum et al. (2019)

» Classical fragment of PDDL
> Planning domains, planning problems

> untyped, typed
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