Last update: 11:09 PM, March 7, 2025

Acting, Planning,
Cha pter 4 and Learning

Malik Ghallab, Dana Nau,

Learning with Deterministic Models
(brief summary)

Dana S. Nau
University of Maryland

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 1



https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Outline and Assumptions

I’1l briefly summarize the following sections:
4.1 Learning Heuristics
4.2. Learning Action Specifications

4.2.2 Online Action Learning

e C(lassical planning assumptions:
e Finite, static world, just one actor
e No concurrent actions, no explicit time
e Determinism, no uncertainty

e Sequence of states and actions (s, a,, s;, @, S, ...)

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0



https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

4.1. Learning Heuristics

LRTA*(Z, 59, Sg, h0)

s« so; m<«— () //initialize current state and plan
h(s) < ho(s) for every s€ S // initialize the heuristic
while s € S, do

for each a in Applicable(s) do

0(s,a) < cost(s,a) + h(y(s,a))

h(s) «— min, O(s,a)

a < argmin, Q(s,a)

T« T a

s «— y(s,a)

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

e Assume the domain is safely explorable
> At every state s there is a path to S,

e In cach state s, O(s,a) is the estimated cost of getting
to S, if we start with action a

e LRTA* finds a path from s, to S,
» Updates /(s) for every s along the path

e (all it again, it finds another path, updates 4 along
that path

e After enough calls, it will find an optimal path
> Along that path, i(s) = h*(s)
> But not along other paths

e Other algorithms to find a heuristic 4 that is close to
h* at every state

» Based on value iteration


https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

4.2. Learning Action Specifications

® Action trace: a triple (s, head(a), s’) such that y(s,a) = s’

> ({loc(rl) = d3, cargo(rl) = nil, loc(c1) = d1},
move(rl,d3,d1),
{loc(rl) = d1, cargo(rl) = nil, loc(cl) = d1})

e LetX be a state-transition system,
Ts = {all possible action traces for X}

e Action model learning problem:
» (Given a set of action traces 7 € T
e examples of what the actions do

> Create an action model AM = (Xsym,Asym,Schema)

e Xsym and Asym are sets of state-variable names
and action names (without arguments)

e Schema is a function that maps each action
name o € Asym into an action schema

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

AM defines a state-transition system X'

Let Ts: = {all possible action traces for X'}

AM1s sound if Ty, € Tx
» T doesn’t include any incorrect action traces
AM is complete if Ts € Ts

» T includes every correct action trace

Three ways to get the traces in 7*
> offline
> online

» from “informative states”


https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Three Kinds of Learning

e Offline learning:
» Given a fixed set of action traces 7 € Tx
» Advantage: quick access to examples

» Disadvantage: The examples might not show
you conclusively what each action does

e Online learning: learner generates T by acting in X

» Observe current state, choose action a, send it
to the execution platform, see what state it
produces, ...

» Advantage: If you’re unsure what a does in the
current state, you can try it and see

» Disadvantage: Each action execution takes
time. Collecting enough observations may take
lots of time.

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

® Learning from informative states:
» Suppose the learner has an oracle for
e ¢.g.,aquick simulator

» Given (s,a), it either returns y(s,a) or says that a
isn’t applicable

» Advantage: Learner can try a in many different
states until it’s sure what a does

» Disadvantage: Not feasible unless you have a
simulator that’s both fast and accurate

e In all three cases, observations give information
about actions

» To get action schemas, must generalize

» Use techniques based on lifting


https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Lifted Preconditions and Effects

e Recall what an action schema looks like
» head: name(z, ..., z,)

> pre: atoms in which every object variable is one
of zy, ..., z,

> eff: assignments in which every object variable is
one of zy, ..., z,

e Assume the action schemas contain no constants
» Then the action schemas are fully lifted
> In pre and eff,

e every state variable contains only z, ..., z, as
parameters

e every state variable’s value is one of zy, ..., z,

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

e Suppose we’re given an action trace
({loc(rl) =d3}, move(rl,d3,d1), {loc(rl) =d1})

e We want to figure out the preconditions and effects
of move(zy, z;, z3)

e For pre and eff, consider atoms such as
|OC(ZI) =2y, IOC(ZI) =Z3

This restriction can exclude useful action schemas, e.g.
load(r, ¢, /)
pre: cargo(r)=nil, loc(c)=[, loc(r)=/
eff: cargo(r)«c, loc(c)«—r



https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Offline Learning (Basic Idea)

e Given TS Ty — asetoftriples (s, a(cy,...,cr), s")

e For each a, begin with action schema (head, pre, eff)
> head = o(z,...,z)

» pre = {atoms of the form x(z'y,..., z",)) = 2"+
where x € Xsym and each z'; is one of z;,...,z;}

> eff: @
e for every (s, a(cy,...,cr), s") € T do

» for every atom x(z'y,...,z",) =z',41 In
pre(a(zy,...,z;)) that doesn’t have a ground
instance in s do

e remove it from pre(a(zy,...,z;))

» for every atom x(zi,..., z,) = z,+1 that has a
ground instance in s’ \ s do

e add x(zi,..., z,) < z,+ to eff(a(zy,...,zx)

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Need to fill in some additional details
Can prove it produces a sound action model
» Is S Ty

Completeness depends on whether 7' contains enough
action traces

Can enhance the algorithm by allowing action traces
of the form

> (s, a(cy,...,cr), inapplicable)

As given, the algorithm is very inefficient

» each action schema starts with huge number of
preconditions, must remove most of them

Paolo will revise it to make it more efficient


https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

4.2.2 Online Learning

e [carning actions by queries e Online action learning
» Access to an oracle, e.g., a quick simulator » Observe current state, choose action a, send
> Informative state it to the execution platform, see what state it
produces, ...

e A state s such that y(s,a) will provide

needed information about a » Try to generate plans that will lead to

: informative states
» (Generate queries about such states

» Can write an algorithm that is both correct
and complete

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0



https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

