
1Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Last update: 11:09 PM, March 7, 2025

Acting, Planning,
and Learning

Malik Ghallab, Dana Nau,
and Paolo Traverso

Chapter 4
Learning with Deterministic Models

(brief summary)

Dana S. Nau
University of Maryland

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Outline and Assumptions

I’ll briefly summarize the following sections:
4.1 Learning Heuristics
4.2. Learning Action Specifications
 4.2.2 Online Action Learning

● Classical planning assumptions:
• Finite, static world, just one actor
• No concurrent actions, no explicit time
• Determinism, no uncertainty
• Sequence of states and actions ⟨s0, a1, s1, a2, s2, …⟩

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

3Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

4.1. Learning Heuristics

LRTA*(Σ, s0, Sg, h0)
s ← s0; π ← ⟨⟩ // initialize current state and plan
h(s) ← h0(s) for every s∈ S // initialize the heuristic
while s ∉ Sg do

for each a in Applicable(s) do
Q(s,a) ← cost(s,a) + h(γ(s,a))

h(s) ← mina Q(s,a)
a ← argmina Q(s,a)
π ← π · a
s ← γ(s,a)

● Assume the domain is safely explorable
▸ At every state s there is a path to Sg

● In each state s, Q(s,a) is the estimated cost of getting
to Sg if we start with action a

● LRTA* finds a path from s0 to Sg

▸ Updates h(s) for every s along the path
● Call it again, it finds another path, updates h along

that path
● After enough calls, it will find an optimal path

▸ Along that path, h(s) = h*(s)
▸ But not along other paths

● Other algorithms to find a heuristic h that is close to
h* at every state
▸ Based on value iteration

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

4Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

4.2. Learning Action Specifications

● Action trace: a triple (s, head(a), s′) such that γ(s,a) = s′
▸ ({loc(r1) = d3, cargo(r1) = nil, loc(c1) = d1},

move(r1,d3,d1),
{loc(r1) = d1, cargo(r1) = nil, loc(c1) = d1})

● Let Σ be a state-transition system,
 TΣ = {all possible action traces for Σ}

● Action model learning problem:
▸ Given a set of action traces T ⊆ TΣ

• examples of what the actions do
▸ Create an action model AM = (Xsym,Asym,Schema)

• Xsym and Asym are sets of state-variable names
and action names (without arguments)

• Schema is a function that maps each action
name α ∈ Asym into an action schema

● AM defines a state-transition system Σ′
● Let TΣ′ = {all possible action traces for Σ′}

● AM is sound if TΣ′ ⊆ TΣ
▸ TΣ′ doesn’t include any incorrect action traces

● AM is complete if TΣ ⊆ TΣ′

▸ TΣ′ includes every correct action trace

● Three ways to get the traces in T:
▸ offline
▸ online
▸ from “informative states”

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

5Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Three Kinds of Learning

● Offline learning:
▸ Given a fixed set of action traces T ⊆ TΣ

▸ Advantage: quick access to examples
▸ Disadvantage: The examples might not show

you conclusively what each action does

● Online learning: learner generates T by acting in Σ
▸ Observe current state, choose action a, send it

to the execution platform, see what state it
produces, …

▸ Advantage: If you’re unsure what a does in the
current state, you can try it and see

▸ Disadvantage: Each action execution takes
time. Collecting enough observations may take
lots of time.

● Learning from informative states:
▸ Suppose the learner has an oracle for Σ

• e.g., a quick simulator
▸ Given (s,a), it either returns γ(s,a) or says that a

isn’t applicable
▸ Advantage: Learner can try a in many different

states until it’s sure what a does
▸ Disadvantage: Not feasible unless you have a

simulator that’s both fast and accurate

● In all three cases, observations give information
about actions
▸ To get action schemas, must generalize
▸ Use techniques based on lifting

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

6Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Lifted Preconditions and Effects

● Recall what an action schema looks like
▸ head: name(z1, …, zn)
▸ pre: atoms in which every object variable is one

of z1, …, zn

▸ eff: assignments in which every object variable is
one of z1, …, zn

● Assume the action schemas contain no constants
▸ Then the action schemas are fully lifted
▸ In pre and eff,

• every state variable contains only z1, …, zn as
parameters

• every state variable’s value is one of z1, …, zn

● Suppose we’re given an action trace
({loc(r1) = d3}, move(r1,d3,d1), {loc(r1) = d1})

● We want to figure out the preconditions and effects
of move(z1, z2, z3)

● For pre and eff, consider atoms such as
loc(z1) = z2, loc(z1) = z3

This restriction can exclude useful action schemas, e.g.

load(r, c, l)
 pre: cargo(r)=nil, loc(c)=l, loc(r)=l
 eff: cargo(r)←c, loc(c)←r

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

7Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Offline Learning (Basic Idea)

● Given T ⊆ TΣ – a set of triples (s, α(c1,…,ck), s′)

● For each α, begin with action schema (head,pre,eff)
▸ head = α(z1,…,zk)
▸ pre = {atoms of the form x(z′1,…, z′n) = z′n+1

where x ∈ Xsym and each z′i is one of z1,…,zk}
▸ eff = ∅

● for every (s, α(c1,…,ck), s′) ∈ T do
▸ for every atom x(z′1,…, z′n) = z′n+1 in

pre(α(z1,…,zk)) that doesn’t have a ground
instance in s do
• remove it from pre(α(z1,…,zk))

▸ for every atom x(z1,…, zn) = zn+1 that has a
ground instance in s′ ∖ s do
• add x(z1,…, zn) ← zn+1 to eff(α(z1,…,zk)

● Need to fill in some additional details
● Can prove it produces a sound action model

▸ TΣ′ ⊆ TΣ

● Completeness depends on whether T contains enough
action traces

● Can enhance the algorithm by allowing action traces
of the form
▸ (s, α(c1,…,ck), inapplicable)

● As given, the algorithm is very inefficient
▸ each action schema starts with huge number of

preconditions, must remove most of them
● Paolo will revise it to make it more efficient

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

8Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

4.2.2 Online Learning

● Learning actions by queries
▸ Access to an oracle, e.g., a quick simulator
▸ Informative state

• A state s such that γ(s,a) will provide
needed information about a

▸ Generate queries about such states
▸ Can write an algorithm that is both correct

and complete

● Online action learning
▸ Observe current state, choose action a, send

it to the execution platform, see what state it
produces, …

▸ Try to generate plans that will lead to
informative states

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

