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Outline and Assumptions

I’ll briefly summarize the following sections:
4.1  Learning Heuristics
4.2. Learning Action Specifications
 4.2.2 Online Action Learning

● Classical planning assumptions: 
• Finite, static world, just one actor
• No concurrent actions, no explicit time
• Determinism, no uncertainty
• Sequence of states and actions ⟨s0, a1, s1, a2, s2, …⟩
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4.1. Learning Heuristics

LRTA*(Σ, s0, Sg, h0)
s ← s0;  π ← ⟨⟩ // initialize current state and plan
h(s) ← h0(s) for every s∈ S // initialize the heuristic
while s ∉ Sg do 

for each a in Applicable(s) do
Q(s,a) ← cost(s,a) + h(γ(s,a)) 

h(s) ← mina Q(s,a)
a ← argmina Q(s,a)
π ← π · a
s ← γ(s,a)

● Assume the domain is safely explorable
▸ At every state s there is a path to Sg

● In each state s, Q(s,a) is the estimated cost of getting 
to Sg if we start with action a

● LRTA* finds a path from s0 to Sg

▸ Updates h(s) for every s along the path
● Call it again, it finds another path, updates h along 

that path
● After enough calls, it will find an optimal path

▸ Along that path, h(s) = h*(s)
▸ But not along other paths

● Other algorithms to find a heuristic h that is close to 
h* at every state
▸ Based on value iteration
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4.2. Learning Action Specifications

● Action trace: a triple (s, head(a), s′) such that γ(s,a) = s′
▸ ({loc(r1) = d3, cargo(r1) = nil, loc(c1) = d1},

move(r1,d3,d1),
{loc(r1) = d1, cargo(r1) = nil, loc(c1) = d1})

● Let Σ be a state-transition system,
      TΣ = {all possible action traces for Σ}

● Action model learning problem:
▸ Given a set of action traces T ⊆ TΣ 

• examples of what the actions do
▸ Create an action model AM = (Xsym,Asym,Schema) 

• Xsym and Asym are sets of state-variable names 
and action names (without arguments)

• Schema is a function that maps each action 
name α ∈ Asym into an action schema

● AM defines a state-transition system Σ′
● Let TΣ′ = {all possible action traces for Σ′}

● AM is sound if TΣ′ ⊆ TΣ 
▸ TΣ′ doesn’t include any incorrect action traces

● AM is complete if TΣ ⊆ TΣ′

▸ TΣ′ includes every correct action trace

● Three ways to get the traces in T: 
▸ offline
▸ online
▸ from “informative states”

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en


5Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Three Kinds of Learning

● Offline learning:
▸ Given a fixed set of action traces T ⊆ TΣ

▸ Advantage: quick access to examples
▸ Disadvantage: The examples might not show 

you conclusively what each action does 

● Online learning: learner generates T by acting in Σ
▸ Observe current state, choose action a, send it 

to the execution platform, see what state it 
produces, …

▸ Advantage: If you’re unsure what a does in the 
current state, you can try it and see

▸ Disadvantage: Each action execution takes 
time. Collecting enough observations may take 
lots of time.

● Learning from informative states: 
▸ Suppose the learner has an oracle for Σ

• e.g., a quick simulator
▸ Given (s,a), it either returns γ(s,a) or says that a 

isn’t applicable
▸ Advantage: Learner can try a in many different 

states until it’s sure what a does
▸ Disadvantage: Not feasible unless you have a 

simulator that’s both fast and accurate

● In all three cases, observations give information 
about actions
▸ To get action schemas, must generalize
▸ Use techniques based on lifting
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Lifted Preconditions and Effects

● Recall what an action schema looks like
▸ head:  name(z1, …, zn)
▸ pre: atoms in which every object variable is one 

of z1, …, zn

▸ eff: assignments in which every object variable is 
one of z1, …, zn

● Assume the action schemas contain no constants
▸ Then the action schemas are fully lifted
▸ In pre and eff,

• every state variable contains only z1, …, zn as 
parameters

• every state variable’s value is one of z1, …, zn

● Suppose we’re given an action trace
({loc(r1) = d3}, move(r1,d3,d1), {loc(r1) = d1})

● We want to figure out the preconditions and effects 
of move(z1, z2, z3)

● For pre and eff, consider atoms such as 
loc(z1) = z2, loc(z1) = z3

This restriction can exclude useful action schemas, e.g.

load(r, c, l)
 pre: cargo(r)=nil, loc(c)=l, loc(r)=l
 eff:  cargo(r)←c, loc(c)←r
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Offline Learning (Basic Idea)

● Given T ⊆ TΣ   –   a set of triples (s, α(c1,…,ck), s′)

● For each α, begin with action schema (head,pre,eff)
▸ head = α(z1,…,zk)
▸ pre = {atoms of the form x(z′1,…, z′n) = z′n+1 

where x ∈ Xsym and each z′i is one of z1,…,zk}
▸ eff = ∅

● for every (s, α(c1,…,ck), s′) ∈ T do
▸ for every atom x(z′1,…, z′n) = z′n+1 in 

pre(α(z1,…,zk)) that doesn’t have a ground 
instance in s do
• remove it from pre(α(z1,…,zk)) 

▸ for every atom x(z1,…, zn) = zn+1 that has a 
ground instance in s′ ∖ s do
• add x(z1,…, zn) ← zn+1 to eff(α(z1,…,zk)

● Need to fill in some additional details
● Can prove it produces a sound action model

▸ TΣ′ ⊆ TΣ

● Completeness depends on whether T contains enough 
action traces

● Can enhance the algorithm by allowing action traces 
of the form 
▸ (s, α(c1,…,ck), inapplicable)

● As given, the algorithm is very inefficient
▸ each action schema starts with huge number of 

preconditions, must remove most of them
● Paolo will revise it to make it more efficient

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en


8Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

4.2.2 Online Learning

● Learning actions by queries
▸ Access to an oracle, e.g., a quick simulator 
▸ Informative state

• A state s such that γ(s,a) will provide 
needed information about a

▸ Generate queries about such states
▸ Can write an algorithm that is both correct 

and complete

● Online action learning
▸ Observe current state, choose action a, send 

it to the execution platform, see what state it 
produces, …

▸ Try to generate plans that will lead to 
informative states
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