Last update: 11:09 PM, March 7, 2025

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Chapter 6
Acting with HTNs

Dana S. Nau
University of Maryland

with contributions from
Mark “mak” Roberts

Acting, Planning,
and Learning

Malik Ghallab, Dana Nau,
and Paolo Traverso

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://scholar.google.com/citations?user=vlbX4J8AAAAJ

Using HTN Domain Models for Acting

e Unlike an HTN domain model, the actor’s environment is not necessarily deterministic or static

» Exogenous events, unanticipated action outcomes = current state may be different from what an
HTN model would predict

e Actor can’t backtrack to a previous state; prior actions are in the past

e HTN domain models still are very useful for providing operational models to the actor
» How to carry out “standard operating procedures”
» How to perform complex tasks without searching through a large state space
» How to avoid situations where unanticipated events are likely to cause bad outcomes

» How to recover when unanticipated events occur

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Reactive HTN Actor
TO-HTN-Act(Z.. M. T)

e Like TO-HTN-Forward but executes each action 0 if 7 is empty then return success
t < the first element of 7; T’ « therest of T

s «— observe current state

Line M «— HTN-Get-Candidates(X., M, s, 1)

0 Return success or failure, not a plan foreach m € M do

if m 1s a method instance then

if TO-HTN-Act(X, sub(m)-T") = success then return success

> Can similarly modify other Chapter 5 algorithms

r—

(9]

s isn’t an argument, observe it instead

else if m is an action then

1
3 Instead of computing y, execute action
2 Failure recovery: if m fails, try next one 3 execute m

» if they all fail, return failure to next higher if m executed successfully then return TO-HTN-Act(Z,7”)

level in the recursion stack,
to try other methods there

return failure

e At Line 2, a bad method instance can lead to
non-optimal solution or failure Poll 1. Is line doing backtracking?

» (Can use a heuristic function A.Yes B.No C.Unsure

» Can call an HTN planner — but other ways
have less computational overhead

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Run-HLookahead

HTN-Run-Lookahead(X, T)
while True do:
s «— observed current state
n = Lookahead(X, s, T)
if w = failure then return failure
if 1 = () then return success

a < pop(m)
trigger execution of a

e Here, Lookahead is an HTN planner
e (Goal formula may not exist
> Cannotrelyons E g

» Need Lookahead to return () iff no actions
are needed to accomplish T

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

e (Call Lookahead, get , perform 15t action, call
HLookahead again ...

e Useful when unexpected things are likely to happen
> Replans immediately
® Lookahead needs to return quickly

> Otherwise, HTN-Run-Lookahead may pause
repeatedly waiting for Lookahead to return

> May want Lookahead to look a limited distance
or horizon ahead

Planning stage
Acting stage

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Run-HLookahead (Example 1)

HTN-Run-Lookahead(Z, 7) e (Call HTN-Run-Lookahead with Lookahead = TO-HTN-Forward (THF)
» ¥ =the TOHTN domain in Example 5.8

s < observed current state > P=(Z, 50, T = ({pile(cl)=p2}))
1 = Lookahead(Z, s, T) e If nothing unexpected happens:

if T = failure then return failure > Call TO-HTN-Forward(2, so, T)

if 7 = () then return success e = (take(rl,c1,c2,p1,d1), move(rl,dl,d2),

a — pop(n) put(rl,cl,c3,p2,d2))

trigger execution of @ > Execute take(rl,c1,c2,p1,d1)

» Call THF(..), get = = (move(rl,d1,d2), put(rl,cl,c3,p2,d2))
» execute move(rl,d1,d2),

» call THF(..), get m = (put(rl,cl,c3,p2,d2))

So- - [/ d3 » execute put(rl,cl,c3,p2,d2),
c2 » Call THF(..), get ® = (), return success

P (A <4
/ ’wdl v d2 % P2s If something unexpected happens but the problem is still solvable:

y

while True do:

» Call THF(..) with latest observed state, it returns a new plan

> This could fail if there is no applicable method for the new state!

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Run-Lazy-HLookahead

HTN-Run-Lazy-Lookahead(X, T)

T« (); a < nil

e Two different tests for ()

_ If we’ve exhausted the current plan, call
while True do: Lookahead

if T = () or execution of a failed then

If Lookahead returns (), return success
s < observed state

n = Lookahead(Z, s, T)
if T = failure then return failure

e Requires Lookahead to return () iff no actions are
needed to accomplish T

if 1 = () then return success

a < pop(m)

trigger execution of a .
Planning Stage

Acting Stage

e Could also add a Simulate program as in
Run-Lazy-Lookahead

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Run-Lazy-HLookahead (Example 1)

HTN-Run-Lazy-Lookahead(Z, 7))
T« (); a < nil
while True do:
if 1= () or execution of a failed then
s <— observed state
n = Lookahead(Z, s, T)
if T = failure then return failure
if 1 = () then return success
a < pop(m)
trigger execution of a

So- % /[/ d3
// c2
Plicif—ir

2
Td1 d2 -p3p

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Call HTN-Run-Lazy-Lookahead
with Lookahead = TO-HTN-Forward (THF)

» 2 =TOHTN domain in Example 5.8
> initial state s, T= ({pile(cl)=p2})

If nothing unexpected happens:
» Call THF(Z, s¢, T)

e 7= (take(rl,cl,c2,p1,d1), move(rl,dl,d2),
put(rl,cl,c3,p2,d2))

» Pop actions from & and execute them, until T = ()
» Call THF again, get m = (), return success

If something unexpected happens but the problem is
still solvable:

» Eventually, either m = () or a has failed

» Call THF with observed state, it returns a new plan

HTN-Run-Lookahead is similar but it calls Lookahead
before each action is executed

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Example 2
e POHTN planning domain

» Cranes at loading docks, not on the robots ® Methods
e Actions: m1-put-on-robot(k,c,c’,r,d, p)
> The usual move action, and these: task: put-on-robot(c, r)

pre: cargo(r) = nil,top(p) = c, at(p, d),

unstack(k,c,c’, p,d) /I take container c from pile p attached(k, d), holding(k) = il

pre: at(k, d), at(p, d), holding(k) =nil, pos(c) =c’, top(p) =c¢

: : : ; sub: (t1, navigate(r, d)), I/l compound task
ff: holding(k , pos k, pile nil, to
© Bi(kY)sS6nPRsla)sSigpilcta) s p(p) =¢ (t2, unstack(k, c,c’, p,d)), I/ action
stack(k,c,c’, p,d) // put container c onto pile p (13,load(k,c,r,d)) /] action
pre: at(k,d), at(p, d), holding(k) =c, top(p) « ¢’ <: t1<13, 12<13

eff: holding(k) < nil, pos(c) =c’, pile(c) « p, top(p) =c e The usual navigate methods

unload(k, c,r,d) // take container c from robot r
pre: at(k,d), holding(k) =c, loc(r) =d
eff: cargo(r) « c, pos(c) « r, holding(k) < nil

load(k, c,r,d) /] put container ¢ onto robot r -
pre: at(k, d), holding(k) =nil, loc(r) =d, cargo(r) =c | - 0—cl
eff: pos(c) « k, holding(k) « c, cargo(r) « nil rl / c2
L/ TP O 2 A/
pl p2

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 8

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Example 2

e Call HTN-Run-Lazy-Lookahead with Lookahead = POHTN- Run-Lazy-HLookahead(X, T)

Forward t— (); a < nil

» ¥ =POHTN domain on previous page while True do:

> initial state s, the only task in 7 is put-on-robot(cl,rl) if T = () or execution of a failed then

e If nothing unexpected happens: s «<— observed state

» Call POTHN-Forward(Z, S0, T) mT= HTN-Lookahead(Z’ S, T)
e Two solution plans, suppose it returns this one: if t = failure then return failure
 mp = (unstack(k2,c1,c2,p2,d2), move(rl,d1,d2), if 1 = () then return success

load(k2,c1,r1,d2))

> Pop actions from & and execute them, until & = ()

a < pop(m)

trigger execution of a
» Call POHTN-Forward again, get m = (), return success

e Suppose move fails without changing the current state:
» Call POHTN-Forward(X, sq, 7)

e failure: no applicable methods when k2 is holding c1

e Run-Lookahead J B §
rl
» Call POHTN-Forward, get plan, execute unstack, call PPlan, g 0410 o/ 42 [c 7
/

PPlan fails

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Error Recovery in HTN Domains

e HTN methods require the solution plan to
follow a particular trajectory

e Encode requirements that aren’t explicit in the
classical planning domain

» Safety requirements:

e Secure a container onto the robot before
starting to move the robot

> Commitments to other agents

e Don’t use a particular resource, because
others may need it

» A company’s standard operating procedures

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

HTN-Run-Lookahead and HTN-Run-Lazy-Lookahead
don’t know anything about the trajectory
requirements

That’s OK if nothing goes wrong

If unexpected events occur, need to recover in a way
that still satisfies the trajectory requirements

Three approaches
1. Modify TO-HTN-Act to call an HTN planner
e HTN planner returns a method selection
2. Modify HTN planner to return a solution tree
e Actor traverses the tree

3. Actor calls HTN planner to do replanning in a
modified domain

10

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

TO-HTN-Act (modified) with an HTN Planner

e HTN planner similar to TO-HTN-Forward, but returns the top-level
method 1n its solution tree

e Suppose there’s an execution error here

task

method inst.

task

/

method inst.

task

]

task

task

» TO-HTN-Act calls the planner here, tells it to use a different method

method inst.

task

1

task

met]

od 1inst. method inst.

.- |method inst.

. |method inst.

method inst.

L
|act."act. 'act.| act.|lact

/

act.|”’ '|act.' act.

'act.| act.

T

task

. |method inst.

act.|... 'act.| «sslact

/

.Jlact.]...

act.

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

11

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Traversing a Solution Tree

e HTN planner returns a solution tree, actor traverses the tree

e HTN planner returns a solution tree e Time vs. space tradeoff

® Actor traverses the tree > Here, we need the entire tree

® Suppose there’s an execution error here > In TO-HTN-Act, we don’t but the actor and planner
» Actor calls the planner here, tells it duplicate effort, repeatedly recreating the current part of
to use a different method task the tree

method inst.

taSk / \ taSk

method inst. ce method inst.
task task task task task task
method inst. method inst.| .- [method inst.| .- |method inst. method inst.| ... [method inst.

42} / {/ {/} /} {/
act.|lact.|... |act.| lact.||lact.|... |act.| -**|act.|lact.|... |act.|*"°|act.||act.|... |act.||act.|act.]|... |act.| ---|act.||act.]... [act.

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 12

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Modifying the Planning Domain

e Actor calls TO-HTN-Forward again, with the

e Modified version of HTN-Run-Lazy-Lookahead same 1initial state s, and task ¢ as before
> Calls TPlan to get a plan e Modified planning domain

e Suppose there’s an execution error here » Methods are modified so that the initial
> a,, was supposed to produce Tl ek actions of the plan must be ay4, ..., a,

» Action ay, 1s modified so that y(sy, ap) = si’

state sp»

task

> it produced state s)," instead

method inst.

initial task
state s method inst. e method inst.
task task taslk task task task
my m, o mlk ... |method inst.| |method inst.| ... method inst.

a2 ... [a1| lar||ar| ... ‘a2n| ’;zﬂz },} ***lact.|lact.|... 'act.| act.|act.|... 'act.| ---|act.'act. ... |act.

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 13

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Summary

® [ssues
» Actor’s environment may not be deterministic or static
> Actor can’t backtrack to a previous state

e TO-HTN-Act: reactive actor similar to TO-HTN-Forward

e HTN-Run-Lookahead, HTN-Run-Lazy-Lookahead
» Examples where they work well, where they don’t

e Error recovery in HTN domains

e Three approaches
> TO-HTN-Act modified to call an HTN planner
» Actor that traverses a solution tree

> Actor that re-invokes TO-HTN-Forward on the
original problem in a modified planning domain

} e Tradeoff: time versus space

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

14

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

