
Last update: January 28, 2010

Problem solving and search

CMSC 421: Chapter 3

CMSC 421: Chapter 3 1

Motivation and Outline

Lots of AI problem-solving requires trial-and-error search
Chapter 3 describes some algorithms for this

♦ Types of problems and agents

♦ Problem formulation

♦ Example problems

♦ Basic search algorithms

CMSC 421: Chapter 3 2

Problem types

Deterministic, fully observable =⇒ classical search problem
♦ agent knows exactly which state it starts in, what each action does
♦ no exogenous events (or else they’re encoded into the actions’ effects)
♦ solution is a sequence, can predict future states exactly

E.g., Vacuum World with no exogenous events
(hence, rooms won’t spontaneously get dirty again)

Initial state: A B

Goal: have both rooms clean

Solution: [Suck,Right, Suck]

CMSC 421: Chapter 3 3

Problem types

Non-observable
♦ Agent may have no idea where it is
♦ solution (if any) is a sequence that is conformant,

i.e., guaranteed to work under all conditions

E.g., Vacuum World, no exogenous
events and no sensors

Start in any of {1, 2, 3, 4, 5, 6, 7, 8}

Goal: have both rooms clean

Assume hitting the wall causes no harm
Left goes to {1, 3, 5, 7}
Right goes to {2, 4, 6, 8}

Solution: [Right, Suck, Left, Suck]

1 2

3 4

5 6

7 8

CMSC 421: Chapter 3 4

Problem types

Nondeterministic and/or partially observable
♦ percepts provide new information about current state
♦ solution is a contingent plan or a policy
♦ often interleave search, execution

E.g., Vacuum World, no exogenous
events, and local sensing:

which room the agent’s in
and whether that room is dirty

Start in any of {5, 6, 7, 8}
Goal: have both rooms clean

Solution: [Right, if dirt then Suck]

1 2

3 4

5 6

7 8

Unknown state space =⇒ exploration problem (don’t have example)

CMSC 421: Chapter 3 5

Problem-solving agents

Online problem solving: gather knowledge as you go
Necessary for exploration problems
Can be useful in nondeterministic and partially observable problems

Offline problem solving: develop the entire solution at the start, before you
ever start to execute it

e.g., the solutions for the Vacuum World examples on the last three slides

Focus of this chapter: offline problem solving for
classical search problems (i.e., deterministic, fully observable)

CMSC 421: Chapter 3 6

Example: Romania

Currently in Arad, Romania; flight leaves tomorrow from Bucharest
states = cities; actions = drive between cities; goal = be in Bucharest

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

CMSC 421: Chapter 3 7

Selecting a state space

Real world is absurdly complex
⇒ state space must be abstracted

for problem solving

♦ Abstract state = set of real states
e.g., the state in-Arad
includes lots of locations

♦ Abstract action = complex
combination of real actions

e.g., goto-Zerind may include
possible routes, detours, rest stops,
etc. For guaranteed realizability,
it must get you to Zerind
no matter where you are in Arad

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

♦ Abstract solution = sequence of abstract actions
It represents a set of real paths that are solutions in the real world

CMSC 421: Chapter 3 8

Formulation of classical search problems

A problem consists of:

♦ initial state s0, e.g., at-Arad

♦ set of actions, e.g.,
A = {goto-Zerind, . . .}

♦ state-transition function γ(s, a),
e.g., γ(at-Arad, goto-Zerind)

= at-Zerind, . . .

♦ goal test can be explicit, e.g.,
set of goal states = {at-Bucharest}

or implicit, e.g., NoDirt(s)

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

♦ path cost (additive), e.g.,
sum of distances, number of actions executed, etc.
c(s, a) is the step cost, assumed to be ≥ 0

solution: sequence of actions leading from the initial state to a goal state

CMSC 421: Chapter 3 9

Example: vacuum world, no exogenous events

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states: dirt and robot locations (ignore dirt amounts etc.)
actions: Left, Right, Suck, NoOp
goal test: no dirt
path cost: 1 per action (0 for NoOp)

CMSC 421: Chapter 3 10

Example: sliding-tile puzzles

n× n frame, n2− 1 movable tiles. Slide the tiles to change their positions.

n = 3: the 8-puzzle n = 4: the 15-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

a starting state goal state a starting state goal state

♦ states: integer locations of tiles (ignore intermediate positions)
♦ actions: move tiles left, right, up, down (ignore unjamming etc.)
♦ goal test = goal state (shown)
♦ step cost = 1 per move, so path cost = number of moves

In this family of puzzles, finding optimal solutions is NP-hard
Easier if we don’t care whether the solution is optimal

CMSC 421: Chapter 3 11

Example: robotic assembly

states: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions: continuous motions of robot joints

goal test: complete assembly

path cost: time to execute

CMSC 421: Chapter 3 12

Tree search algorithms

Basic idea:
offline, simulated exploration of state space

function Tree-Search(problem, strategy) returns a solution, or failure

initialize the search tree using the initial state of problem

loop do

if there are no candidates for expansion then return failure

choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution

else expand the node and add the resulting nodes to the search tree

end

node: includes state s, parent, children, depth, path cost g(s)
expanding a node: generating all of its children
fringe or frontier = {all candidates for expansion}

= {all nodes that have been generated but not expanded}

CMSC 421: Chapter 3 13

Tree search example

Currently in Arad, Romania; flight leaves tomorrow from Bucharest
states = cities; actions = drive between cities; goal = be in Bucharest

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

CMSC 421: Chapter 3 14

Tree search example

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

CMSC 421: Chapter 3 15

Tree search example

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Zerind

Arad

Sibiu Timisoara

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

CMSC 421: Chapter 3 16

Tree search example

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

CMSC 421: Chapter 3 17

Implementation: states vs. nodes

♦ A state is a (representation of) a physical configuration
♦ A node x is a data structure that’s part of a search tree. It includes

state s, parent, children (if s has been expanded), depth, path cost g(x)
♦ The states themselves don’t have parents, children, depth, or path cost

1

23

45

6

7

81

23

45

6

7

8

State Node depth = 6

g = 6

state

parent, action

♦ The Expand function creates new nodes:
• uses the state-transition function γ to generate the states

for x’s children: {γ(s, a) : a is applicable to s}
• fills in the various fields

CMSC 421: Chapter 3 18

Search strategies

A strategy is defined by picking the order of node expansion

Ways to evaluate a strategy:
completeness: does it always find a solution if one exists?
optimality: does it always find a least-cost solution?
time complexity: number of nodes generated/expanded
space complexity: maximum number of nodes in memory

Time and space complexity are measured in terms of
b = maximum branching factor of the search tree; we’ll assume it’s finite
d = depth of the least-cost solution (or ∞ if there’s no solution)
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 19

Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

♦ Breadth-first search

♦ Depth-first search

♦ Depth-limited search

♦ Uniform-cost search

♦ Iterative deepening search

CMSC 421: Chapter 3 20

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

CMSC 421: Chapter 3 21

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

CMSC 421: Chapter 3 22

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

CMSC 421: Chapter 3 23

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

CMSC 421: Chapter 3 24

Properties of breadth-first search

Complete?

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 25

Properties of breadth-first search

Complete? Yes

Time?

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 26

Properties of breadth-first search

Complete? Yes

Time? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd), i.e., exp. in d

Space?

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 27

Properties of breadth-first search

Complete? Yes

Time? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd), i.e., exp. in d

Space? O(bd) (keeps every node in memory)

This is a big problem. If we run for 24 hours and generate nodes
at 100MB/sec, the space requirement is 8.64 TB

Optimal solutions?

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 28

Properties of breadth-first search

Complete? Yes

Time? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd), i.e., exp. in d

Space? O(bd) (keeps every node in memory)

This is a big problem. If we run for 24 hours and generate nodes
at 100MB/sec, the space requirement is 8.64 TB

Optimal solutions? Yes if cost = 1 per step, but not in general

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 29

Uniform-cost search

Expand least-cost unexpanded node

Implementation: fringe = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete?

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 30

Uniform-cost search

Expand least-cost unexpanded node

Implementation: fringe = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete? Yes, if ∃ ε > 0 such that step cost ≥ ε

Time?

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 31

Uniform-cost search

Expand least-cost unexpanded node

Implementation: fringe = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete? Yes, if ∃ ε > 0 such that step cost ≥ ε

Time? # of nodes with g ≤ cost of optimal solution, O(bdC
∗/εe)

where C∗ is the cost of the optimal solution

Space?

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 32

Uniform-cost search

Expand least-cost unexpanded node

Implementation: fringe = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete? Yes, if ∃ ε > 0 such that step cost ≥ ε

Time? # of nodes with g ≤ cost of optimal solution, O(bdC
∗/εe)

where C∗ is the cost of the optimal solution

Space? # of nodes with g ≤ cost of optimal solution, O(bdC
∗/εe)

Optimal solutions?

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 33

Uniform-cost search

Expand least-cost unexpanded node

Implementation: fringe = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete? Yes, if ∃ ε > 0 such that step cost ≥ ε

Time? # of nodes with g ≤ cost of optimal solution, O(bdC
∗/εe)

where C∗ is the cost of the optimal solution

Space? # of nodes with g ≤ cost of optimal solution, O(bdC
∗/εe)

Optimal solutions? Yes

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 34

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3 35

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3 36

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3 37

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3 38

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3 39

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3 40

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3 41

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3 42

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3 43

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3 44

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3 45

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3 46

Properties of depth-first search

Complete?

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 47

Properties of depth-first search

Complete?
No in infinite-depth spaces
Yes in finite spaces, if we modify to avoid loops:

Backtrack if you reach a state you’ve already seen on the current path

Time?

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 48

Properties of depth-first search

Complete?
No in infinite-depth spaces
Yes in finite spaces, if we modify to avoid loops:

Backtrack if you reach a state you’ve already seen on the current path

Time? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 49

Properties of depth-first search

Complete?
No in infinite-depth spaces
Yes in finite spaces, if we modify to avoid loops:

Backtrack if you reach a state you’ve already seen on the current path

Time? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space? O(bm), i.e., linear space

Optimal solutions?

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 50

Properties of depth-first search

Complete?
No in infinite-depth spaces
Yes in finite spaces, if we modify to avoid loops:

Backtrack if you reach a state you’ve already seen on the current path

Time? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space? O(bm), i.e., linear space

Optimal solutions? Not unless it’s lucky

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 51

Depth-limited search

Depth-first search, backtrack at each node of depth l unless it’s a solution

Recursive implementation:

function Depth-Limited-Search(problem, limit) returns soln/fail/cutoff

Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)

function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff

cutoff-occurred?← false

if Goal-Test(problem,State[node]) then return node

else if Depth[node] = limit then return cutoff

else for each successor in Expand(node, problem) do

result←Recursive-DLS(successor, problem, limit)

if result = cutoff then cutoff-occurred?← true

/* tells what to return if we don’t find a solution */

else if result 6= failure then return result

if cutoff-occurred? then return cutoff else return failure

CMSC 421: Chapter 3 52

Iterative deepening search

Depth-limited search to depth 0,
Depth-limited search to depth 1,
Depth-limited search to depth 2,
· · ·
Stop when you find a solution

function Iterative-Deepening-Search(problem) returns a solution

inputs: problem, a problem

for depth← 0 to ∞ do

result←Depth-Limited-Search(problem, depth)

if result 6= cutoff then return result

end

CMSC 421: Chapter 3 53

Iterative deepening search

Limit = 0 A A

function Iterative-Deepening-Search(problem) returns a solution

inputs: problem, a problem

for depth← 0 to ∞ do

result←Depth-Limited-Search(problem, depth)

if result 6= cutoff then return result

end

CMSC 421: Chapter 3 54

Iterative deepening search

Limit = 1 A

B C

A

B C

A

B C

A

B C

function Iterative-Deepening-Search(problem) returns a solution

inputs: problem, a problem

for depth← 0 to ∞ do

result←Depth-Limited-Search(problem, depth)

if result 6= cutoff then return result

end

CMSC 421: Chapter 3 55

Iterative deepening search

Limit = 2 A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

function Iterative-Deepening-Search(problem) returns a solution

inputs: problem, a problem

for depth← 0 to ∞ do

result←Depth-Limited-Search(problem, depth)

if result 6= cutoff then return result

end

CMSC 421: Chapter 3 56

Iterative deepening search

Limit = 3

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3 57

Properties of iterative deepening search

Complete?

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 58

Properties of iterative deepening search

Complete? Yes

Time?

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 59

Properties of iterative deepening search

Complete? Yes

Time? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space?

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 60

Properties of iterative deepening search

Complete? Yes

Time? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space? O(bd)

Optimal solutions?

b = maximum branching factor of the search tree
d = depth of the least-cost solution
m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3 61

Properties of iterative deepening search

Complete? Yes

Time? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space? O(bd)

Optimal solutions? Yes, if step cost = 1
Can be modified to behave like uniform-cost search

Node-generation operations for b = 10 and d = 5, solution at far right leaf:

IDS: 1 + 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450
BFS: 1 + 10 + 100 + 1, 000 + 10, 000 + 100, 000 + 999, 990 = 1, 111, 100

IDS does better because it doesn’t expand the nodes at depth d

BFS expands them because of a quirk in the pseudocode

CMSC 421: Chapter 3 62

Tree search

function Tree-Search(problem, strategy) returns a solution, or failure

initialize the search tree using the initial state of problem

loop do

if there are no candidates for expansion then return failure

choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution

else expand the node and add the resulting nodes to the search tree

end

Tree-Search doesn’t do the goal test until it selects a node for expansion
♦ Needed for uniform-cost search to find optimal solutions
♦ Needed for some algorithms in the next chapter

With breadth-first search, we’re looking for shallowest
(but not necessarily optimal) solutions

Modify the pseudocode to check for a solution whenever a node is generated

CMSC 421: Chapter 3 63

Tree search for BFS

function Tree-Search(problem, strategy) returns a solution, or failure

initialize the search tree using the initial state of problem

loop do

if there are no candidates for expansion then return failure

choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution

else expand the node and add the resulting nodes to the search tree

end ↑
Modification: if any of them is a solution, return it immediately

Number of node-generation operations:
IDS: 1 + 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450
BFS: 1 + 10 + 100 + 1, 000 + 10, 000 + 100, 000 = 111, 110

Highest number of nodes stored:
IDS: 1 + 10× 5 = 51
BFS: 1 + 10 + 100 + 1, 000 + 10, 000 + 100, 000 = 111, 111

CMSC 421: Chapter 3 64

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes Yes(2) No Yes, if l ≥ d Yes
Time bd bdC

∗/εe bm bl bd

Space bd bdC
∗/εe bm bl bd

Optimal? Yes(1) Yes No No Yes(1)

where
b = branching factor
C∗ = cost of optimal solution, or ∞ if there’s no solution
d = depth of shallowest solution, or ∞ if there’s no solution
ε = smallest cost of each edge
l = cutoff depth for depth-limited search
m = depth of deepest node (may be ∞)

1 if step cost is 1 2 if ε > 0

CMSC 421: Chapter 3 65

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential
one!

A

B

C

D

A

BB

CCCC

CMSC 421: Chapter 3 66

Graph search

function Graph-Search(problem, fringe) returns a solution, or failure

closed← an empty set

fringe← Insert(Make-Node(Initial-State[problem]), fringe)

loop do

if fringe is empty then return failure

node←Remove-Front(fringe)

if Goal-Test(problem,State[node]) then return node

if State[node] is not in closed then

add State[node] to closed

fringe← InsertAll(Expand(node, problem), fringe)

end

Can do breadth-first graph search, uniform-cost graph search

Can also do depth-first graph search, but there’s a tradeoff:
♦ Sometimes get exponentially less time than depth-first tree search
♦ Usually need exponentially more memory than depth-first tree search

CMSC 421: Chapter 3 67

Summary

♦ Problem formulation usually requires abstracting away real-world details
to define a state space that can feasibly be explored

♦ Variety of uninformed search strategies

♦ Iterative deepening search uses only linear space
and (when b ≥ 2) not much more time than other uninformed algorithms

♦ Graph search sometimes takes exponentially less time than tree search
(when the number of paths to a node is exponential in its depth)

♦ Graph search sometimes takes exponentially more space than tree search
(when the search space is treelike)

Homework assignment (due in one week)
five problems, 10 points each – total 50 points

2.9, 3.7(a,b), 3.8, 3.9(a,c), 3.13

CMSC 421: Chapter 3 68

