Homework for Chapters 9 and 11, CMSC 421, Fall 2008

- There are 5 problems worth 10 points each, for a total of 50 points.

Planning homework: Consider the following coffee-making domain. This is a planning domain in which you have a coffee maker and several different kinds of coffee beans, and the coffee maker can be used to make pots of coffee. There are three operators: load coffee into the machine, start the machine running, and end the machine’s coffee-making cycle. Here is a classical representation of them:

load(x)
 precond: coffee(x), loaded(nil)
 effects: loaded(x), ¬loaded(nil)

brew(x)
 precond: loaded(x), ¬loaded(nil), ¬loaded(waste)
 effects: ¬loaded(x), loaded(waste), pot(x)

unload(x)
 precond: loaded(x), ¬loaded(nil)
 effects: ¬loaded(x), loaded(nil)

Most of the questions in this homework assignment involve the following planning problem in the coffee-making domain. We will call this problem \(P_1 \). In \(P_1 \), there are two kinds of coffee: \textit{caf} and \textit{decaf}. The goal is to make one pot of each. Here are the initial state and the goal formula:

Initial state: \{coffee(caf), coffee(decaf), loaded(nil)\}

Goal formula: \{pot(caf), pot(decaf)\}

Problem 1 Suppose we do a backward state-space search on \(P_1 \), without any loop-checking.

(a) How many execution traces lead to solutions?

(b) A solution is \textit{shortest} if there is no other solution that contains fewer actions. What are all of the shortest solutions?

(c) How many execution traces don’t lead to solutions? If any of these execution traces is finite, then give an example—and if none of them is finite, then explain why not.

Problem 2 Suppose we run Graphplan on \(P_1 \).

(a) Draw the planning graph after the first graph-expansion. Include all maintenance actions and mutexes. For each mutex, tell what kind of mutex it is.

(b) At what level does Graphplan first call Extract?
Problem 3 To encode the coffee-making domain as a task-list planning domain, we can use the operators on the first page, and a single method:

\text{make}(x, y, z)

Task: \text{pot}(x)
Precond: \text{none}
Subtasks: \{\text{load}(x), \text{brew}(y), \text{unload}(z)\}

(a) With the domain description that’s given above and the initial state that’s shown on the first page, what solutions can TFD find if the initial task network is \{\text{pot(caf), pot(y)}\}?

(b) Add an additional method to enable TFD to find optimal (i.e., shortest) solutions to coffee-making problems.