Introduction to Game Theory

6. Imperfect-Information Games

Dana Nau
University of Maryland
Motivation

- So far, we’ve assumed that players in an extensive-form game always know what node they’re at
 - Know all prior choices
 - Both theirs and the others’
 - Thus “perfect information” games
- But sometimes players
 - Don’t know all the actions the others took or
 - Don’t recall all their past actions
- Sequencing lets us capture some of this ignorance:
 - An earlier choice is made without knowledge of a later choice
- But it doesn’t let us represent the case where two agents make choices at the same time, in mutual ignorance of each other
Definition

- An **imperfect-information** game is an extensive-form game in which each agent’s choice nodes are partitioned into **information sets**
 - An information set = {all the nodes you *might* be at}
 - The nodes in an information set are indistinguishable to the agent
 - So all have the same set of actions
 - Agent i’s information sets are I_{i1}, \ldots, I_{im} for some m, where
 - $I_{i1} \cup \ldots \cup I_{im} = \{\text{all nodes where it’s agent } i \text{'s move}\}$
 - $I_{ij} \cap I_{ik} = \emptyset$ for all $j \neq k$
 - $\chi(h) = \chi(h')$ for all histories $h, h' \in I_{ij}$,
 - where $\chi(h) = \{\text{all available actions at } h\}$

- A perfect-information game is a special case in which each I_{ij} contains just one node h
Example

- Below, agent 1 has two information sets:
 - $I_{11} = \{a\}$
 - $I_{12} = \{d,e\}$
 - In I_{12}, agent 1 doesn’t know whether Agent 2 moved to d or e

- Agent 2 has just one information set:
 - $I_{21} = \{b\}$
Strategies

- A pure strategy for agent i selects an available action at each of i’s information sets I_{i1}, \ldots, I_{im}
- Thus \{all pure strategies for i\} is the Cartesian product
 \[\chi(I_{i1}) \times \chi(I_{i1}) \times \ldots \times \chi(I_{i1}) \]
 - where $\chi(I_{ij}) = \{\text{actions available in } I_{ij}\}$
- Here are two imperfect-information extensive-form games
 - Both are equivalent to the normal-form representation of the Prisoner’s Dilemma:

```
\begin{tabular}{c|cc}
  & C & D \\
\hline
A & (3,3) & (0,5) \\
B & (5,0) & (1,1) \\
\end{tabular}
```
Transformations

- Any normal-form game can be trivially transformed into an equivalent imperfect-information game
 - To characterize this equivalence exactly, must consider mixed strategies

- As with perfect-info games, define the normal-form game corresponding to any given imperfect-info game by enumerating the pure strategies of each agent
 - Define the set of mixed strategies of an imperfect-info game as the set of mixed strategies in its image normal-form game
 - Define the set of Nash equilibria similarly

- But in the extensive form game we can also define a set of behavioral strategies
 - Each agent’s (probabilistic) choice at each node is independent of his/her choices at other nodes
Behavioral vs. Mixed Strategies

- Behavioral strategies differ from mixed strategies
 - Consider the perfect-information game at right
 - A behavioral strategy for agent 1:
 - At a, choose A with probability 0.5, and B otherwise
 - At g, choose G with probability 0.3, and H otherwise
 - Here’s a mixed strategy that isn’t a behavioral strategy
 - Strategy $\{(a,A), (g,G)\}$ with probability 0.6, and strategy $\{(a,B), (g,H)\}$ otherwise
 - The choices at the two nodes are not independent
Behavioral vs. Mixed Strategies

- In imperfect-information games, mixed and behavioral strategies produce different sets of equilibria
 - In some games, mixed strategies can achieve outcomes that aren’t achievable by any behavioral strategy
 - In some games, behavioral strategies can achieve outcomes that aren’t achievable by any mixed strategy

- Example on the next two slides
Consider the game at right
- Agent 1’s information set is \{a,b\}

First, consider mixed strategies

- For Agent 1, \(R\) is a strictly dominant strategy
- For Agent 2, \(D\) is a strictly dominant strategy
 - So \((R, D)\) is the unique Nash equilibrium

In a mixed strategy, Agent 1 decides probabilistically whether to play \(L\) or \(R\)
- Once this is decided, Agent 1 plays that pure strategy consistently
- Node \(e\) is irrelevant – it can never be reached by a mixed strategy
Now consider behavioral strategies

Agent 1 randomizes every time his/her information set is \{a,b\}

For Agent 2, \(D\) is a strictly dominant strategy

Agent 1’s best response to \(D\):

- Suppose Agent 1 uses the behavioral strategy \([L, p; R, 1-p]\)
 - i.e., choose \(L\) with probability \(p\) each time
 - Then agent 1’s expected payoff is
 - \(u_1 = 1 \cdot p^2 + 100 \cdot p(1-p) + 2 \cdot (1-p) = -99p^2 + 98p + 2\)
 - To find the maximum value of \(u_1\), set \(du_1/dp = 0\)
 - Get \(p = 98/198\)

So \((R, D)\) is not an equilibrium

The equilibrium is \([(L, 98/198; R, 100/198), D]\)
Games of Perfect Recall

- In an imperfect-information game \(G \), agent \(i \) has **perfect recall** if \(i \) never forgets anything he/she knew earlier
 - In particular, \(i \) remembers all his/her own moves
- Let \((h_0, a_0, h_1, a_1, \ldots, h_n, a_n, h) \) and \((h_0, a'_0, h'_1, a'_1, \ldots, h'_m, a'_m, h') \) be any two paths from the root
 - If \(h \) and \(h' \) are in an information set for agent \(i \), then
 1. \(n = m \)
 2. for all \(j \), \(h_j \) and \(h'_j \) are in the same equivalence class for player \(i \)
 3. for every \(h_j \) where it is agent \(i \)'s move, \(a_j = a'_j \)

- \(G \) is a **game of perfect recall** if every agent in \(G \) has perfect recall
 - Every perfect-information game is a game of perfect recall
Games of Perfect Recall

- If an imperfect-information game G has perfect recall, then the behavioral and mixed strategies for G are the same

- **Theorem** (Kuhn, 1953)
 - In a game of perfect recall, any mixed strategy can be replaced by an equivalent behavioral strategy, and vice versa
 - Strategies s_i and s'_i for agent i are equivalent if for any fixed strategy profile S_{-i} of the remaining agents, s_i and s'_i induce the same probabilities on outcomes

- **Corollary**: For games of perfect recall, the set of Nash equilibria doesn’t change if we restrict ourselves to behavioral strategies
Sequential Equilibrium

- For perfect-information games, we saw that subgame-perfect equilibria were a more useful concept than Nash equilibria.

- Is there something similar for imperfect-info games?
 - Yes, but the details are more involved.

- Recall:
 - In a subgame-perfect equilibrium, each agent’s strategy must be a best response in every subgame.

- We can’t use that definition in imperfect-information games:
 - No longer have a well-defined notion of a subgame.
 - Rather, at each info set, a “subforest” or a collection of subgames.

- The best-known way for dealing with this is **sequential equilibrium** (SE):
 - The details are quite complicated, and I won’t try to describe them.
Zero-Sum Imperfect-Information Games

Examples:

- Most card games
 - Bridge, crazy eights, cribbage, hearts, gin rummy, pinochle, poker, spades, …

- A few board games
 - battleship, kriegspiel chess

- All of these games are finite, zero-sum, perfect recall
Bridge

- Four players
 - North and South are partners
 - East and West are partners
- Equipment:
 - deck of 52 playing cards
- Phases of the game
 - dealing the cards
 - distribute them equally among the four players
 - bidding
 - negotiation to determine what suit is trump
 - playing the cards
Playing the Cards

- **Declarer**: the person who chose the trump suit
- **Dummy**: the declarer’s partner
 - The dummy turns his/her cards face up
 - The declarer plays both his/her cards and the dummy’s cards
- **Trick**: the basic unit of play
 - one player leads a card
 - the other players must follow suit if possible
 - the trick is won by the highest card of the suit that was led, unless someone plays a trump
- Keep playing tricks until all cards have been played
- Scoring is based on how many tricks were bid and how many were taken
Game Tree Search in Bridge

- Imperfect information in bridge:
 - Don’t know what cards the others have (except the dummy)
 - Many possible card distributions, so many possible moves
- If we encode the additional moves as additional branches in the game tree, this increases the branching factor b
- Number of nodes is exponential in b
 - Worst case: about 6×10^{44} leaf nodes
 - Average case: about 10^{24} leaf nodes
- A bridge game takes about $1\frac{1}{2}$ minutes
 - Not enough time to search the tree
Monte Carlo Sampling

- Generate many random hypotheses for how the cards might be distributed
- Generate and search the game trees
 - Average the results
- This approach has some theoretical problems
 - The search is incapable of reasoning about
 - actions intended to gather information
 - actions intended to deceive others
 - Despite these problems, it seems to work well in bridge
- It can divide the size of the game tree by as much as 5.2×10^6
 - $(6 \times 10^{44})/(5.2 \times 10^6) = 1.1 \times 10^{38}$
 - Better, but still quite large
 - Thus this method by itself is not enough
 - It’s usually combined with state aggregation
State aggregation

- Modified version of transposition tables
 - Each hash-table entry represents a set of positions that are considered to be equivalent
 - Example: suppose we have ♠AQ532
 - View the three small cards as equivalent: ♠AQxxx
- Before searching, first look for a hash-table entry
 - Reduces the branching factor of the game tree
 - Value calculated for one branch will be stored in the table and used as the value for similar branches
- Several current bridge programs combine this with Monte Carlo sampling
Poker

- Sources of uncertainty
 - The card distribution
 - The opponents’ betting styles
 - e.g., when to bluff, when to fold
 - expert poker players will randomize
- Lots of recent AI work on the most popular variant of poker
 - Texas Hold ‘Em
- The best AI programs are starting to approach the level of human experts
 - Construct a statistical model of the opponent
 - What kinds of bets the opponent is likely to make under what kinds of circumstances
 - Combine with game-theoretic reasoning techniques, e.g.,
 - use linear programming to compute Nash equilibrium for a simplified version of the game
 - game-tree search combined with Monte Carlo sampling
Kriegspiel Chess

- **Kriegspiel**: an imperfect-information variant of chess
 - Developed by a Prussian military officer in 1824
 - Became popular as a military training exercise
 - Progenitor of modern military war-games
- Like a combination of chess and battleship
 - The pieces start in the normal places, but you can’t observe your opponent’s moves
- The only ways to get information about where the opponent is:
 - You take a piece, they take a piece, they put your king in check, you make an illegal move
Kriegspiel Chess

- On his/her turn, each player may attempt any normal chess move
 - If the move is illegal on the actual board, the player is told to attempt another move
- When a capture occurs, both players are told
 - They are told the square of the captured piece, not its type
- If the legal move causes a check, a checkmate, or a stalemate for the opponent, both players are told
 - They are also told if the check is by long diagonal, short diagonal, rank, file, or knight (or some combination)
- There are some variants of these rules
Kriegspiel Chess

- Size of an information set (the set of all states you *might* be in):
 - chess: 1 (one)
 - Texas hold’em: 10^3 (one thousand)
 - bridge: 10^7 (ten million)
 - kriegspiel: 10^{14} (ten trillion)

- In bridge or poker, the uncertainty comes from a random deal of the cards
 - Easy to compute a probability distribution

- In kriegspiel, all the uncertainty is a result of being unable to see the opponent’s moves
 - No good way to determine an appropriate probability distribution
Monte Carlo Simulation

- We built several algorithms to do this
 - loop
 - Create a perfect-information game tree by making guesses about where the opponent might move
 - Evaluate the game tree using a conventional minimax search
 - Do this many times, and average the results
- Several problems with this
 - Very difficult to generate a sequence of moves for the opponent that is consistent with the information you have
 - Exponential time in general
 - Tradeoff between how many trees to generate, and how deep to search them
 - Can’t reason about information-gathering moves

Information Sets

- Consider the kriegspiel game history \(\langle a2-a4, h7-h5, a4-a5 \rangle \)

- What is White’s information set?
 - Black only made one move, but it might have been any of 19 different moves
 - Thus White’s information set has size 19:
 - \{ \langle a2-a4, h7-h5, a4-a5 \rangle, \ldots, \langle a2-a4, a7-a6, a4-a5 \rangle \}

- More generally, in a game where the branching factor is \(b \) and the opponent has made \(n \) moves, the information set may be as large as \(b^n \)

- But some of our moves can reduce its size
 - e.g., pawn moves
Information-Gathering Moves

- Pawn moves
 - A pawn goes forward except when capturing
 - When capturing, it moves diagonally
- In kriegspiel, trying to move diagonally is an information-gathering move
 - If you’re told it’s an illegal move, then
 - you learn that the opponent doesn’t have a piece there
 - and you get to move again
 - If the move is a legal move, then
 - you learn that the opponent had a piece there
 - and you have captured the piece
Information-Gathering Moves

- In a Monte Carlo game-tree search, we’re pretending the imperfect-information game is a collection of perfect-information games
 - In each of these games, you already know where the opponent’s pieces are
 - There’s no such thing as an uncertainty-reducing move
- Thus the Monte Carlo search will never choose a move for that purpose
- In bridge, this wasn’t important enough to cause much problem
 - But in kriegspiel, such moves are very important
- Alternative approach: *information-set search*
Information-Set Search

\[EU_d(h|\sigma_1^*, \sigma_2) = \begin{cases}
\mathcal{E}(h), & \text{if } d = 0, \\
U(h), & \text{if } h \text{ is terminal}, \\
\sum_{m \in M(h)} \sigma_2(m|[h]_2) \cdot EU_{d-1}(h \circ m|\sigma_1^*, \sigma_2), & \text{if it’s } a_2 \text{’s move}, \\
EU_{d-1}(h \circ \arg\max_{m \in M(h)} (EU_d([h \circ m]_1|\sigma_1^*, \sigma_2))), & \text{if it’s } a_1 \text{’s move},
\end{cases} \]

\[EU_d(I|\sigma_1^*, \sigma_2) = \sum_{h \in I} P(h|I, \sigma_1^*, \sigma_2) \cdot EU_d(h|I, \sigma_1^*, \sigma_2). \]

- Recursive formula for expected utilities in imperfect-information games
- It includes an explicit opponent model
 - The opponent’s strategy, \(\sigma_2 \)
- It computes your best response to \(\sigma_2 \)
The Paranoid Opponent Model

- Recall minimax game-tree search in perfect-information games
 - Take max when it’s your move,
 - and min when it’s the opponent’s move
- The min part is a “paranoid” model of the opponent
 - Assumes the opponent will always choose a move that minimizes your payoff (or your estimate of that payoff)
- Criticism: the opponent may not have the ability to decide what move that is
 - But in several decades of experience with game-tree search
 - chess, checkers, othello, …
 - the paranoid assumption has worked so well that this criticism is largely ignored
- How does it generalize to imperfect-information games?
Paranoia in Imperfect-Information Games

- During the game, your moves are part of a pure strategy σ_1.
- Even if you’re playing a mixed strategy, this means you’ll pick a pure strategy σ_1 at random from a probability distribution.
- The paranoid model assumes the opponent somehow knows in advance which strategy σ_1 you will pick and chooses a strategy σ_2 that’s a best response to σ_1.
- Choose σ_1 to minimize σ_2’s expected utility.
- This gives the formula shown here:

$$PU_d(h) = \begin{cases} E(I), & \text{if } d = 0, \\ U(h), & \text{if } h \text{ is terminal}, \\ PU_{d-1}(h \circ \arg\min_{m \in M(h)}(\min_{h' \in [h]} PU_d([h \circ m])), & \text{if it’s } a_2 \text{’s move}, \\ PU_{d-1}(h \circ \arg\max_{m \in M(h)}(\min_{h' \in [h]} PU_d([h \circ m])), & \text{if it’s } a_1 \text{’s move}. \end{cases}$$

In perfect-info games, it reduces to minimax:

$$PU_d(I) = \min_{h \in I} PU_d(h).$$
The Overconfident Opponent Model

- The overconfident model assumes that the opponent makes moves at random, with all moves equally likely.
 - This produces the formula shown below.

- **Theorem.** In perfect-information games, the overconfident model produces the same play as an ordinary minimax search.

- But not in imperfect-information games.

\[
OU_d(h) = \begin{cases}
E(h), & \text{if } d = 0, \\
U(h), & \text{if } h \text{ is terminal}, \\
\sum_{m \in M(h)} \frac{OU_{d-1}(h \circ m)}{|M(h)|}, & \text{if it’s } a_2 \text{’s move}, \\
OU_{d-1}(h \circ \arg\max_{m \in M(h)} OU_d([h \circ m]_1)), & \text{if it’s } a_1 \text{’s move},
\end{cases}
\]

\[
OU_d(I) = \sum_{h \in I} (1/|I|) \cdot OU_d(h).
\]
Implementation

- The formulas are recursive and can be implemented as game-tree search algorithms
 - Problem: the time complexity is doubly exponential
- Solution: do Monte Carlo sampling
 - We avoid the previous problem with Monte Carlo sampling, because we sample the information sets, rather than generating perfect-information games
 - Still have imperfect information, so still have information-gathering moves
Kriegspiel Implementation

- Our implementation: *kbott*
 - Silver-medal winner at the 11th International Computer Games Olympiad
 - The gold medal went to a program by Paolo Ciancarini at University of Bologna

- In addition, we did two sets of experiments:
 - Overconfidence and Paranoia (at several different search depths), versus the best of our previous algorithms (the ones based on perfect-information Monte Carlo sampling)
 - Overconfidence versus Paranoia, head-to-head

Kriegspiel Experimental Results

- Information-set search against HS, at three different search depths
 - It outperformed HS in almost all cases
 - Only exception was Paranoid information-set search at depth 1
- In all cases, Overconfident did better against HS than Paranoid did
 - Possible reason: information-gathering moves are more important when the information sets are large (kriegspiel) than when they’re small (bridge)

- Overconfidence vs. Paranoid, head-to-head
 - Nine combinations of search depths
 - Overconfident outperformed Paranoid in all cases
Further Experiments

- We tested the Overconfident and Paranoid opponent models against each other in imperfect-information versions of three other games
 - P-games and N-games, modified to hide some fraction of the opponent’s moves
 - kalah (an ancient African game), also modified to hide some fraction of the opponent’s moves
- We varied two parameters:
 - the branching factor, b
 - the *hidden factor* (i.e., the fraction of opponent moves that were hidden)
Experimental Results

- x axis: the fraction of hidden moves, h
- y axis: average score for Overconfident when played against Paranoid
 - Each data point is an average of
 - ≥ 72 trials for the P-games
 - ≥ 39 trials for the N-games
 - ≥ 125 trials for kalah
- When $h = 0$ (perfect information), Overconfident and Paranoid played identically
 - Confirms the theorem I stated earlier
- In P-games and N-games, Overconfident outperformed Paranoid for all $h \neq 0$
- In kalah,
 - Overconfident did better in most cases
 - Paranoid did better when $b=2$ and h is small
Discussion

- Treating an imperfect-information game as a collection of perfect-information games has a theoretical flaw
 - It can’t reason about information-gathering moves
 - In bridge, that didn’t cause much problem in practice
 - But it causes problems in games where there’s more uncertainty
 - In such games, information-set search is a better approach
- The paranoid opponent model works well in perfect-information games such as chess and checkers
 - But the hidden-move game that we tested, it was outperformed by the overconfident model
 - In these games, the opponent doesn’t have enough information to make the move that’s worst for you
 - It’s appropriate to assume the opponent will make mistakes
Summary

Topics covered:

- information sets
- behavioral vs. mixed strategies
- perfect information vs. perfect recall
- sequential equilibrium
- game-tree search techniques
 - stochastic sampling and state aggregation
 - information-set search
 - opponent models: paranoid and overconfident

Examples

- bridge, poker, kriegspiel chess
- hidden-move versions of P-games, N-games, kalah