Introduction to Game Theory

8. Stochastic Games

Dana Nau
University of Maryland
Stochastic Games

- A stochastic game is a collection of normal-form games that the agents play repeatedly.
- The particular game played at any time depends probabilistically on:
 - the previous game played
 - the actions of the agents in that game
- Like a probabilistic FSA in which:
 - the states are the games
 - the transition labels are joint action-payoff pairs
Markov Games

- A **stochastic** (or **Markov**) game includes the following:
 - a finite set Q of states (games),
 - a set $N = \{1, \ldots, n\}$ of agents,
 - For each agent i, a finite set A_i of possible actions
 - A **transition probability function** $P : Q \times A_1 \times \cdots \times A_n \times Q \rightarrow [0, 1]$ where $P(q, a_1, \ldots, a_n, q') = \text{probability of transitioning to state } q'$ if the action profile (a_1, \ldots, a_n) is used in state q
 - For each agent i, a real-valued **payoff function** $r_i : Q \times A_1 \times \cdots \times A_n \rightarrow \mathbb{R}$

- This definition makes the inessential but simplifying assumption that each agent’s strategy space is the same in all games
 - So the games differ only in their payoff functions
Histories and Rewards

- Before, a history was just a sequence of actions
 - But now we have action profiles rather than individual actions, and each profile has several possible outcomes
- Thus a history is a sequence $h_t = (q^0, a^0, q^1, a^1, ..., a^{t-1}, q^t)$, where t is the number of stages
- As before, the two most common methods to aggregate payoffs into an overall payoff are **average reward** and **future discounted reward**
- Stochastic games generalize both Markov decision processes (MDPs) and repeated games
 - An MDP is a stochastic game with only 1 player
 - A repeated game is a stochastic game with only 1 state
 - Iterated Prisoner’s Dilemma, Roshambo, Iterated Battle of the Sexes, …
Strategies

- For agent i, a **deterministic** strategy specifies a choice of action for i at every stage of every possible history.
- A mixed strategy is a probability distribution over deterministic strategies.
- Several restricted classes of strategies:
 - As in extensive-form games, a **behavioral strategy** is a mixed strategy in which the mixing take place at each history independently.
 - A **Markov strategy** is a behavioral strategy such that for each time t, the distribution over actions depends only on the current state.
 - But the distribution may be different at time t than at time $t' \neq t$.
 - A **stationary strategy** is a Markov strategy in which the distribution over actions depends only on the current state (not on the time t).
Equilibria

- First consider the (easier) discounted-reward case
- A strategy profile is a **Markov-perfect equilibrium** (MPE) if
 - it consists of only Markov strategies
 - it is a Nash equilibrium regardless of the starting state
- **Theorem.** Every n-player, general-sum, discounted-reward stochastic game has a MPE
- The role of Markov-perfect equilibria is similar to role of subgame-perfect equilibria in perfect-information games
Equilibria

- Now consider the average-reward case

- A stochastic game is **irreducible** if every game can be reached with positive probability regardless of the strategy adopted

- **Theorem.** Every 2-player, general-sum, average reward, irreducible stochastic game has a Nash equilibrium

- A payoff profile is **feasible** if it is a convex combination of the outcomes in a game, where the coefficients are rational numbers

- There’s a folk theorem similar to the one for repeated games:
 - If \((p_1, p_2)\) is a feasible pair of payoffs such that each \(p_i\) is at least as big as agent \(i\)’s minimax value, then \((p_1, p_2)\) can be achieved in equilibrium through the use of enforcement
Two-Player Zero-Sum Stochastic Games

- For two-player zero-sum stochastic games
 - The folk theorem still applies, but it becomes vacuous
 - The situation is similar to what happened in repeated games
 - The only feasible pair of payoffs is the minimax payoffs

- One example of a two-player zero-sum stochastic game is Backgammon

- Two agents who take turns
 - Before his/her move, an agent must roll the dice
 - The set of available moves depends on the results of the dice roll
Mapping Backgammon into a Markov game is straightforward, but slightly awkward. Basic idea is to give each move a stochastic outcome, by combining it with the dice roll that comes after it. Every state is a pair: (current board, current dice configuration).

- Initial set of states = \{initial board\} × \{all possible results of agent 1’s first dice roll\}
- Set of possible states after agent 1’s move = \{the board produced by agent 1’s move\} × \{all possible results of agent 2’s dice roll\}
- Vice versa for agent 2’s move.

We can extend the minimax algorithm to deal with this. But it’s easier if we don’t try to combine the moves and the dice rolls. Just keep them separate.
The Expectiminimax Algorithm

- Two-player zero-sum game in which
 - Each agent’s move has a deterministic outcome
 - In addition to the two agents’ moves, there are chance moves
- The algorithm gives optimal play (highest expected utility)

function \textit{Expectiminimax}(s) returns an expected utility
 if \(s\) is a terminal state then return Max’s payoff at \(s\)
 if \(s\) is a “chance” node then
 return \(\sum_{s'} P(s'|s)\textit{Expectiminimax}(s')\)
 else if it is Max’s move at \(s\) then
 return \(\max\{\textit{Expectiminimax}(\text{result}(a, s)) : a\text{ is applicable to } s\}\)
 else return \(\min\{\textit{Expectiminimax}(\text{result}(a, s)) : a\text{ is applicable to } s\}\)
In practice

- Dice rolls increase branching factor
 - 21 possible rolls with 2 dice
 - Given the dice roll, ≈ 20 legal moves on average
 - For some dice roles, can be much higher
 - $\text{depth } 4 = 20 \times (21\times20)^3 \approx 1.2 \times 10^9$
 - As depth increases, probability of reaching a given node shrinks
 - \Rightarrow value of lookahead is diminished
- α-β pruning is much less effective
- TDGammon uses depth-2 search + very good evaluation function
 - \approx world-champion level
 - The evaluation function was created automatically using a machine-learning technique called *Temporal Difference* learning
 - hence the *TD* in TDGammon
Evolutionary Simulations

- An evolutionary simulation is a stochastic game whose structure is intended to model certain aspects of evolutionary environments
 - At each stage (or generation) there is a large set (e.g., hundreds) of agents
- Different agents may use different strategies
 - A strategy s is represented by the set of all agents that use strategy s
 - Over time, the number of agents using s may grow or shrink depending on how well s performs
- s’s reproductive success is the fraction of agents using s at the end of the simulation,
 - i.e., $(\text{number of agents using } s)/(\text{total number of agents})$
Reproduction Dynamics

- At each stage, some set of agents (maybe all of them, maybe just a few) is selected to perform actions at that stage
 - Each agent receives a *fitness* value: a stochastic function of the action profile
- Depending on the agents’ fitness values, some of them may be removed and replaced with agents that use other strategies
 - Typically an agent with higher fitness is likely to see its numbers grow
 - The details depend on the reproduction dynamics
 - The mechanism for selecting which agents will be removed, which agents will reproduce, and how many progeny they’ll have
Replicator Dynamics

- **Replicator dynamics** works as follows:
 \[p_{i}^{\text{new}} = p_{i}^{\text{curr}} \frac{r_{i}}{R}, \]
 where
 - \(p_{i}^{\text{new}} \) is the proportion of agents of type \(i \) in the next stage
 - \(p_{i}^{\text{curr}} \) is the proportion of agents of type \(i \) in the current stage
 - \(r_{i} \) = average payoff received by agents of type \(i \) in the current stage
 - \(R_{i} \) = average payoff received by all agents in the current stage

- Under the replicator dynamics, an agent’s numbers grow (or shrink) proportionately to how much better it does than the average

- Probably the most popular reproduction dynamics
 - e.g., does well at reflecting growth of animal populations
Replicator Dynamics

- **Imitation dynamics** (or **tournament selection**) works as follows:
 - Randomly choose 2 agents from the population, and compare their payoffs
 - The one with the higher payoff reproduces into the next generation
 - Do this n times, where n is the total population size

- Under the imitation dynamics, an agent’s numbers grow if it does better than the average
 - But unlike replicator dynamics, the amount of growth doesn’t depend on how much better than the average

- Thought to be a good model of the spread of behaviors in a culture
Example: A Simple Lottery Game

- A repeated lottery game
- At each stage, agents make choices between two lotteries
 - “Safe” lottery: guaranteed reward of 4
 - “Risky” lottery: [0, 0.5; 8, 0.5],
 - i.e., probability $\frac{1}{2}$ of 0, and probability $\frac{1}{2}$ of 8
- Let’s just look at stationary strategies
- Two pure strategies:
 - S: always choose the “safe” lottery
 - R: always choose “risky” lottery
- Many mixed strategies, one for every p in [0,1]
 - R_p: probability p of choosing the “risky” lottery, and probability $1-p$ of choosing the “safe” lottery
Lottery Game with Replicator Dynamics

- At each stage, each strategy’s average payoff is 4
 - Thus on average, each strategy’s population size should stay roughly constant
- Verified by simulation for S and R
- Would get similar behavior with any of the R_p strategies
Lottery Game with Imitation Dynamics

- Pick any two agents, and let s and t be their strategies.
- Regardless of what s and t are, each agent has equal probability of getting a higher payoff than the other.
 - Again, each strategy’s population size should stay roughly constant.
- Verified by simulation for S and R.
- Would get similar behavior with any of the S_p strategies.
Double Lottery Game

- Now, suppose that at each stage, agents make two rounds of lottery choices
 1. Choose between the safe or risky lottery, get a reward
 2. Choose between the safe or risky lottery again, get another payoff
- This time, there are 6 stationary pure strategies
 - SS: choose “safe” both times
 - RR: choose “safe” both times
 - SR: choose “safe” in first round, “risky” in second round
 - RS: choose “risky” in first round, “safe” in second round
 - R-WR: choose “risky” in first round
 - If it wins (i.e., reward is 8), then choose “risky” again in second round
 - Otherwise choose “safe” in second round
 - R-WS: choose “risky” in first round
 - If it wins (i.e., reward is 8), then choose “safe” in second round
 - Otherwise choose “risky” in second round
Double Lottery Game, Replicator Dynamics

- At each stage, each strategy’s average payoff is 8
 - Thus on average, each strategy’s population size should stay roughly constant
- Verified by simulation for all 6 strategies

![Graph showing population sizes over 100 stages for various strategies.]

Nau: Game Theory 20
Double Lottery Game, Imitation Dynamics

- Pick any two agents a and b, and let choose actions
 - Reproduce the agent (hence its strategy) that wins (i.e., higher reward)
 - If they get the same reward, choose one of them at random

- We need to look at each strategy’s distribution of payoffs:

<table>
<thead>
<tr>
<th></th>
<th>$R-WS$</th>
<th>$R-WR$</th>
<th>SR</th>
<th>RS</th>
<th>SS</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>8</td>
<td>4</td>
<td>16</td>
<td>8</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>.5</td>
<td>.25</td>
<td>.5</td>
<td>.5</td>
<td>.5</td>
<td>1</td>
<td>.25</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>12</td>
<td>4</td>
<td>12</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>.25</td>
<td>.25</td>
<td>.25</td>
<td>.25</td>
<td>.25</td>
<td>.25</td>
<td>.25</td>
</tr>
</tbody>
</table>

- Suppose a uses SS and b uses SR
 - $P(SR$ gets 12 and SS gets 8) = $(0.5)(1.0) = 0.5$ => SR wins
 - $P(SR$ gets 4 and SS gets 8) = $(0.5)(1.0) = 0.5$ => SS wins
 - Thus a and b are equally likely to reproduce

- Same is true for any two of \{SS, SR, RS, RR\}
Double Lottery Game, Imitation Dynamics

Suppose a uses $R-WS$ and b uses SS

- Even though they have the same expected reward, $R-WS$ is likely to get a slightly higher reward than SS:
 - $P(R-WS \text{ gets } 12 \text{ and } SS \text{ gets } 8) = (0.5)(1.0) = 0.5 \Rightarrow R-WS \text{ wins}$
 - $P(R-WS \text{ gets } 8 \text{ and } SS \text{ gets } 8) = (0.25)(1.0) = 0.25 \Rightarrow \text{tie}$
 - $P(R-WS \text{ gets } 0 \text{ and } SS \text{ gets } 8) = (0.25)(1.0) = 0.25 \Rightarrow SS \text{ wins}$

- Thus a reproduces with probability 0.625, and b reproduces with probability 0.375

Similarly, a is more likely to reproduce than b if a uses $R-WS$ and b uses any of $\{SS, RR, R-WR\}$
Double Lottery Game, Imitation Dynamics

- If we start with equal numbers of all 6 strategies, S-WR will increase until SS, RR, and R-WR become extinct
 - The population should stabilize with a high proportion of S-WR, and low proportions of SR and RS
 - Verified by simulation:
Significance

- Recall from Session 1 that people are risk-averse
- Furthermore, there’s evidence that people’s risk preferences are state-dependent
 - Someone who’s sufficiently unhappy their current situation is likely to be risk-prone rather than risk-averse

- Question: why does such behavior occur?
- The evolutionary game results suggest an interesting possibility:
 - Maybe it has an evolutionary advantage over other behaviors

Summary

- Stochastic (Markov) games
 - Reward functions, equilibria
 - Expectiminimax
 - Example: Backgammon

- Evolutionary simulations
 - Replicator dynamics versus imitation dynamics
 - Example: lottery games, risk preferences