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Abstract
The Pyhop planner, released in 2013, was a simple SHOP-style
planner written in Python. It was designed to be easily usable
as an embedded system in conventional applications such as
game programs. Although little effort was made to publicize
Pyhop, its simplicity, ease of use, and understandability led to
its use in a number of projects beyond its original intent, and
to publications by others.
GTPyhop (Goal-and-Task Pyhop) is an extended version of
Pyhop that can plan for both goals and tasks, using a com-
bination of SHOP-style task decomposition and GDP-style
goal decomposition. It provides a totally-ordered version of
Goal-Task-Network (GTN) planning without sharing and task
insertion. GTPyhop’s ability to represent and reason about
both goals and tasks provides a high degree of flexibility for
representing objectives in whichever form seems more natural
to the domain designer.

1 Introduction
Pyhop1 is a simple HTN planner written in Python, compris-
ing less than 150 lines of Python code. Its planning algorithm
is based on the one in SHOP (Nau et al. 1999), but it avoids
the need for a specific “planning” language by having the
task network and its methods written directly in Python. Py-
hop’s development was motivated by an observation that
application developers were often writing planning systems
themselves, rather than learning specialized AI planning lan-
guages (Nau 2013). Pyhop was written in hopes of providing
an HTN (Hierarchical Task Network) planner that could be
easily understood by non-AI practitioners.

Pyhop’s author made little effort to publicize it, but the
ease with which it could be understood and used has made it
useful for rapid prototyping, leading to its use in a number of
projects and publications by others (see Section 2).

This paper describes GTPyhop, which extends Pyhop to
plan for goals as well as tasks. It combines aspects of both
HTN planning as in Pyhop and SHOP, and HGN planning as
in GDP (Goal Decomposition Planner) (Shivashankar et al.
2012). In the terminology of (Alford et al. 2016b), it does a
totally-ordered version of GTN planning without sharing and
task insertion (there is an example at the end of Section 3).

GTPyhop’s source code is about four times as big as Py-
hop’s. It includes the following features:

1https://bitbucket.org/dananau/pyhop/src/master/

• Rather than a task list, GTPyhop has a to-do list that con-
tains zero or more actions, tasks, and goals. Like Pyhop, it
decomposes tasks using task methods; and like GDP, it de-
composes goals using goal methods. However, all methods
return to-do lists, rather than Pyhop’s task lists or GDP’s
goal lists (see example at end of Section 3). Thus a plan-
ning domain may use any arbitrary combination of task
decomposition and goal decomposition.

• Since HGN planning semantics corresponds readily to
classical goal semantics (Shivashankar et al. 2012), it can
be used to guarantee soundness. To enforce soundness,
when GTPyhop decomposes a goal g, it verifies whether
the resulting plan actually accomplishes g, and backtracks
if g is not accomplished. We anticipate that in future work,
this may be useful for purposes such as verification and
validation of domain descriptions.

• GTPyhop can load multiple planning domains into mem-
ory, and switch among them without having to restart
Python each time. GTPyhop also includes more documen-
tation than Pyhop, and additional debugging features.

The GTPyhop software distribution is available for down-
load under an open-source license.2 In addition to GTPyhop,
it includes several example domains, a test harness for run-
ning them, and a simple example of planning-and-acting inte-
gration: a version of the Run-Lazy-Lookahead actor (Ghallab,
Nau, and Traverso 2016) that uses GTPyhop as its planner.

The paper is organized as follows. We provide some con-
text for the original version of Pyhop (Section 2), describe
GTPyhop (Section 3), and briefly describe several research
projects in which GTPyhop is being used and extended (Sec-
tion 4). This is followed by discussions of related work (Sec-
tion 5), some of GTPyhop’s limitations (Section 6), and con-
cluding remarks (Section 7).

2 Why does Py Hop?
As we mentioned earlier, Pyhop is basically a simplified ver-
sion of SHOP that uses Python syntax. For example, actions
and methods are written directly as Python functions. Their
preconditions are Python if tests, and their effects are their
returned values.

2https://github.com/dananau/GTPyhop
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According to (Nau 2013), the original motivation for Py-
hop was a workshop on AI in games (Lucas et al. 2012) in
which many of the attendees were developing games that
incorporated AI planners as subsystems. The approach was
like the way AI planning has been used in other systems that
operate in dynamically changing environments:

• Approximate a part of the system’s objective as a planning
problem p, and develop a special-purpose planner for p.

• Use the planner as a subroutine, calling it repeatedly to
replan as the world changes. The planner operates online,
tightly integrated with the rest of the system.

Such integration is easier if the planner is small, easily un-
derstandable, and uses data structures compatible with those
used in the larger system in which the planner is embedded,
rather than requiring the data to be translated between two
different representation schemes. Pyhop was written as an
example of how to facilitate such integration.

The only efforts to publicize Pyhop were a brief announce-
ment on the SHOP web site3 and an invited workshop talk
(Nau 2013) with no published paper, just slides. Despite this,
a Google Scholar search4 shows 66 publications that refer to
Pyhop. In many of them, Pyhop is used for applications hav-
ing nothing to do with games. There also have been several
forks of Pyhop, e.g., (McGreggor 2014; Cheng et al. 2018),
and a re-implementation of Pyhop in C++ (Jacopin 2020).

3 GTPyhop
Figure 1 shows the GTPyhop planning algorithm. Like Pyhop,
it does a depth-first search with no loop detection (which
wouldn’t be useful here, see Alford et al. (2012)). Compared
to Pyhop, there are the following extensions:

1. refine-goal-and-continue does HGN decomposition based
on the GDP algorithm (Shivashankar et al. 2012).

2. A mixture of task decomposition and goal decomposition
may be used throughout a GTPyhop planning domain. In
the to-do lists T and Tsub in lines (i), (ii), and (iii), each
element may be a task, a goal, or an action.

3. In line (iii), g is a goal, so GTPyhop needs to ensure that
Tsub achieves g. To do so, it appends to Tsub a dummy
action verify(g) that has g as a precondition. If the state
produced by Tsub satisfies g, the action has no effect. Oth-
erwise the action fails, making GTPyhop backtrack.

3.1 Representations and examples
We now describe the basic elements of a GTPyhop planning
domain, with examples from the GTN blocks-world domain
included with the GTPyhop software distribution.5

Domains are Python objects that contain all the elements
of a planning domain, e.g., gtpyhop.Domain(’blocks_gtn’).

States are Python objects that contain collections of state-
variable bindings. When one first defines a state s, it is eas-
iest to write the variable bindings in dictionary form, as in

3http://www.cs.umd.edu/projects/shop/
4https://scholar.google.com/scholar?hl=en&q=pyhop
5https://github.com/dananau/GTPyhop/tree/main/Examples/blocks_gtn

GTPyhop(s0, T ) (i)
return seek-plan(s0, T, [ ]) # base case for seek-plan

seek-plan(s, T, π)
# recursive DFS; π is the current partial solution
if T = [ ] then return π
t← the first element of T
T ′ ← the rest of T
case(t): # solve t, then plan for T ′

action: return apply-action-and-continue(s, t, T ′, π)
task: return refine-task-and-continue(s, t, T ′, π)
goal: return refine-goal-and-continue(s, t, T ′, π)

apply-action-and-continue(s, a, T ′, π)
if action a is applicable in state s:

return seek-plan(a(s), T ′, π + [a])
else: return failure

refine-task-and-continue(s, t, T ′, π)
M ← {task-methods that were declared relevant for t}
for each m ∈M that is applicable in s:
Tsub ← m(s, t) (ii)
π ← seek-plan(s, Tsub + T ′, π)
if π 6= failure then return π

return failure

refine-goal-and-continue(s, g, T ′, π)
M ← {goal-methods that were declared relevant for g}
for each m ∈M that is applicable in s:
Tsub ← m(s, g) + [verify(g)] (iii)
π ← seek-plan(s, Tsub + T ′, π)
if π 6= failure then return π

return failure

Figure 1: GTPyhop pseudocode. The arguments are the initial
state s0 and a to-do list T (a list of actions, tasks, and goals).
GTPyhop returns a solution plan π, or failure if no solution
exists. Actions and methods are functions, so a(s) is the state
produced by a, and m(s, t) is the to-do list returned by m.
“+” denotes concatenation of lists.

Figure 2. Afterward, one can use a Python version of state-
variable notation, e.g., s.pos[x] = ’hand’ in Figure 3.

Actions and methods are written as ordinary Python func-
tions, with the current state as the first argument. There isn’t
a special reasoning system (e.g., SHOP’s Horn-clause in-
ference) to evaluate an action’s or method’s preconditions.
Instead, preconditions are evaluated using ordinary Python if
tests. Similarly, an action’s effects, and the to-do list returned
by a method, are produced by ordinary Python computations.

For example, Figure 3 shows the blocks-world pickup ac-
tion. Its arguments are the current state s and the block x
to pick up. The precondition is the first if test: if x is clear,
x is on the table, and the robot hand is empty, then the ac-
tion modifies the state to say that x is in the robot hand, and
returns the modified state. Otherwise the action returns no
value, which tells GTPyhop the action is inapplicable.

Tasks and task methods: Tasks are represented as tuples.
For example, let (’take’,x) be the task of picking up a block



sus_s0 = gtpyhop.State(’Sussman initial state’)
# Python dictionary notation for sus_s0.pos[’a’] = ’table’, etc.
sus_s0.pos = {’a’:’table’, ’b’:’table’, ’c’:’a’}
sus_s0.clear = {’a’:False, ’b’:True, ’c’:True}
sus_s0.holding = {’hand’:False}

sus_sg = gtpyhop.Multigoal(’Sussman goal’)
sus_sg.pos = {’a’:’b’, ’b’:’c’}

Figure 2: GTPyhop version of the Sussman anomaly (Ghal-
lab, Nau, and Traverso 2004, Section 4.4). In the initial state
sus_s0, blocks a and b are on the table, and block c is on a.
The goal sus_sg specifies that a is on b, and b is on c.

def pickup(s,x):
if s.pos[x] == ’table’ and s.clear[x] == True \

and s.holding[’hand’] == False:
s.pos[x] = ’hand’
s.clear[x] = False
s.holding[’hand’] = x
return s

gtpyhop.declare_actions(pickup)

Figure 3: The blocks-world pickup action. The arguments are
the current state s and a block x. If the precondition (the if
test) is satisfied, the action modifies s and returns it. The last
line declares pickup to be an action.

def m_take(s,x):
if s.clear[x] == True: # precondition

if s.pos[x] == ’table’: # decide what to do
return [(’pickup’, x)]

else: return [(’unstack’, x, s.pos[x])]

gtpyhop.declare_task_methods(’take’,m_take)

Figure 4: A task method. Its arguments are the current state
s and a block x. If the precondition is satisfied, it returns a
to-do list containing a pickup action if x is on the table, or
an unstack action if x is on a block. The last line declares
m_take to be relevant for all tasks of the form (take, ...).

x regardless of whether x is on the table or a block. Figure
4 shows a method for this task. If there are several methods
for the same task, GTPyhop (like Pyhop and SHOP) will try
them in the order that they occur in the source file.

Goals can be represented in two ways. A unigoal is a
triple that represents a desired value for a state variable, e.g.,
(’pos’, ’a’, ’b’) is the goal of reaching any state s such that
s.pos[’a’]==’b’. A multigoal is a state-like object that rep-
resents a conjunction of unigoals, e.g., sus_sg in Figure 2
represents the conjunction of (’pos’, ’a’, ’b’) and (’pos’, ’b’, ’c’).

Goal methods: One declares unigoal methods to de-
compose unigoals, and multigoal methods to decompose
multigoals. Figure 5 shows a multigoal method that imple-
ments a near-optimal block-stacking algorithm. For example,
find_plan(sus_s0,sus_sg) returns the following plan:

def m_moveblocks(s, mgoal):
for x in all_clear_blocks(s): # find a block to move

stat = status(x, s, mgoal)
if stat == ’move-to-block’:

where = mgoal.pos[x] # where to move it
return [(’take’,x), (’put’,x,where), mgoal] (iv)

elif stat == ’move-to-table’:
return [(’take’,x), (put,x,’table’), mgoal] (v)

for x in all_clear_blocks(s): # resolve deadlock
if status(x, s, mgoal) == ’waiting’ \

and s.pos[x] != ’table’:
return [(’take’,x), (’put’,x,’table’), mgoal] (vi)

return [ ] # no blocks need to be moved

gtpyhop.declare_multigoal_methods(m_moveblocks)

Figure 5: A multigoal method implementing the block-
stacking algorithm in (Gupta and Nau 1992): if a block needs
moving and is ready to move to its final location, then do so
and continue planning for mgoal; else if there’s a deadlock
then resolve it and continue planning for mgoal; else we’re
done. The code uses two helper functions: all_clear_blocks
returns a list of clear blocks, and status tells whether a block
x needs to be moved and whether it is ready to be moved.

[(’unstack’, ’c’, ’a’), (’putdown’, ’c’), (’pickup’, ’b’),
(’stack’, ’b’, ’c’), (’pickup’, ’a’), (’stack’, ’a’, ’b’)]

A GTN planning example. In lines (iv), (v), and (vi) of
Figure 5, each to-do list contains two tasks and a multigoal.
GTPyhop knows what kind of method to use in each case.

4 Example Usages
There are several research projects in which GTPyhop is
being used and extended. We briefly describe them below.

Bansod et al. (2021) describes an integrated system for
hierarchical planning and acting in dynamically changing
environments. An important component of this system is a
re-entrant planning algorithm based on GTPyhop.

A paper in preparation integrates GTPyhop with reinforce-
ment learning. The work uses the goal network provided by
GTPyhop to guide a curricula for multi-task learning. During
acting, it executes the goal network provided by GTPyhop.

GTPyhop is also being used in a research project to develop
temporal planning algorithms in multi-agent environments.
For this purpose, modifications are being made to support
communication among multiple agents, and representation
and reasoning about temporal constraints.

In our future work, we anticipate the possibility of using
goals for verification and validation of domain descriptions.

5 Related Work
The closest related theoretical work is (Alford et al. 2016b),
which related task networks and goal networks under various
semantics, including HTN, HGN, and GTN planning, task
(or goal) insertion, and sharing.

Several HTN planners introduced in the 1970s through
1990s are no longer available for comparison. One of the first
was NOAH (Sacerdoti 1975), which was followed by Nonlin



(Tate 1977), the SIPE family (Wilkins 1990), O-Plan (Currie
and Tate 1991; Tate, Drabble, and Kirby 1994), PRS (Ingrand
et al. 1996; Meyers 2016), and UMCP (Erol 1996).

Many HTN planners provide a planner-specific language
in which to write the HTN methods. The SHOP planners
(Nau et al. 1999, 2003; Goldman and Kuter 2019) make use
of Lisp’s extensibility to define a Lisp-like language for this
purpose. Sohrabi et al. (2009) extended PDDL3 with HTNs
to support preferences and converted this extended PDDL3
format for a variant of SHOP2.

In JSHOP2 (Ilghami and Nau 2003), methods are written
in the same Lisp-like language, but JSHOP2 compiles them
to Java to perform the search. Similarly, the HyperTensioN
planner converts a planning model into the Ruby language
and was recently extended to support semantic attachments
for HTN (Magnaguagno and Meneguzzi 2020).

The totSAT planner (Behnke, Höller, and Biundo 2018)
converts totally-ordered HTN planning problems into a SAT
formula. PANDA (Höller et al. 2021) is a planner that in-
tegrates various approaches to hierarchical planning. Both
planners emphasize the importance of a common language
for problem definition and propose a Hierarchical Domain
Definition Language (HDDL) for it (Höller et al. 2020).

HDDL was also the input language for the recent Hierar-
chical Track of the International Planning Competition.6 A
full discussion of all planners in that competition is out of
scope for a short paper, but we highlight the winners SIADEX
(de la Asunción et al. 2005; Castillo et al. 2005) and Hyper-
TensioN (Magnaguagno and Meneguzzi 2020), which both
translated HDDL to their specific format.

The IxTeT planner (Ghallab and Laruelle 1994) was a
temporal HTN planner which used a specialized language
to encode its methods. OpenPRS7 is a C implementation of
PRS. ASPEN (Fukunaga et al. 1997; Chien et al. 2000) is
both a planner and framework for planning in space applica-
tions; it uses a planner-specific language for encoding plans.
The FAPE Planner (Dvorák et al. 2014; Bit-Monnot et al.
2020) is a recent planner that supports a subset of the ANML
language (Smith, Frank, and Cushing 2008). A more recent
HTN planner SHPE (Menif, Jacopin, and Cazenave 2014)
is specifically developed for AI planning in video games. It
used a simplified variant of ANML (Smith, Frank, and Cush-
ing 2008) to encode problems that were then compiled C++
objects to perform search. The Adversarial HTN Planner (On-
tañón and Buro 2015) allows for HTNs to be used in iterated
environments such as Real Time Strategy games; problems
for this planner are encoded in a language provided by the
system and a variety of research has extended this planner
(e.g., (Lin et al. 2020; Sun et al. 2017)).

Like Pyhop and GTPyhop, there are several HTN planners
in which domains and problems are written in a conventional
programming language. The planner by Neufeld et al. (2018)
uses C++ for this purpose; its HTN primitives link with Be-
havior Trees, a common representation for computer game
agents. The planner by Soemers and Winands (2016) also
uses C++ to represent HTN problems; this planner introduced

6http://gki.informatik.uni-freiburg.de/competition/
7https://git.openrobots.org/projects/openprs

a mechanism to reuse the existing solution for faster replan-
ning. The UPOM planner introduced in (Patra et al. 2020)
uses Python to represent hierarchical operational models.

6 Limitations
One limitation involves the goal representation’s expressiv-
ity. A GTPyhop goal, like a state (see Figure 2), is a set
of state-variable bindings. The goal is the conjunction of
those bindings, without a way to represent more complicated
logical expressions. There probably are some workarounds,
but we have not yet considered this. In our work so far, this
limitation has not been a major problem.

In many HTN planners, a method or action may contain
free variables for which there are several possible instantia-
tions. When the planner creates instances of the method or
action, it may backtrack over these instantiations. In contrast,
in GTPyhop (like Pyhop) there is no notion of instantiating a
method. The method is a piece of Python code that GTPyhop
calls directly. The method may contain a variety of local vari-
ables, but it is up to the method’s author to specify how these
variables will acquire their values.

In HTN planners that use planner-specific languages, the
methods’ preconditions and subtasks are data structures that
the planner can reason about before deciding which methods
to use in a planning problem. This has enabled several recent
advances in HTN-planning search heuristics (Alford et al.
2016a) and other speedup techniques (Behnke, Höller, and
Biundo 2018). In contrast, GTPyhop does not know its meth-
ods’ preconditions and subtasks in advance, because each
method is a Python program that computes a list of subtasks
and subgoals that may depend on the current state (e.g., Fig-
ures 4 and 5). A potential way to circumvent this limitation
might be to evaluate the method, see what tasks, goals, and
actions it returns, and then use this information to provide
input to a search heuristic—but we have not tried to imple-
ment this to see how well it would work. For now, GTPyhop
(like Pyhop and SHOP) just does a depth-first search, trying
methods in the order that the domain author defined them.

7 Conclusions
Pyhop implemented a version of SHOP-style HTN planning
in which methods and actions were written directly in Python.
Despite a minimal amount of publicity and no publication, it
has been used in several systems that went beyond its original
intent of a simple planner for game systems.

GTPyhop extends Pyhop to provide a version of totally-
ordered Goal-Task-Network planning without sharing and
task insertion. GTPyhop also includes several other features,
as described in the introduction. We are working now to
extend GTPyhop to incorporate temporal and multi-agent
concerns. Section 4 has briefly described the directions that
this work is taking.
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