

EMSYS: Electro-Mechanical Systems Design and Planning

- Seven faculty (joint with ME, EE, CS, Business School)
- Ten years experience
 - » Process Planning, Concurrent Engineering, DFM
 - » Systems Engineering and Information Integration
 - » Facility Layout, Production Scheduling
 - » Inventory and Distribution Systems, Supply Chain Management
- Sponsors and Partners
 - » *Government:* DARPA, ONR, NIST, NSF, US Army TACOM, Wright Patterson AFB
 - Industry: Bentley Systems, Black and Decker, IBM, Kopflex Inc., LAI, Lockheed Martin, Northrop Grumman, Pangborne Corp., Pepco, Simmons Mattress, Spatial Technologies, Texas Instruments, Washington Aluminum, Westinghouse

Dana Nau, University of Maryland

	Substrate Dimensions: 7,4,1 Ground Material: Aluminum Material: Teflon Substrate thickness: 30 mils Metallized thickness: 7 mils					Example Process Plan Output				
	Proces Opn A 001 A 001 B	ses: BC/WW VMC1 VMC1	Setup 2.00 0.10	Runtime 0.00 0.43	LN 01 02 03 01 02 03	Description Orient board vertically Clamp board at (1,1,1) Establish datum point Tool: 0.30-diameter drill bit Drill at (1.25,-0.50) d:1.00,f:50,s:30 Drill at (1.25,-0.50) d:1.00,f:20,s:60	•	Estimate lead time, cost, quality		
	001 C 001 T	VMC1 VMC1	0.10 2.20	0.77 1.20	01 02 01	Tool: 0.20-diameter slot miller Mill start (0.044, 4.88) I: 0.5, w: 0.5, d: 1.00, f: 50, s: 40 Total time on VMC1	•	Evaluate other plans	5	
	006 A 007 A 008 A	PLAT1 ETR1 ETC1	1.00 0.50 0.20	0.60 0.60 0.30	02 01 01	Dip in bath for 2 minutes Temperature:100C, Conc:1000ppm Etch plate for 1 minute Etch board for 2 minutes Temperature:100C, Conc:1000ppm	•	Display results graphically		
Dana Nau, University of Maryland 24										

