Academic ancestry

This page may make more sense to you if you're a math geek :-)

My academic ancestry according to the Mathematics Genealogy Project:

                                  Leonhard Euler              ...
                                         ↓                     ↓
         ...                 Joseph-Louis Lagrange    Pierre-Simon Laplace
          ↓                        ↙             ↘            ↙
Carl Friedrich Gauss       Joseph Fourier        Siméon Poisson
          ↓                        ↘             ↙            ↘
Christian Gerling   Martin Ohm   J.P.G. Lejeune Dirichlet   Michel Chasles
            ↘              ↘            ↙                     ↙
      Julius Plücker      Rudolf Lipschitz            H.A. Newton
                 ↘         ↙                            ↙
                 Felix Klein                    E.H. Moore
                        ↘                         ↙
                    Maxime Bôcher      George David Birkhoff
                             ↘             ↙
                             Joseph L. WalshJoseph DoobDavid BlackwellAram ThomasianArthur GillAlan W. BiermannDana S. NauMy students

My Erdös number is 3, through two different paths:

  1. D.S. Nau, M.O. Ball, J. Baras, A. Chowdhury, E. Lin, J. Meyer, R. Rajamani, J. Splain, and V. Trichur (2000). Generating and evaluating designs and plans for microwave modules. Artificial Intelligence for Engineering Design and Manufacturing 14, 289–304.
  2. A. Ramesh, M.O. Ball, and Charles Colbourn (1987). Bounds for all-terminal reliability in planar networks. Annals of Discrete Mathematics 33, 261-273.
  3. B.N. Clark, Charles Colbourn, and P. Erdös (1985). A Conjecture on Dominating Cycles. Proc. of the 16th Southeastern Conference on Combinatorics, Graph Theory, and Computing, pp. 189-198.
  1. D.S. Nau, G. Markowsky, M. A. Woodbury, and D. B. Amos (1978). A mathematical analysis of human leukocyte antigen serology. Mathematical Biosciences 40:243–270.
  2. Daniel Kleitman and G. Markowsky (1975). On Dedekind's problem: the number of isotone Boolean functions. II. Transactions of the American Mathematical Society 213: 373–390.
  3. P. Erdös and D. Kleitman (1968). On coloring graphs to maximize the proportion of multicolored k-edges. Journal of Combinatorial Theory 5(2).