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Neural networks have been criticized for their lack of easy interpretation, which

undermines confidence in their use for important applications. We show that a trained

neural network can be interpreted using flip points. A flip point is any point that lies

on the boundary between two output classes: e.g. for a neural network with a binary

yes/no output, a flip point is any input that generates equal scores for “yes” and “no”.

The flip point closest to a given input is of particular importance, and this point is the

solution to a well-posed optimization problem. We show that computing closest flip points

allows us, for example, to systematically investigate the decision boundaries of trained

networks, to interpret and audit them with respect to individual inputs and entire datasets,

and to find vulnerability against adversarial attacks. We demonstrate that flip points

can help identify mistakes made by a model, improve its accuracy, and reveal the most

influential features for classifications. We also show that some common assumptions about

the decision boundaries of neural networks can be unreliable. Additionally, we present

methods for designing the structure of feed-forward networks using matrix conditioning.

At the end, we investigate an unsupervised learning method, the Gaussian graphical model,

and provide mathematical tools for interpretation.
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Chapter 1: Introduction

In this dissertation, we study several open research problems in the field of machine

learning. We study neural networks with respect to their behavior as a function, their in-

terpretation and debugging, and their structural design, in Chapters 2 through 6. We also

study interpretation of Gaussian graphical models as an unsupervised learning method in

Chapter 7.

All the problems that we study in this thesis can be described as optimization prob-

lems. Most of these problems, especially the ones related to neural networks, have been

considered intractable, in papers as recent as 2019. In order to solve these problems, we

consider application of homotopy methods as well as off-the-shelf optimization algorithms.

Homotopy methods have been studied by many researchers, for example, Watson

[1986], Dunlavy and O’Leary [2005], and Mobahi and Fisher III [2015], and proven to be

effective in solving many optimization problems. From a broader point of view, homotopy

is a subfield in mathematical topology, and as a principle, homotopy refers to “continuous

transformation” between two functions. In the context of optimization, homotopy methods

transform a “hard to solve” problem into a related but “easy” problem with a known

solution and some desired properties. The “easy” problem is then transformed back into

the original problem, through a series of iterations, in which the intermediary problems are

solved at each iteration and the obtained solution is used as the starting point for the next
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iteration. Using this procedure we avoid dealing directly with the “hard” optimization

problem.

In general, homotopy methods can be considered a relatively young field in mathe-

matical optimization. Despite their general effectiveness, these methods need to be specif-

ically developed and tailored for individual problems, and as we illustrate here, there

are still many prominent problems in computer science that can benefit from using these

methods.

Our main research focus is on deep learning models. Application of these models

have become wide spread among researchers and practitioners. Despite their capabilities

in achieving high accuracies, deep learning models have been criticized for their lack of

easy interpretation, which undermines confidence in their use for important applications.

We study this problem and introduce a novel technique, interpreting a trained neural

network by investigating its flip points. A flip point is any point that lies on the boundary

between two output classes: e.g. for a neural network with a binary yes/no output, a

flip point is any input that generates equal scores for “yes” and “no”. So far, finding

exact points on the decision boundaries of trained deep models has been considered an

intractable optimization problem.

To prepare to solve this optimization problem, we formulate our neural network

as a function in Chapter 2. We investigate its computational properties with respect

to optimization. We study the Lipschitz continuity of the model, derive a bound on its

Lipschitz constant, investigate its derivatives and their rank, and use a tunable activation

function so that we have control over the derivatives of the neural network function.

In Chapter 3, we propose a practical method to find exact points on the deci-
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sion boundaries of these models. The flip point closest to a given input is of particular

importance, and this point is the solution to a well-posed optimization problem. This

optimization problem incorporates the neural network function, and it is nonlinear, non-

convex, and usually high dimensional. It also has highly nonlinear equality constraints

involving the output of the neural network function. The neural network function itself

has the issue of vanishing and exploding gradients besides the previous issues. These all

make the optimization problem rather hard to solve.

Therefore, in Chapter 3, we also develop a homotopy algorithm to solve this prob-

lem more effectively. This algorithms relies on the neural network function formulated in

Chapter 2. Our algorithm transforms the network via a homotopy, in order to overcome

the issue of vanishing and exploding gradients, and to ensure that we have a feasible start-

ing point. The homotopy transformation is gradually backtracked until we find the closest

flip point for the original network. We find this algorithm to be quite reliable.

With regard to interpretation of deep learning models, we provide an overview of

the uses of flip points in Chapter 4. Through results on standard datasets, we demonstrate

how flip points can be used to provide detailed interpretation of the output produced by

a neural network. Moreover, for a given input, flip points enable us to measure confidence

in the correctness of outputs much more effectively than softmax score. They also identify

influential features of the inputs, identify bias, and find changes in the input that change

the output of the model. We show that distance between an input and the closest flip point

identifies the most influential points in the training data. Using principal component anal-

ysis (PCA) and pivoted QR factorization, the set of directions from each training input

to its closest flip point provides explanations of how a trained neural network processes
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an entire dataset: what features are most important for classification into a given class,

which features are most responsible for particular misclassifications, how an adversary

might fool the network, etc. Although we investigate flip points for neural networks, their

usefulness is actually model-agnostic for models with continuous output.

Studying the flip points and the decision boundaries of deep learning models have

far reaching implications in other areas of research, besides the interpretation, as we study

in Chapter 5. For example, training, generalization error, and robustness to adversarial

attacks are all areas of research about deep learning models that speculate about the

decision boundaries, and sometimes make simplifying assumptions about them. A trained

model is defined by its decision boundaries, and therefore, studying the decision boundaries

is a natural and direct approach to study the models, despite the computational difficulties.

In Chapter 5, we provide mathematical tools to investigate the surfaces that define

the decision boundaries. Through numerical results, we demonstrate these techniques and

show them more accurate than previous results that rely on simplifying assumptions such

as local linearity. We show that the complexities of decision boundaries can make linear

approximation methods quite unreliable for models with nonlinear activation functions.

Instead, flip points provide better estimates of distance and direction from data points

to decision boundaries. We also study decision boundaries in relation to adversarial ro-

bustness, and show that computing flip points can reveal the weakest vulnerabilities of

models towards adversarial attacks. We show that computing the closest flip point can be

done at a cost similar to that of computing an adversarial point using the loss function,

the common approach in the literature. We also study the shape and connectedness of

sub-manifolds that define the decision regions of trained networks.
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The success of deep learning models is partly attributed to the years of work on

designing and hand-crafting specific network structures that can effectively learn from the

data and generalize well on unseen data. Although many researchers choose to work on

predesigned networks for standard datasets, it is a rather hard task to design a network

from scratch to learn an unfamiliar dataset. There are plenty of approaches in the lit-

erature that can prune a network that already achieves high accuracy. But designing a

network that can achieve high accuracy requires considerable human cost and computa-

tional power. Some of these model design methods rely on training many many networks

and choosing the best model; therefore, they are not practical for many applications.

We propose practical and inexpensive algorithms based on matrix conditioning, in order

to effectively design feed-forward networks from scratch. As we show in Chapter 6, our

methods lead to very compact networks with high accuracies.

We also study interpretation of an unsupervised learning method, the Gaussian

graphical model, in Chapter 7. These models have many applications for real world

problems in understanding the underlying relationship among features in the data. The

output of this learning method, the graphical model, may vary significantly with changes

in the data. However, the relationship between the data itself and the obtained model

was not clear. The data, on the other hand, is not usually identically and independently

distributed, and existence of noise and corrupt data is relatively common. This undermines

the confidence in the correctness of results, and may cause practitioners to be hesitant

in using these models, if they do not have insight on how the edges in the graph are

related to the data, and how robust the obtained graph is. Here, we study this problem,

provide a computational method that can interpret individual edges in Gaussian graphical

5



models, and show the robustness of the overall graph. We achieve this by formulating

these questions as optimization problems, providing a formulation that can compute the

derivatives analytically, and solving the optimization problems effectively, using tailored

algorithms.

Finally, in Chapter 8 we summarize our results and outline directions for future

research.
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Chapter 2: Neural Networks as Functions

2.1 Introduction

In this chapter, we formulate a standard neural network model for our experiments,

and examine its computational properties as a function.

Computational properties of neural network functions have been investigated in

many studies, from different perspectives. Neural networks can be described as composi-

tion of many, many functions. It is well known and proved that neural networks are able

to approximate any measurable function to any desired degree of accuracy; in other words,

they can be seen as universal approximators [Cybenko, 1989, Hornik et al., 1989, Mhaskar

et al., 2016, Mhaskar, 1993, Strang, 2019, Zhou, 2019]. There are practical difficulties,

however, in creating a neural network that achieves small error. There have been many

studies that aim to address these difficulties and to make the composition of networks more

efficient. For example, Shaham et al. [2018] used wavelet decomposition of functions to

approximate them with bounded error. The size of network in their study depends on the

dimension and curvature of the manifold, the complexity of the function, and the ambient

dimension. Hanin [2017] studied the required depth of networks to approximate functions,

when the networks have bounded width. Blcskei et al. [2019] studied approximability of

arbitrary function classes in L2. Petersen and Voigtlaender [2018] studied approximability

of piecewise smooth functions, and Opschoor et al. [2019] studied approximability of deep
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networks in relation to high order finite element methods.

In this thesis, we use deep networks not specifically to approximate functions, but

in a standard supervised machine learning setting, where the network is first trained on

a training set and then used as a function to perform the same task on unseen data. We

consider a variety of tasks and datasets, including image classification, medical decisions,

and financial risk assessment.

A neural network trained to perform such tasks is a rather complex function that

is hard to understand. Despite the unprecedented success of neural networks in the past

decade in achieving high accuracy in machine learning problems, they have become too

complex to be investigated or audited by writing out the functions they compute. There is

not adequate understanding about how their output is related to their input. Therefore, it

is difficult to provide any explanation on why a certain output is produced. Consequently,

we do not know how confident we can be in the accuracy of an output. This becomes

problematic when the output of the network is about vital decisions in human lives, such

as medical decisions, problems in criminal justice, or even problems as simple as classifying

an image.

In our research, we use trained neural networks as functions, and we define opti-

mization problems that incorporate such functions in their objective function and/or their

constraints. By solving those optimization problems, we interpret trained neural networks,

audit and debug them, investigate their decision boundaries, etc.

2.2 Neural network functions and the difficulties that arise

The difficulty in using a trained neural network as a function can be explained via

its output surface and the derivatives of output with respect to its input. A trained neural
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network is a nonlinear and nonconvex function. Moreover, the output of a trained neural

network can be constant over vast regions of its domain, and it can be very volatile and/or

steep in other regions. This can be explained through the hierarchy of the neural network

which can cause the gradients to vanish and/or explode through its layers. Regardless of

the explanation, the gradient matrix can be badly scaled and potentially uninformative

or misleading. Solving an ill-conditioned optimization problem involving such functions is

hard, and in high dimensional space, it can become an intractable task.

This issue with the gradients is commonly encountered in the training process, too,

and in the neural network literature it is referred to as the issue of “vanishing and exploding

gradients” [Bengio et al., 1994, Hanin, 2018]. It is important to make the distinction that

in this research, we are concerned with the gradient of the output of the network with

respect to its input, while in the training process one would be concerned with the gradient

of the loss function with respect to the training parameters. In both cases, the “vanishing

and exploding gradients” phenomenon can be studied by investigating individual matrices

in the chain rule formulation of the gradient matrix.

We will examine the mathematics of these difficulties in more detail, in the next

chapter. In the meantime, keep in mind that to overcome these issues, it would be desirable

to formulate our network such that we have control over the gradients of the output of

the network with respect to input.

In the following section, we first formulate a feed-forward neural network with a

tunable activation function, continuous and easily differentiable. The tunable activation

function gives us control over the curvature of the neural network function. We later use

this for homotopy transformation of the network and interpretation of the model.
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2.3 Formulating the neural network

2.3.1 Notation

In our notation, vectors and scalars are in lower case and matrices are in upper case,

except for Kronecker delta. Bold characters are used for vectors and matrices, and the

relevant level on the network is shown as a superscript in parenthesis. Subscripts denote

the size of vectors and matrices, and the index for a particular element of a matrix or

vector is shown inside brackets.

� : Hadamard product

erf() : error function, defined by equation (2.2)

softmax() : softmax function, defined by equation (2.1)

Jac(a, b) : Jacobian matrix of vector a with respect to vector b

σ[i] : tunable parameter for layer i (element i from vector of parameters σ1,m−1)

δm,n : Kronecker delta matrix with m rows and n columns

1m,n : matrix of ones with m rows and n columns

b(i) : bias vector for neurons on layer i

m : number of layers in the network excluding the input layer

ni : number of neurons on layer i, = |y(i)|

W (i) : weights of edges connecting neurons on layer i− 1 to layer i

x : inputs, vector with nx elements

y(i) : output of layer i

z : output of network, vector with nm elements
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2.3.2 Our neural network

In this thesis, we consider a feed-forward neural network prototype, N , shown in

Figure 2.1, as an example. Our methods can be easily generalized to neural networks with

different architectures, such as convolutional and residual networks.

Figure 2.1: Sketch of a prototype feed-forward neural network N with nx inputs, m layers,

and nm outputs.

The network in Figure 2.1 operates on an input vector x which has nx features to

produce an output N (x). We refer to the number of neurons on each layer as ni, where

i is the number of the hidden layer. The input to the first layer is xW (1) + b(1), where

W (1) is the weight matrix and b(1) is the bias vector. Then the activation function is

applied to obtain the output y(1) for the first layer of network. This first layer output is

a row vector with n1 elements, corresponding to each neuron on the layer.

This process continues down the layers of the network until we reach the layer m.
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For all the layers above layer m, an activation function, discussed in Section 2.3.3, is

applied to obtain the output. But for the very last layer m, instead of the activation

function, we apply the softmax function, defined by:

softmax(y)1,ni = ey1,ni/
(
ey1,ni 1ni,1

)
. (2.1)

to normalize the output of the network. The output of the softmax function on layer m

has nm elements.

2.3.3 Activation function

There are many activation functions that are commonly used in neural networks,

such as the Rectified Linear Unit (ReLU), sigmoid, and hyperbolic tangent, to name a few

[Strang, 2019]. The ReLU activation function has achieved great success in practice and

its use is wide-spread [Jarrett et al., 2009, Nair and Hinton, 2010]. Nevertheless, there

are recent studies that have effectively used other activation functions or combinations of

them [Du and Lee, 2018, Gulcehre et al., 2016, Ramachandran et al., 2018].

In this thesis, we use the error function (erf) in a tunable manner, as in

activation(c|σ) = erf(
c

σ
) =

1√
π

∫ + c
σ

− c
σ

e−t
2
dt, (2.2)

where c is the result of applying the weights and bias to the neuron’s inputs. The tuning

parameter σ is strictly positive. We choose a single parameter σi for layer i and optimize

it during the training process. Hence, for the whole network, we have a vector of m − 1

tuning parameters, σ, where each element corresponds to one hidden layer in the network.

It is possible to allow more parameters in σ.

While erf is not a very common choice for activation function, it has been shown

that its performance in terms of accuracy is comparable to other activation functions
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[Ramachandran et al., 2018]. Mobahi [2016] has also reported success in using the erf for

training recurrent neural networks.

We note that when σ is small, then the activation function resembles a step func-

tion, while when σ is large, it resembles a linear function, as shown in Figure 2.2, so erf

captures the behavior of popular activation functions while preserving differentiability.

For example, for the domain shown in Figure 2.2, when σ = 20 the activation function

is computationally linear, when σ = 1.0 activation function resembles a sigmoid function,

and when σ = 0.1 our activation function becomes similar to a step function.

Figure 2.2: Shape of erf function as σ varies.

As we will explain in the next chapter, tuning the activation functions allows us to

upper- and lower-bound the gradients of the output of the network with respect to its

input. This enables us to solve optimization problems incorporating the original trained

network in its objective function and/or its constraints.

2.3.4 Formulae

Using the erf activation function, the output of the first hidden layer for input x is

y
(1)
1,n1

= erf
(x1,nx W

(1)
nx,n1 + b

(1)
1,n1

σ[1]

)
. (2.3)

And recursively, the output of hidden layer i can be written in terms of the output
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of layer i− 1, as

y
(i)
1,ni

= erf
(y(i−1)1,ni−1

W
(i)
ni−1,ni + b

(i)
1,ni

σ[i]

)
. (2.4)

Finally for a neural network that has m − 1 hidden layers, the output of the last

layer is

y(m) = y
(m−1)
1,nm−1

W (m)
nm−1,nm + b

(m)
1,nm

, (2.5)

and the output of the network is

z1,nm = N (x) = softmax
(
y(m)

)
. (2.6)

The output obtained from equation (2.6) is continuous between 0 and 1 for each

neuron and the sum of values obtained on the output layer add to 1. The softmax func-

tion is commonly used in deep learning models for classification, prediction, and decision

making problems. Each neuron on the output layer, for example, may represent a class,

and the output for a neuron can be interpreted as the probability for the input to be in

that class. As can be noted in the equations (2.5) and (2.6), the softmax function replaces

the erf activation function on layer m. This setting is common for deep learning models

with softmax on their output layer but can be modified as desired and is not a limitation

imposed on our formulation. In the next sections, we calculate the derivatives throughout

the network.

2.4 Derivatives of the output with respect to input

We are interested in finding the derivatives of the output with respect to the inputs,

in order to solve optimization problems incorporating the neural network function, N .

The derivative of the outputs of the network with respect to its inputs is a Jacobian

matrix, Jac(z,x), when the network has more than one input feature and more than one
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output class. We compute the derivatives analytically, which is generally more efficient

and reliable than using finite differences.

Analytic computation of the derivatives is possible for many different kinds of net-

work architectures, including feed-forward, convolutional, and residual networks, assuming

that the network does not contain non-differentiable elements such as non-differentiable

activation functions or max pooling. Even in the presence of non-differentiable elements

in the network, in most cases, we can still rely on analytical computation of sub-gradients,

which is more efficient than the finite difference option. This is similar to the approaches

used by common software when computing the gradients of the loss function with respect

to the trainable parameters.

For the feed-forward networks used in our work, the computation of the derivatives

is analogous to the back-propagation approach commonly used to compute the gradients

with respect to the training parameters of the networks [Rumelhart et al., 1988]. Hence,

we calculate the derivatives, layer by layer, and use the chain rule. We first take the

derivative of the output of the first layer with respect to the inputs:

Jac
(
y(1),x

)
n1,nx

=
2

σ[1]
√
π

(
1nx,1 e

−
(

x W (1)+b(1)

σ[1]

)2
1,n1

)T
�W (1)

nx,n1

T
. (2.7)

In general, we can write the Jacobian for the output of any hidden layer in terms of

the Jacobian for the layer above it. This recursive relation is expressed by

Jac
(
y(i),x

)
ni,nx

=

2

σ[i]
√
π

(
1nx,1 e

−
(

y(i−1) W (i)+b(i)

σ[i]

)2
1,ni

)T
�
(
W (i)

ni−1,ni

T
Jac

(
y(i−1),x

)
ni−1,nx

)
. (2.8)

We continue this process until we reach the last output layer, which has a softmax

function instead of the activation function. We use the chain rule to obtain the Jacobian
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as:

Jac(z,x)nm,nx =
((
zT1,nm 11,nm

)
�
(
δnm,nm − 1nm,1 z1,nm

))
(
W (m)

nm−1,nm

T
Jac

(
y(m−1),x

)
nm−1,nx

)
. (2.9)

Thus, for any given input x, we can calculate the derivative (or in other words the

sensitivity) of the output with respect to each element of the input.

Although the formulation presented here is for a feed-forward neural network, it is

not limited to its architecture and can be easily extended to other architectures such as

convolutional and/or residual neural networks. Using this formulation, in Chapter 3, we

will write optimization problems that explain a trained neural network.

2.4.1 Rank of the derivatives of output

We know from linear algebra that the rank of product of two matrices is less than

or equal to the rank of each individual matrix. We also know that the rank of any matrix

of any size is at most equal to its smallest dimension. Now, let’s evaluate the rank of the

Jacobian we just computed.

Using the two rules above, we can conclude that

rank(Jac(z,x)) ≤ min(nx, n1, n2, . . . , nm), (2.10)

which means the rank of the derivative of output of a network with respect to input is at

most equal to min(nx, n1, n2, . . . , nm).

Among neural network architectures, it is very common that min(nx, n1, n2, . . . , nm) =

nm. For auto-encoders, the layer with the smallest number of neurons will correspond to

the “code” layer.
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2.5 Derivatives of the loss function with respect to trainable parameters

Different functions can be used to evaluate the loss of neural network. Perhaps

the most common loss function for classification models is the cross-entropy function as

defined in Strang [2019]. The loss function, L, will apply to the output of the neural

network function N (x), for a particular input x, and produce a scalar representing the

loss for that input.

In general, the loss of the neural network over a set of inputs is the sum of losses for

the individual inputs. Hence, the derivative of the loss for a set of inputs (e.g., training

set) is the sum of the derivatives for the individual inputs.

For a particular input, x, the derivative of the loss function with respect to the

trainable parameters (e.g., weight matrices) can be computed using the chain rule

∇(L(N (x)),W i) = ∇(L(N (x)),N (x)) Jac(N (x),W i). (2.11)

For computing the Jac(N (x),W i), we use back-propagation as explained previ-

ously. To perform this computation, we use the TensorFlow software [Abadi et al., 2015]

developed by Google.

2.6 Lipschitz continuity of the neural network function

Finally, we investigate the Lipschitz continuity of our neural network. Knowing

the Lipschitz constant of a neural network allows us to use a line to approximate the

output of a neural network between two points in its domain, with bounded approximation

error. In later chapters we will discretize the domain of a trained network and use a line

to approximate the output of network between the discretization points. Knowing the

Lipschitz constant we can choose the discretization points such that our approximation
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error is bounded and small.

To evaluate the Lipschitz constant one can take two approaches. The first ap-

proach, is to compute an upper bound on the norm of the derivatives of the output of the

network. The second approach, is to estimate the local Lipschitz constant by searching

in the neighborhood of x.

For the first approach, we write the chain rule decomposition of equation (2.9) and

compute the maximum norm of each matrix in the decomposition. The derivative will be

bounded by the product of the norms. Consider equation (2.7) as the first step. We have

‖ Jac
(
y(1),x

)
‖∞ ≤

2

σ[1]
√
π
‖
(
1nx,1 e

−
(

x W (1)+b(1)

σ[1]

)2
1,n1

)
�W (1)‖∞

≤ 2

σ[1]
√
π
‖W (1)‖∞.

(2.12)

because 0 ≤ 1nx,1 e
−
(

x W (1)+b(1)

σ[1]

)2
1,n1 ≤ 1.

Continuing this process down the layers of the network, using equations (2.8) and

(2.9), we can easily bound the derivative of output. We note that for each hidden layer in

the network, 1nx,1 e
−
(

y(i−1) W (i)+b(i)

σ[i]

)2
1,ni is bounded between 0 and 1, and can be dropped.

We obtain the upper bound on the Lipschitz constant as

‖ Jac
(
z,x

)
‖∞ ≤

2m−1

π(m−1)/2
∏m−1
i=1 σ[i]

m∏
i=1

‖W (i)‖∞. (2.13)

For the second approach, we can investigate the behavior of the Jacobian for a

particular output class, or in the neighborhood of a particular x. Our maximization

problem here is non-convex and we cannot be certain that the maximum derivative we

find is actually the “maximum”. However, even if we find a local maximizer, as opposed

to the global one, it might be insightful. This approach might be more plausible if we are

interested in the neighborhood between two nearby inputs, for example the neighborhood

between an input and the closest point to it on a decision boundary.
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2.7 Summary

In this chapter, we formulated our neural network and investigated some of its

computational properties as a function. We used an activation function that gives us

control over the derivatives of the neural network function. We provided formulation for

computing the derivatives of the output of network with respect to its input, and examined

the Lipschitz continuity of the neural network function and the rank of its derivatives.

In the next chapter, we will define optimization problems that incorporate trained

neural network functions and propose a systematic method to compute exact points on

the decision boundaries of the models. We refer to such points as flip points, and we would

be interested to find the closest flip point to any given input.
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Chapter 3: Finding Closest Flip Points

3.1 Introduction

In this chapter, we introduce the concept of “closest flip point” and provide an

algorithm to compute it.1. In later chapters, we describe in detail how closest flip points

can be used as a tool to investigate and interpret neural network functions. As a brief

introduction, for a particular trained model, the closest flip point to a given input x is

the closest point on the decision boundary of the trained model. Computing such points

is a systematic way to investigate the decision boundaries, especially nonlinear and high-

dimensional boundaries. Although we define the closest flip points in the context of a

neural network model, the concept is actually model agnostic and can be used for other

types of models that have continuous output.

We first consider a neural network that has two output classes and then extend our

work to neural networks with an arbitrary number of outputs, and neural networks with

quantified outputs.

3.2 Neural networks with two outputs: a binary classification

Consider a neural network with two output nodes. For definiteness, let’s refer to

the output of the neural network as a prediction of “cancerous” or “noncancerous”, but

1This work has been published in “Interpreting Neural Networks Using Flip Points” [Yousefzadeh and

O’Leary, 2019a].
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our methods are equally applicable to other types of output, such as decisions and clas-

sifications. As mentioned in the previous chapter, we assume that the network output

z = N (x) is normalized using softmax so that the two elements of the output sum to

one. Since z[1] + z[2] = 1, we can specify the prediction by a single output: z[1] > 1
2 is

a prediction of “cancerous”, and z[1] < 1
2 is a prediction of “noncancerous”. If z[1] = 1

2 ,

then the prediction is undefined.

Now, given a prediction z[1] 6= 1
2 for a particular input x, we want to investigate how

changes in x can change the prediction, for example, from “cancerous” to “noncancerous”.

In particular, it would be very useful to find the least change in x that makes the prediction

change.

Since the output of the neural network is continuous, x lies in a region of points

whose output z[1] is greater than 1
2 , and the boundary of this region is continuous. So what

we really seek is a nearby point on that boundary, and we call points on the boundary

flip points. So given x with z[1] > 1
2 , we seek a nearby point x̂ with ẑ[1] = 1

2 , where

ẑ = N (x̂).2

The closest flip point x̂c is the solution to an optimization problem

min
x̂
‖x̂− x‖, (3.1)

where ‖.‖ is a norm appropriate to the data. Our only constraint is

ẑ[1] = 1/2.

Specific problems might require additional constraints; e.g., if x is an image, upper and

2 One technical point: Because z1 is continuous, there will be a point arbitrarily close to x̂ for which z1

is less than 1/2 and the prediction becomes “noncancerous” unless x̂ is a local minimizer of the function z1.

In this extremely unlikely event, we will have the gradient 5z1(x̂) = 0 and the second derivative matrix

positive semidefinite, and x̂ will not be a boundary point. In practice, this is not likely to occur.
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lower bounds might be imposed on x̂, and discrete inputs will require binary or integer

constraints. It is possible that the solution x̂c is not unique, but the minimal distance is

always unique.

3.3 Neural networks with multi-class outputs

For neural networks with multi-class outputs, we can use this same approach to

define flip points between any pair of classes and to find the closest flip points for a given

input. Suppose our neural network has nz outputs and, for x, z[i] is the largest component

of z. If we want to find a flip point between classes i and j, then the objective function

(3.1) remains the same, and the constraints become

ẑ[i] = ẑ[j],

and, for k 6= i, j,

ẑ[i] > ẑ[k].

Thus, for each individual input, we can compute nz − 1 closest flip points x̂c(i, j) between

the class for that input and each of the other classes.

3.4 Neural networks with a quantified output

Neural networks can also be used to specify a quantity. For example, a neural

network can be trained to determine the appropriate dosage of a medicine. In such ap-

plications, flip points have a different meaning. For example, we can ask for the least

change in the input that changes the dose by a given amount. Again, we can formulate

and answer these questions as optimization problems.

In this thesis, we focus on neural networks with 2 or more output classes. Decision

boundaries of trained networks in high dimensional space can be complex, and it can be
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quite hard to investigate them as a whole. However, computing the closest flip point is an

approach to investigate them systematically and to gain many insights about the trained

networks, as we will explain in the next chapters. The rest of the current chapter will

focus on their computation.

3.5 Computing the closest flip point

Now that we have formulated the optimization problems to compute the closest flip

point, we can attempt to solve the formulation.

3.5.1 Characteristics of the problem

Our optimization problem is nonconvex, so we cannot be sure that optimization

algorithms will find the global minimizer. One important fact that makes the optimization

easier is that we have a good starting point, the data point itself.

Besides the nonconvexity, the problem has nonlinear equality constraints on the

output elements of the neural network function, N . And the gradients of the neural

network can explode or vanish because N can be very steep or constant over large regions.

3.5.2 General approach

If the activation function is differentiable (e.g., erf), we can make use of its gradient

in solving the optimization problems we have introduced. Otherwise, subgradients can be

used, but this can make the optimization algorithms more costly.

Using the gradients, we minimize (3.1) subject to the constraints mentioned in

previous section, in order to find the closest flip point. In the case of inputs with discrete

features, we can add the discrete constraints to the problem or add regularization terms
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to the objective function using the techniques described by Nocedal and Wright [2006].

Our optimization problem can be considered a generally solvable problem using

off-the-shelf methods available in the literature. However, difficulties sometimes arise in

solving nonlinear non-convex optimization problems, and therefore it is beneficial to design

an optimization method tailored to our particular problem.

In our numerical results, we have solved our optimization problem using the applica-

ble algorithms in 3 packages, NLopt [Johnson, 2014], IPOPT [Wächter and Biegler, 2006],

and Optimization Toolbox of MATLAB, as well as our own custom-designed homotopy

algorithm.

For neural networks of small size, with only two output classes, all algorithms almost

always converge to the same point; occasionally, the interior point algorithms find closer

flip points. For networks of larger size with multi-class outputs and/or discrete features,

our homotopy algorithm sometimes finds better solutions. However, for the majority of

data points, all algorithms find the same closest flip point. The variety and abundance

of global and local optimization algorithms in the above optimization packages give us

confidence that we have indeed usually found the closest flip point. In any case, we

demonstrate in Chapter 5 that our flip points are closer than those estimated by methods

such as linear approximations.

We use a tunable error function as the activation function. This allows us to intro-

duce nonlinearity into the model while having control over the magnitude of the deriva-

tives. Keep in mind that one can compute flip points for trained models and interpret

them regardless of the architecture of the model (number of layers, activation function,

etc.), the training set, and the training regime (regularization, etc.).

24



3.5.3 Homotopy algorithm for computing the closest flip points

Here, we explain the framework of our homotopy algorithm for computing the closest

flip points in the context of our network. Our method can be easily generalized to neural

networks with different architectures, such as convolutional and residual networks. The

homotopy algorithm applies an optimization module to a series of networks.

3.5.3.1 Optimization module

We define the numerical process of computing the closest flip point x̂c to an input

x between classes i and j by the function F :

x̂c(i, j) = F(x,N ,x0, C, i, j).

We assume F is a standard off-the-shelf optimizer. The inputs to F include the trained

neural network N , the starting point x0, and the constraints C. As a general practice

and based on our numerical experiments, an interior-point algorithm can be considered a

good choice, as it is known to be successful in solving constrained, nonlinear, non-convex

optimization problems with high dimensional variables [Nocedal and Wright, 2006].

Ideally, F efficiently finds the closest flip point for our network, possibly using the

input x as the starting point. If this fails, then we use a homotopy method, starting by

applying F to an easier network and gradually transforming it to the desired network,

each time using the previously determined flip point as our starting point for F . We now

discuss the family of networks used in the homotopy.

3.5.3.2 Homotopy method

Our homotopy method, defined by Algorithm 1, begins with a neural network for

which x is a flip point, and then computes flip points for a series of networks, gradually
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transforming to the original network, using the closest flip point found at each iteration

as the starting point for the next iteration. This way, the algorithm follows a path of flip

points starting from x, until it finds the closest flip point to x for the original network.

Algorithm 1 Homotopy algorithm for calculating closest flip point

Inputs: N , x, η, τ , C, i, j

Output: Closest flip point to x

1: Compute σh and bh(m) using Algorithm 2 with inputs (N , x, τ , i, j)

2: x̂c,0 = x

3: for k = 1 to η do

4: σk = σh + k(σ
N−σh
η )

5: bk(m) = bh(m) + k(b
N (m)−bh(m)

η )

6: Replace σk and bk(m) in N , to obtain N k

7: x̂c,k = F(x,N k, x̂c,k−1, C, i, j)

8: end for

9: return x̂c,η as the closest flip point to x

The initial neural network used in the algorithm is the same as the original network

except that it has parameters σh for the erf and bh(m) for the bias on the last layer. These

are computed in Algorithm 2, discussed below.

The parameter η defines the number of iterations that Algorithm 1 uses to transform

the network back to its original form. A large η means that each neural network is a small

change from the previous one, so the starting point is close to the solution. A small η

means that only a few optimization problems are solved, but each starting point may be

far from the solution. We want to perform enough iterations so that the global minimizer

is found, but we also want to keep the computational cost low. We have achieved best

results with η ranging between 1 and 10. Choosing η = 1 is equivalent to not using the

homotopy algorithm and directly applying F to the original network with starting point x.

The initial transformation of the network is performed by Algorithm 2, pursuing
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Algorithm 2 Algorithm to transform the network for the Homotopy algorithm

Inputs: N , x, τ , i, j

Output: σh and bh(m)

1: γ =
√
log( 2

τ
√
π

)

2: y(0) = x

3: for k = 1 to m− 1 do

4: σhk = max( 2√
π
, 1γ ‖y

(k−1)W (k) + b(k)‖∞)

5: if σhk >
2

τ
√
π

then

6: c = y(k−1)W (k) + b(k)

7: for t = 1 to nk do

8: σhk,t = max( 2√
π
, 1γ ct)

9: end for

10: end if

11: y(k) = erf(y
(k−1)W (k)+b(k)

σhk
)

12: end for

13: min
bh(m)

‖bh(m) − bN (m)‖2 , subject to:

(1) y(m) = y(m−1)W (m) + bh(m),

(2) y
(m)
i = y

(m)
j ,

(3) ∀ l 6= i, j | y(m)
i > y

(m)
l

14: return σh, bh(m)

two goals: first, bounding the flow of gradients through the layers of the network by

changing the value of tuning parameters (lines 1 through 12), and second, changing the

bias parameters in the last layer of the network so that x is a flip point for the transformed

network (line 13).

The tuning parameters for the original network are σN , and σh denotes the trans-

formed parameters computed by Algorithm 2. Similarly, bN (m) and bh(m) denote the

original and transformed bias in the last layer of the network.

By changing σN to σh, we try to control the magnitudes of the gradients of output

with respect to inputs. The hierarchy of neural networks can cause the gradients to vanish
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and/or explode through its layers, which could lead to a badly scaled gradient matrix and

eventually an ill-conditioned optimization problem, and we would like to avoid this.

To compute the σh, we trace the x as it flows through the layers of the network. As

the input reaches each hidden layer, before applying the activation function, we tune the

corresponding element of σh, so that the absolute values of the gradients of the output of

each neuron, with respect to neuron’s input, is greater than or equal to τ , and less than

or equal to 1. In our numerical experiments, we have used different values of τ ranging

between 10−5 and 10−9.

In Algorithm 2, line 1 computes a scalar γ such that the derivative of the erf is

equal to τ . Lines 3 through 12, tune the σ, layer by layer, starting from the first layer and

ending at the last hidden layer. Line 4 bounds the individual gradient between τ and 1.

Choosing the σhk >
2√
π

ensures the gradients of neurons are upper bounded by 1. This

relationship can be easily derived by setting the maximum derivative of erf equal to τ .

Choosing σhk ≥
1
γ ‖y

(k−1)W (k)+b(k)‖∞ can potentially make the gradients of all the

neurons in layer k lower bounded by τ . Sometimes, this might not be possible to achieve

for all the neurons in a layer, if we obtain σhk >
2

τ
√
π

. In such situations, we calculate the

σhk separately for each neuron on that layer (lines 5 through 10), and use a non-uniform

σhk in the homotopy algorithm. Line 11 computes the output of each layer after the σ is

tuned for that layer.

Since our activation function is erf, we can effectively control the gradients and

make them bounded. The maximum gradient of erf is at point zero, and by moving away

from zero, its gradient decreases monotonically, until it asymptotically reaches zero. This

boundedness and the monotonicity of both the erf and its gradient are helpful features

that we leverage in our homotopy method. When using activation functions other than
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erf, we have to avoid exploding and vanishing gradients, depending on the properties of

the activation function in use.

By changing bN (m) to bh(m), computed at line 13 of Algorithm 2, the input x actually

becomes a flip point for the transformed network. Having a starting point that is feasible

with respect to flip point constraints considerably facilitates the optimization process.

The optimization problem on line 13 of the algorithm is a convex quadratic programming

problem and can be solved by standard algorithms.

3.5.4 Performance of homotopy algorithms in finding closest flip points

Here, we investigate the performance of our homotopy algorithm on a neural network

trained on the Adult Income dataset which has a combination of continuous and discrete

features. Details about this dataset is provided in Section 4.4.2.

To compare the quality of solution, let’s define the distance ratio as the ratio of

the closest flip point distance found by the other solvers, to the distance found by our

homotopy algorithm. Figure 3.1 shows the distribution of distance ratios for 1,000 data

points randomly chosen from the testing set for this dataset.

Figure 3.1: Homotopy algorithm finds closer flip points for the Adult Income dataset

which has a combination of continuous and discrete features. The distance ratio is the

ratio of distance found by the other algorithms to the distance found by the homotopy

algorithm, which is shown for 1,000 data points randomly chosen.
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As we can see, for nearly 60% of the data points, the distance ratio is very close

to 1. In very rare occasions the distance ratio is smaller than 1, but it does not go below

0.95. The rest of the distance ratios are spread out beyond 1 and 7. For 1.4% of the data

points, other algorithms do not yield a feasible flip point, while the homotopy algorithm

always finds a feasible flip point. This clearly demonstrates the effectiveness of homotopy

in finding closest flip points.

The average time spent to compute the closest flip points on a Macbook 2017 is 0.33

seconds for the closest distance found by other algorithms, while it is 8.98 seconds for the

homotopy algorithm. Although the homotopy algorithm has taken longer, the quality of

its solutions is much better, and we can conclude that spending the extra time is worth

the reward of finding closer flip points.

For networks with continuous input space and binary outputs, for example the model

used in Chapter 5, our homotopy algorithm finds flip points similar to the flip points found

by the NLopt, IPOPT, and Matlab Optimization Toolbox.

Clearly, the performance of our homotopy algorithm may vary compared to other

algorithms, for each dataset, in terms of the quality of solutions and the computation

time. Therefore, the user should choose the best algorithm, case by case.

3.5.5 A note on cost

Computing the closest flip point requires computation of derivatives of the output

of network with respect to inputs, at each iteration. For any given model, the cost of

computing such derivatives is slightly less than computing the derivatives of loss function

of neural network for a single input, with respect to the weight parameters of the first layer.

The slight decrease in cost is because the loss function has one more layer of computation
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after computing the output of a network. Note that in the training of a network we have

to compute the derivatives of loss function, not only for the weight parameters of the first

layer, but also for all the other layers; which involves one separate matrix multiplication

per layer, and requires more memory, too. Overall, the derivative computation for finding

the closest flip point is considerably less expensive than the derivative computation for

training.

Additionally, for training a network, the number of training points is usually in the

range of several thousands, sometimes millions. Hence, at each epoch of training, one has

to compute such derivatives, thousands or even millions of times more, compared to each

iteration of computing the closest flip point for an input. In fact, the cost of computing the

derivatives for one iteration of training, with a mini-batch that contains a given number

of points, dominates the cost of computing the derivatives for equivalent number of inputs

in one iteration of flip point computation.

The number of iterations it takes to find the closest flip point would vary, depending

mainly on the location of input and its distance from the closest decision boundary, the

output surface of the network in that vicinity, and the optimization method. However, all

those factors are present in the training of the network, as well, in a much more complex

fashion, especially because the number of training parameters of a network are usually

orders of magnitude larger than the number of input features.

This gives a clear idea how inexpensive computation of the closest flip point is,

compared to the training process of the same network.
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3.6 Summary

In this chapter, we introduced the concept of closest flip point as the point on the

decision boundary of a trained model, closest to a given input. We formulated optimization

problems to compute such points, and developed a homotopy algorithm that can compute

them effectively.

In the next chapter, we will show how closest flip points can be used to interpret

trained models, improve their training, and debug them.
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Chapter 4: Interpreting and Debugging Neural Networks Using Flip Points

4.1 Introduction

In this chapter, we study the interpretation of neural networks and its implications

for training and debugging.1

In real-world applications, neural networks are usually trained for a specific task

and then used, for example to make decisions or to make predictions. Despite their

unprecedented success in performing machine learning tasks accurately and fast, these

trained models are often described as black-boxes because they are so complex that one

cannot interpret their output in terms of their inputs.

When a trained network is used as a black-box, users cannot be sure how confident

they can be in the correctness of each individual output. Furthermore, when an output is

produced, it would be desirable to know the answer to questions such as, what changes in

the input could have made the output different? A black-box cannot provide answers to

such questions. This inexplainability becomes problematic in many ways, especially when

the network is utilized in tasks consequential to human lives, such as in criminal justice,

medicine, and business. Because of this, there have been calls for avoiding neural net-

1Part of this work has been published as “Interpreting Neural Networks Using Flip Points” [Yousefzadeh

and O’Leary, 2019a] and part of it has been presented as ”Debugging Trained Machine Learning Models

Using Flip Points” at International Conference on Learning Representations (2019), Debugging Machine

Learning Models Workshop [Yousefzadeh and O’Leary, 2019b].
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works in high-stakes decision making [Rudin, 2018]. Alternatives include Markov decision

processes [Lakkaraju and Rudin, 2017], scoring systems [Chen et al., 2018b, Rudin and

Ustun, 2018], binary decision trees [Bertsimas and Dunn, 2017], and Bayesian rule sets

[Wang et al., 2016].

There have been several approaches for interpreting neural networks and general

black-box models. We mention here some of the papers representative of the field.

Some recent studies have tried to find the least changes in the input that can change

the decision of the model. Spangher et al. [2018] have (independently) defined a flip set as

the set of changes in the input that can flip the prediction of a classifier. Their algorithm

applies to linear classifiers only. They use flip sets to explain the least changes in individual

inputs but do not go further to interpret the overall behavior of the model or to debug it.

Wachter et al. [2018] defined counterfactuals as the possible changes in the input that can

produce a different output label and use them to explain the decision of a model. For a

continuous model, the closest counterfactual is ill-defined, since there are points arbitrarily

close to the decision boundaries, and the proposed algorithm uses enumeration, applicable

only to a small number of features. Russell [2019] later suggested integer programming to

solve such optimization problems, but the models used as examples are linear with small

dimensionality.

Some studies have taken a model-agnostic approach to interpreting black box models

such as neural networks. For example, the approach taken by Ribeiro et al. [2016] builds

an explanation for an output via a linear model in the vicinity of a specific input. Similarly,

Ribeiro et al. [2018] derive if-then rule explanations about the local behavior of black box

models.

Methods based on perturbing each input feature individually have severe computa-
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tional limitations. First, they can be prohibitively expensive when dealing with a complex

high-dimensional nonlinear function such as that represented by a neural network. Sec-

ond, the output of a neural network can be constant over vast areas of its domain, while

it might be very volatile in other regions. Therefore, it can be hard to find a suitable

vicinity that gives sensible results when perturbing high-dimensional inputs. Third, the

features may have incompatible scalings, so determining meaningful perturbations is dif-

ficult. Finally, the features of the inputs can be highly correlated; therefore, perturbing

the inputs one by one will be inefficient and possibly misleading. Koh and Liang [2017]

have used influence functions to guide the perturbation and interpret black-box models

with emphasis on finding the importance of individual points in the training data.

Pursuing the interpretation of neural networks from an adversarial point of view,

Ghorbani et al. [2017] generate adversarial perturbations that produce perceptively indis-

tinguishable inputs that are assigned the same label, yet have very different interpretations.

They further show that interpretations based on exemplars (e.g. influence functions) are

similarly susceptible to adversarial attack.

Another line of research focuses on performing insightful pre-processing to make the

inputs to the neural network more interpretable. One promising approach uses prototypes

to represent each output class [Chen et al., 2018a, Li et al., 2018, Snell et al., 2017].

Individual inputs are compared to the prototypes (e.g., by measuring the 2-norm distance

between each input and all the prototypes), and that information is the input to the neural

network. In the context of text analysis, Lei et al. [2016] has introduced a model that

first specifies distributions over text fragments as candidate rationales and then uses the

rationales to make predictions.

Taking a different approach, Lakkaraju et al. [2017] have used decision rules to
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emulate a neural network in a subdomain of the inputs. Although the emulated model

in their numerical example is interpretable, its outputs are different than the outputs of

neural network for about 15% of the data.

Many alternative models such as decision trees and rule lists have been in compe-

tition and co-existence with neural networks for decades, but in many applications have

not been very appealing with respect to accuracy, scalability, and complexity, particularly

with high-dimensional data. Our goal is to improve the interpretability of neural networks

and other black-box models so that in cases where they have computational or accuracy

advantages over alternative models, they can be used without hesitation. Through the use

of flip points we are able to make neural networks interpretable, improve their training,

and indicate the reliability of the output classification.

4.2 How flip points provide valuable information to the user

4.2.1 Determine the least change in x that alters the prediction of the model

The vector x̂c − x is an accurate and clear explanation of the minimum change in

the input that can make the outcome different. This is insightful information that can be

provided along with the output. For example, in a bond court, a judge could be told what

changes in the features of a particular arrestee could produce a “detain” recommendation

instead of a “release” recommendation.

4.2.2 Assess the trustworthiness of the classification for x

In our numerical examples we show that the numerical value of the output of a

neural network, when the last layer is defined by the softmax function, does not indicate

how sure we should be of the correctness of the output. In fact, many mis-predictions
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correspond to very high softmax values. This has been previously observed by Nguyen

et al. [2015] and Guo et al. [2017]. Gal and Ghahramani [2016] propose using information

from training using dropout to assess the uncertainty of predictions. Their method is

restricted to this particular training method, does not provide the likely correct prediction,

and is more expensive than the method we propose. Another approach, proposed by Guo

et al. [2017] constructs a calibration model, trained separately on a validation set, and

appends it as a post-processing component to the network. Also, Lakshminarayanan et al.

[2017] used ensembles of neural networks, trained adversarially with pre-calculated scoring

rules, in order to estimate the uncertainty in predictions. Using flip points to assess the

trustworthiness of predictions is a novel idea that has certain advantages compared to

other approaches in the literature, as we explain.

The distances of incorrectly classified points to their flip points tend to be very

small compared to the distances for correct predictions, implying that closeness to a flip

point is indicative of how sure we can be of the correctness of a prediction. Small distance

to the closest flip point means that small perturbations in the input can change the

prediction of the model, while large distance to the flip point means that a larger change

is necessary. It is important, of course, that distance be measured in a meaningful way,

with input features normalized and weighted in a way that emphasizes their importance.

Furthermore, in multi-class predictions, our numerical results indicate that when the model

makes a mistake, the class with the closest flip point is actually the correct class.

Using flip points can be viewed as a direct method to assess the trustworthiness

of predictions, even when models are calibrated or trained adversarially. Therefore, flip

point assessment is not necessarily in competition with other methods in the literature;

rather it is a simple and straightforward method that can be used for any model. Flip
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points also provide clear explanations for their assessment in terms of input features and

can point out to the possible correct prediction when there is low confidence.

4.2.3 Identify uncertainty in the classification of x

Often, some of the inputs to a neural network are measured quantities which have

associated uncertainties. When the difference between x and its closest flip point is less

than the uncertainty in the measurements, then the prediction made by the model is quite

possibly incorrect, and this information should be communicated to the user.

4.2.4 Use PCA analysis of the flip points to gain insight about the dataset

Earlier, we discussed using the direction from a single data point to the closest flip

point to provide sensitivity information. Using PCA analysis, we can extend this insight

to an entire dataset or to subsets within a dataset,

We form a matrix with one row x̂c − x for each data point. PCA analysis of this

matrix identifies the most influential directions for flipping the outputs in the dataset and

thus the most influential features, This procedure provides clear and accurate interpre-

tations of the neural network model. One can use nonlinear PCA or auto-encoders to

enhance this approach. Alternatively, for a given data point, PCA analysis of the direc-

tions from the data point to a collection of boundary points can give insight about the

shape of the decision boundary.
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4.3 How flip points can improve the training and security of the model

4.3.1 Identify the most and least influential points in the training data in order

to reduce training time

Points that are correctly classified and far from their flip points have little influence

on setting the decision boundaries for a neural network. Points that are close to their flip

points are much more influential in defining the boundaries between the output classes.

Therefore, in online learning and real-time applications, where we have to retrain a neural

network using streaming data, we can retrain the network more quickly using only the

influential data points, those with small distance from their flip points. As mentioned

earlier, Koh and Liang [2017] use influence functions to relate individual predictions of a

trained model to training points that are most influential for that prediction. They are

not able to draw conclusions about the decision boundaries of the model because they use

small perturbations of training data and local gradient information for the loss function,

which can be misleading for nonlinear non-convex functions in high dimensional space.

Our approach does not just rely on local information but it seeks the closest point that

flips the decision of the network. Therefore, the insight we provide goes well beyond their

method without adding prohibitive expense.

4.3.2 Identify out-of-distribution points in the data and investigate overfitting

Out-of-distribution points in the training set appear as incorrectly classified points

with large distance to the closest flip point. Finding such points can identify errors in the

input or subgroups in the data that do not have adequate representation in the training

set (e.g., faces of people from a certain race in a facial recognition dataset [Buolamwini

39



and Gebru, 2018]). Additionally, after we compute the closest flip points for all the points

in the training set, we can further cluster the flip points and study each cluster in relation

to its nearby data points. This will potentially enable us to investigate whether the model

has overfitted to the data points or not. We have not investigated these two opportunities

in our numerical results, but believe that they are promising directions for study.

4.3.3 Generate synthetic data to improve accuracy and to shape the decision

boundaries

We can add flip points to the training set as synthetic data to move the output

boundaries of a neural network insightfully and effectively. Suppose that our trained

neural network correctly classifies a training point x but that there is a nearby flip point

x̂c. We generate a synthetic data point by adding x̂c to the training set, using the same

classification as that for x. Retraining the network will then tend to push the classification

boundary further away from x. Similarly, if our trained neural network makes a mistake

on a given training point x, then we can add the flip point x̂c to the training set, giving

it the same classification as x. This reinforces the importance of the mistake and tends to

correct it.

Using flip points to alter the decision boundaries can be performed not just to

improve the accuracy of a model but also to change certain traits adopted by the trained

network. For example, if a model is biased for or against certain features of the inputs, we

could alter that bias using synthetic data. We will demonstrate this later in our numerical

results on the Adult Income dataset. There are studies in the literature that have used

synthetic data (but not flip points) to improve the accuracy, e.g., Jaderberg et al. [2014].

There is also a line of research that has used perturbations of the inputs in order to

40



make the trained models robust, e.g., Tsipras et al. [2019]. However, using flip points as

synthetic data is novel and would benefit the studies on robustness of networks, too.

We can also alter the decision boundaries of a trained model by adding flip points

with, for example, different gender or race, not labeled as a specific class, but labeled as

a flip point (output 1/2) between two classes. This can reduce biases in the model.

4.3.4 Understand adversarial influence

Flip points also provide insight for anyone with adversarial intentions. First, these

points can be used to understand and exploit possible flaws in a trained model. Second,

adding flip points with incorrect labels to the training data will effectively distort the class

boundaries in the trained model and can diminish its accuracy or bias its results. Our

methods could be helpful in studying adversarial attacks such as the problems studied

by Schmidt et al. [2018], Sinha et al. [2018], Madry et al. [2017], and Katz et al. [2017].

In our numerical results for the FICO dataset (Section 4.4.3), we show that redundant

features in the inputs can make the model more vulnerable to adversarial inputs. Also, in

Chapter 5, we show that closest flip points can reveal where the models are most vulnerable

to adversarial inputs.

4.4 Numerical results

In our numerical results, we use feed-forward neural networks with 12 layers and

softmax on the output layer. We use a tunable error function as the activation function

and use Tensorflow for training the networks, with Adam optimizer and learning rate of

0.001. Keep in mind that one can compute the flip points for trained models and interpret

them, regardless of the architecture of the model (number of layers, activation function,
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etc.), the training set, and the training regime (regularization, etc.). When calculating

flip points, we measure the distance in equation (3.1) using the 2-norm. Calculating the

closest flip points is quite fast, under 1 second for the MNIST, CIFAR-10, FICO, and

Wisconsin Breast Cancer datasets, using a 2017 MacBook. Calculating the closest flip

point for the Adult Income dataset takes about 9 seconds, because it has both discrete

and continuous variables. Characteristics of all models are presented in Appendix B.

4.4.1 Image classification

4.4.1.1 MNIST

The MNIST dataset has 10 output classes, the digits 0 through 9. We could use

pixel data as input to the networks, but, for efficiency, we choose to represent each data

point using the Haar wavelet basis. The 100 most significant wavelets are chosen by

pivoted QR decomposition [Golub and Van Loan, 2012] (explained in Appendix C) of

the matrix formed from the wavelet coefficients of all images in the training set. The

wavelet transformation applies convolutions of various widths to the input data and the

reduction applied by using pivoted QR decomposition leads to significant compression

of the input data, from 784 features to 100, allowing us to use smaller networks. This

idea, independent of flip points, is valuable whenever working with image data, as we

explain further in Appendix A. Using pixel input instead of wavelet coefficients would

yield interpretation traits similar to those that we present here.

We train two networks, NET1 and NET2, using half of the training data (30,000

images) for each. Table 4.1 shows the accuracy of each network in the 2-fold cross vali-

dation. Accuracy could be improved using techniques such as skip architecture, but these

networks are adequate for our purposes.
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Table 4.1: Classification accuracies for NET1 and NET2 trained on MNIST.

Trained

network

Accuracy on 1st half

of training set

Accuracy on 2nd half

of training set

Accuracy on

testing set

NET1 100% 97.62% 97.98%

NET2 97.56% 100% 97.64%

For each of the images in the training set, we calculate the flip points between the

class predicted by the trained neural networks and each of the other 9 classes.

Flip points identify alternate classifications. Some images are misclassified

and close to at least one flip point. For all of these points, the correct label is identified by

the closest of the 9 flip points (or one of those tied for closest after rounding to 4 decimal

digits). For example, the image shown in Figure 4.1, from the second half of the MNIST

training set, is an “8” mistakenly classified as “3” by NET1 with softmax score of 98%.

Its distances to the closest flip points are shown in Table 4.2. Assuming that we do not

know the correct label for this image, we would report the label as “3”, with the additional

explanation that there is low confidence in this prediction (because of closeness to the flip

point), and the correct label might be “8”.

Figure 4.1: MNIST image mistakenly classified as “8” by NET1.

Flip points provide better measure of confidence than softmax. Many

practitioners use the softmax output as a measure of confidence in the correctness of the

output. As illustrated in Figure 4.2, the softmax scores range between 31% and 100% for
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Table 4.2: Distance to closest flip points between class “8” and other classes, for image in

Figure 4.1.

Class 0 1 2 4 5 6 7 8 9

Distance 1.27 1.32 0.58 2.16 0.56 1.45 1.51 0.16 0.90

the mistakes by NET1 and NET2, and range between 37% and 100% for correct classi-

fications, providing no separation between the groups. If softmax were a good proxy for

distance, then the data would lie close to a straight line. Instead, most of the mistakes have

small distance but large softmax score: more than 73% of the mistakes have 0.8 or more

softmax score. Hence, softmax cannot identify mistakes. Fortunately, the figure shows

that the distance to the closest flip point is a much more reliable indicator of mistakes:

mistakes almost always correspond to small distances. This is further demonstrated in

Figure 4.3 which shows the distinct difference between the distribution of distances for

the mistakes and the distribution of distances for the correct classifications.

Figure 4.2: For the MNIST data, a large softmax score says nothing about the reliability

of the classification. In contrast, distance to the closest flip point is a much more reliable

indicator.

Flip points identify influential training points. Images that are correctly

classified but are relatively close to a flip point are the most influential ones in the training

process. To verify this, consider the first half of the MNIST training set, and order the
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Figure 4.3: Distribution of distance to closest flip point among the images in the MNIST

training set for mistakes (orange) and correctly classified points (blue).

images by their distances to their nearest x̂c for NET1. We then consider using neural

networks trained using a subset of this data.

Data points at most 0.75 from a flip point form a subset of 9, 463 images, about

15% of the training set. A model trained on this subset achieves 97.9% accuracy on the

testing set. Training with a subset of 9, 463 images randomly chosen from the training

set on average (50 trials) achieves 96.2% accuracy on the testing set. A subset of same

size from the images farthest from their flip points achieves only 90.6% accuracy on the

testing set. These trends hold for all distance thresholds (Figure 4.4). This confirms that

distance to the flip point is in fact related to influence in the training process.

Figure 4.4: Accuracy of models trained on MNIST subsets.

We note that the model learns the entire training set with 100% accuracy when

trained on about 16,000 images chosen by the distance measure. In contrast, it only

achieves 98.80% accuracy when trained on a randomly chosen subset of the same size.
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Also note that flip points are computed by solving a non-convex optimization problem,

so we cannot guarantee that we have indeed found the closest flip point. Nevertheless,

the computation seems to provide very useful flip points, validated by the small distances

achieved by some flip points and by the results shown in Figures 4.2 – 4.4.

Flip points improve the training of the network. We append to the entire

training set a flip point for each mistake in the training set, labeled with the correct label

for the mistake. The resulting neural network achieves 100% accuracy on the appended

training set and 98.6% on the testing set, an improvement over the 98.2% accuracy of the

original network. This technique of appending synthetic images to the training set may

be even more helpful for datasets with limited training data.

Comparison with alternative methods to interpret image classification

models. Investigating the decision boundaries of a trained neural network using flip

points, and especially, efficiently computing and interpreting the closest flip point to an

input, are new contributions of this work. Some previous studies investigated decision

boundaries of image classification models, but those methods relied on random pertur-

bations of the inputs, which makes them prohibitively expensive and unlikely to find the

closest boundary point. For example, Ribeiro et al. [2016] generates random perturbations

of the image that would produce labels on both sides of the decision boundary. Ribeiro

et al. [2018] reports difficulties with this approach; for example, finding a sensible amount

of perturbation is challenging.

A recent line of research has investigated the decision boundaries of a trained net-

work with respect to the generalization error. Elsayed et al. [2018] used a penalty term in

the training process to indirectly increase the distance to the decision boundaries for all

the training data, in order to improve the generalization error. Also, Jiang et al. [2019]

46



drew a regression between the distance to the decision boundaries and the generalization

error of the model. However, both studies report the optimization problem to find the

closest point on decision boundary intractable and instead use the first order derivatives

to approximate the distance. Moreover, their focus is limited on the generalization error

and do not attempt to interpret the model. Other studies focused on adversarial attacks,

such as Ilyas et al. [2019], do not consider the decision boundaries, instead they aim to

find inputs with softmax score close to 1, for the opposite label. Studying the decision

boundaries of a trained neural network is a new contribution of this work, which has

many implications worth further study, not just for interpretation of models, but also for

studying generalization error and adversarial attacks.

4.4.1.2 CIFAR-10

We now consider two classes of airplanes and ships in the CIFAR-10 data set. This

time we perform 3D wavelet decomposition on images using the Haar wavelet basis and

use all of the wavelet coefficients to train a neural network, achieving 100% and 84.2%

accuracy on the training and testing sets. We then calculate the flip points for all the

images in both sets. Observations that we reported for MNIST apply here, too. So we

focus our discussion on the directions to flip points and PCA analysis of them.

Figure 4.5 shows an image in the testing set that is mistakenly classified as an

airplane, along with its closest flip point. We have computed the closest flip point in the

wavelet space. It is interesting that the 1-norm distance between the image and its closest

flip point in the pixel space is 210, and the differences are hard to detect by eye.

The matrix of directions between the misclassified images and their closest flip points

is highly rank deficient. While we have 2,304 features for each image, the rank of directions
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Figure 4.5: A ship image misclassified as airplane (left), its flip point (middle), and their

50X-magnified difference (right).

for flipping an airplane to a ship is 162, and it is 170 for flipping a ship to an airplane.

Therefore, we can investigate the mistakes by looking at a very small subset of wavelet

features out of the 2304 features.

Moreover, the matrix of directions that flip a misclassified ship to its correct class

has 53% sparsity. The first principal component of the directions has the pattern shown

in Figure 4.6.

Figure 4.6: First principal component of directions that flip a misclassified ship to its

correct class.

We threshold the principal coefficients in Figure 4.6, retaining pixels with coefficient

greater than 0.05. Then we plot the corresponding pixels of the misclassified images of

ships. Some of those images are plotted in Figure 4.7. One can see that for many of the

mistakes, those pixels actually contain the prow of the ship in the image. This points to

one vulnerability of our trained neural network, which we could then investigate further.
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Moreover, this analysis reveals a bias in the training set, in terms of the orientation of ships

pointing towards the bottom left corner. One could overcome such bias by augmenting

the training set with the horizontally flipped version of images. Thus, information given

by this PCA analysis gives valuable diagnostics to the designer of a neural network in

order to identify possible biases adopted by the network.

Figure 4.7: Pixels with large principal coefficients for misclassified ships.

When we repeat this for the misclassified airplanes, we observe that the center of

image is most significant as in Figure 4.8, which is sensible since most of the misclassified

planes are located at the center of image, with either vertical or horizontal orientation.

Figure 4.8: First (left) and second (right) principal component of directions that flip a

misclassified airplane to its correct class.

Finally, we note that great similarity exists between the directions for the correct

classifications in the training and testing sets. Investigating other principal components

can provide additional insights.
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4.4.2 Adult Income dataset

The Adult dataset from the UCI Machine Learning Repository [Dua and Graff,

2017] has a combination of discrete and continuous variables. Each of the 32,561 data

points in the training set and 16,281 in the testing set are labeled, indicating whether the

individual’s income is greater than $50K annually. We normalize each of the continuous

variables (age, fnlwgt, education-num, capital-gain, capital-loss and hours-per-week) to

the range 0 – 100 using upper bounds of 100, 2e6, 20, 2e5, 1e4 and 120, respectively,

and we also use these ranges to constrain the search for flip points. We represent each of

the category types for the variables workclass, education level, marital status, occupation,

relationship, race, sex, and native country) as one binary feature. The categories that

are active for a data point have binary value of 1 in their corresponding features, while

the other features are set to zero. When searching for a flip point, we allow exactly one

binary feature be equal to 1 for each of the categorical variables. Our trained neural

network achieves accuracy of 87.3% and 86.1% on the training and testing sets. Our aim

here is to show how a trained neural network can be interpreted, not to draw conclusions

about the dataset itself. Clearly, alternate pre-processing of the data or an alternate

distance measure would change the interpretation. Our preprocessing and scaling choices

are suboptimal but illustrative; clearly, application scientists should always be involved in

setting the distance metric in order to ensure meaningful results.

Flip points provide interpretations and can expose bias. As an example,

consider the 53rd training data point, corresponding to a person with income greater

than $50K. From Table 4.4.2, we can see that the race of this individual is influential in

the decision of our particular model, as are other features such as “working hours” and
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“work class”. These two latter features seem to have an obvious causal relationship with

the income, but influence of race should be questioned. We can also constrain selected

features when computing flip points. For example, we can ask for the closest flip point

corresponding to a person with the same gender or race, or with a different gender or race.

This enables us to investigate gender/racial bias in the output of the neural network.

Table 4.3: Difference in features for Adult dataset training point #53 and its closest flip
point

Data Input #53 in training set Closest flip point

Capital-gain 0 625

Capital-loss 1,902 1,862

Hours-per-week 60 59.8

Race White Asian-Pac-Islander

Work class Private State-gov

Marital Status Married-civ-spouse Married-AF-spouse

Flip points reveal patterns in how the trained model treats the data.

As an example, we consider the effect of gender (Male, Female) in connection with the

family relationship (Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried)

for individuals that have income “≤ $50K”. For this model, 89% of data points in that

income category have the same gender as their closest flip points, while 11% have switched

from Female to Male, and 0.2% have switched from Male to Female. This shows that being

Male is moderately helpful in being labeled “> $50K” by the model. But, as we will see

later, education is the most influential feature for flipping to the high income category.

For the same income category, we also observe that for 2.5% of the flip points, the

family role switches from Husband to Wife, while a third of those have simultaneously

switched from Female to Male. This reveals that the trained model considers both the

family role of Wife and the gender of Male helpful for having high income. The switch
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from family role of Wife to Husband is absolutely rare among the flip points.

PCA on the flip point directions identifies influential features. Consider

the subset of directions that flip a “≤ $50K” income to “> $50K”. The first principal

component reveals that, for this neural network, the most prominent features with positive

impact are having a master’s degree, having capital-gains, and working in the private

sector, while the features with most negative impact are having highest education of

Preschool, working without-pay, and having capital-loss. Looking more deeply at the

data, pivoted QR decomposition of the matrix of directions reveals that some features,

such as having a Prof-school degree, have no impact on this flip.

PCA on the directions between the mistakes in the training set and their closest

flip points shows that native country of United States has the largest coefficient in the

first principal component, followed by being a wife and having capital-gain. The most

significant features with negative coefficient are being a husband and native countries of

Cambodia and Ireland. These features can be considered the most influential in confusing

and de-confusing the neural network. PCA on the direction vectors explains how our

neural network is influenced by various features. It thus enables us to calculate inputs

that are mistakenly classified, for adversarial purposes.

Flip points can deal with flaws and can reshape the model. Here as an

example, we try to change the behavior of the trained model towards the individuals with

country of origin “Mexico”. We consider all the data points with that country of origin

that have a flip point with a different country. 82% of those points have income “≤ $50K”.

We generate closest flip points for all those inputs while constraining the country of origin

to remain “Mexico”. We then add each generated flip point to the training set, using

the same label as the data point, and train a new model using the appended set. After
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performing PCA analysis on the directions to the new flip points, we observe that Mexico

does not appear in any of the first 10 principal components, whereas it had a large value in

the first principal component obtained for the original model. The accuracy of the trained

model has remained almost the same (slightly increased by 0.05%), confirming that we

have achieved our goal. Using this kind of analysis, we can reshape the behavior of the

model as needed.

Comparison with other interpretation approaches. Our use of flip points

for interpretation and debugging is more comprehensive than existing methods in the

literature. For example, Spangher et al. [2018] computes flip sets only for linear classifiers

and does not use them to explain the overall behavior of the model, identify influential

features, or debug. LIME [Ribeiro et al., 2016] and Anchors [Ribeiro et al., 2018] rely on

sampling around an input in order to investigate decision boundaries, inefficient and less

accurate than our approach, and the authors do not propose using their results as we do.

The extent and accuracy of interpretation we provide for neural networks are comparable

and in some aspects surpass the interpretation provided in the literature for simple models.

For example, the model suggested by Chen et al. [2018b] for the FICO Explainable ML

Challenge, reports the most influential features in decision making of their model, similar

to our findings in the next section; and investigates the overall behavior of the model,

similar to our results for the Adult dataset. But we are able to find the least changes that

can flip the decision of the model for individual inputs and study the decision boundaries

to identify and reduce vulnerabilities.
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4.4.3 FICO explainable machine learning challenge

This dataset FICO [2018], provided by the Fair Isaac Corporation (FICO), has

10,459 observations with 23 features, and each data point is labeled as “Good” or “Bad”

risk. We randomly pick 20% of the data as the testing set and keep the rest as the training

set. We regard all features as continuous, since even “months” can be measured that way.

Eliminating redundant features. The condition number of the matrix formed

from the training set is 653. Pivoted QR factorization [Golub and Van Loan, 2012], finds

that features “MSinceMostRecentTradeOpen”, “NumTrades90Ever2DerogPubRec”, and

“NumInqLast6Mexcl7days” are the most dependent columns; discarding them leads to a

training set with condition number 59. Using the data with 20 features, we train a neural

network with 5 layers, achieving 72.90% accuracy on the testing set. A similar network

trained with all 23 features achieved 70.79% accuracy, confirming the effectiveness of our

decision to discard three features. The 72.90% accuracy is a considerable improvement

over the accuracy of 69.69% reported by Chen et al. [2018b] for neural networks trained

on this dataset.

Interpreting individual outputs. As an example, consider the first datapoint,

corresponding to a person with “Bad” risk performance. Table 4.4 shows the change

between the data point and its closest flip point, for 5 features. The change in other

features is close to zero.

Identifying influential features. Using pivoted QR on the matrix of directions

between datapoints labeled “Bad” and their flip points, the three most influential features

are “AverageMInFile”, “NumInqLast6M”, and “NumBank2NatlTradesWHighUtilization”.

Similarly for the directions that flip a “Good” to a “Bad”, the three most influential fea-
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Table 4.4: Difference in features for FICO dataset point #1 and its closest flip point

Data Input #1 Closest flip point

(relaxed)

Closest flip point

(integer)

AverageMInFile 84 105.6 111.2

NumSatisfactoryTrades 20 24.1 24

MSinceMostRecentDelq 2 0.6 0

NumTradesOpeninLast12M 1 1.7 2

NetFractionRevolvingBurden 33 19.4 8.5

tures are “AverageMInFile”, “NumInqLast6M”, and “NetFractionRevolvingBurden”. In

both cases, “ExternalRiskEstimate” has no influence.

We perform PCA analysis on the subset of directions that flip a “Bad” to “Good”

risk performance. The first principal component reveals that, for this neural network, the

most prominent features with positive impact are “PercentTradesNeverDelq” and “Per-

centTradesWBalance”, while the features with most negative impact are “MaxDelqEver”

and “MSinceMostRecentDelq”. These conclusions are similar to the influential features

reported by Chen et al. [2018b], however, our method provides more detailed insights.

Studying redundant variables and their effect on behavior of model and

generalization error. Interestingly, for the model trained on all 23 features, the most

significant features in flipping its decisions are “MSinceMostRecentTradeOpen”, “Num-

Trades90Ever2DerogPubRec” and “NumInqLast6Mexcl7days”, exactly the three depen-

dent features that we discarded. This reveals an important vulnerability of machine learn-

ing models regarding their training sets. When dependent features are included in the

training set, it might not affect the accuracy on the training set, but it adversely affects

the generalization error. Additionally, the decision of the trained model is more susceptible
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to changes in the dependent features, compared to changes in the independent features.

One can argue that the dependent features are confusing the trained model.

Revealing patterns in directions to the closest flip points. Figure 4.9 shows

the directions to the closest flip points for features “NumInqLast6M” and “NetFractionRe-

volvingBurden”. Directions are distinctly clustered for flipping a “Bad” label to “Good”

and vice versa.

Figure 4.9: Directions between the inputs and their closest flip point for two influential

features.

Furthermore, Figure 4.10 shows the directions in coordinates of the first two prin-

cipal components. We can see that the directions are clearly clustered into two convex

cones, exactly in opposite directions. Also, we see misclassified inputs are relatively close

to their inputs while correct predictions can be close or far. Overall, misclassified inputs

have similar patterns compared to correct classifications, which explains why the model

cannot distinguish them from each other.

4.4.4 Default of credit card clients

This dataset from the UCI Machine Learning Repository [Dua and Graff, 2017] has

30,000 observations, 24 features, and a binary label indicating whether the person will
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Figure 4.10: Change between the inputs and their flip points in the first two principal

components

default on the next payment or not.

We binarize the categorical variables “Gender”, “Education”, and “Marital status”.

The condition number of the training set is 129 which implies linear independence of

features. Using a 10-fold cross validation on the data, we train a neural network with 5

layers, to achieve accuracy of 81.8% on the testing set. When calculating the closest flip

points, we require the categorical variables to remain discrete.

Identifying influence of features. We perform pivoted QR decomposition on the

directions to the flip points. The results show that “BILL-AMT3” and “BILL-AMT5”

are the most influential features, and “Age” has the least influence in the predictions. In

fact, there is no significant change between the age of all the inputs and their closest flip

points.

Revealing patterns in how the trained model treats the data. We briefly

make some observations about the overall behavior of the trained model. The influence of

gender is not significant in the decisions of the model, as only about 0.5% of inputs have

a different gender than their flip points. However, we observe that those changes are not

gender neutral. We see that for flipping a “no default” to “default”, changing the gender
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from “Female” to “Male” has occurred 5 times more often than the opposite. Similarly,

for flipping a “default” to “no default”, gender has changed from “Female” to “Male”,

5 times more often than the opposite. We also observe that changing the marital status

from “Married” to “Single” is helpful in flipping “no default” predictions to “default”.

This kind of analysis can be performed for all the features, in more detail.

Flip points can deal with flaws and can reshape the model. Similar to the

study by Spangher et al. [2018], we train a model with a subset of the training set, where

young individuals are under-sampled. In both our training and testing sets, about 52% of

individuals have age less than 35. We keep the testing set as before, but remove 70% of the

young individuals from the training set. After training a new model, we obtain 80.83%

accuracy on the original testing set. We also observe that the “Age” is the 3rd most

influential feature in flipping its decisions. Moreover, PCA analysis shows that having less

Age has a negative impact on the “no default” prediction and vice versa.

We consider all the data points in the training set labelled as “default” that have

closest flip point with older age, and all the points labelled “no default” that have closest

flip point with younger age. We add all those flip points to the training set, with the

same label as their corresponding data point, and train a new model using the appended

training set. Investigating the behavior of the new model reveals that Age has become

the 11th influential feature and it is no longer significant in the first principal component

of directions to flip points; hence, the bias against Age has been reduced.

Adding synthetic data to the training set has great potential to change the behavior

of model, but we cannot rule out unintended consequences. Therefore, it is important

to interpret the overall behavior of the reshaped model with respect to all features, and

ensure that it behaves as we expect. By investigating the influential features and PCA
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analysis, we see that the model has been altered only with respect to the Age feature, and

the overall behavior of model has not changed.

4.4.5 Wisconsin breast cancer dataset

Neural networks have shown promising results in identifying cancer [Agrawal and

Agrawal, 2015]. As a simple example, we use the Wisconsin breast cancer database from

the UCI repository which has 30 features extracted from digitized images of fine needle

aspirate of 569 breast masses. We divide standard error features by their corresponding

mean feature, and then normalize the mean and worst features between 0 and 1. The

label is binary: “malignant” or “benign”.

We randomly divide the dataset into a training set and testing set, consisting of

80% and 20% of data respectively. We achieve 100% and 94.7% accuracy on the training

and testing sets, respectively. The average distance to the closest flip point is 0.022 for the

mistakes in the testing set and 0.103 for the correct classifications in the testing set. The

average distance is 0.106 for correct classifications in the training set, very similar to the

average distance in testing set. All of the mistakes have softmax score of at least 97.4%.

In fact, the average softmax for all the correct and wrong classifications are both more

than 99%. Again, the distance to the closest flip point is a reliable measure to identify

classifications that are possibly wrong, while softmax score is not.

Flip points can be used to improve the model. What features in the input are

most important? As an example, consider the first data point which is classified correctly

as “malignant” by the trained neural network. Its closest flip point differs mostly in

features “standard error of texture” and “standard error of fractal dimension”.

We perform PCA on the matrix of directions between each “benign” input and its
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closest flip point, and look at the first principal component. The most prominent features

that can flip the decision of the network to “malignant” are “standard error of radius” and

“standard error of texture”. Similarly, the most prominent features to flip a “malignant”

decision to “benign” are “standard error of texture” and “worst area”.

A clinician can use this information to validate the trained neural network as a

computational tool. The information also enables the designer of the neural network to

work with a clinician to rescale the data to emphasize features believed to be over- or

under-emphasized by the current model and to provide better classifications.

4.5 Summary

1. We studied the problem of model interpretation, using flip points to investigate the

boundaries between output classes. We defined and solved optimization problems

to find the closest flip point to a given input, providing accurate explanations about

changes in the input that can flip the output from one class to another.

2. The distance of an input to the closest flip point proved to be a very effective

measure of the confidence we should have in the correctness of the output, much

more reliable than softmax score, and should be interpreted using a practitioner’s

knowledge of uncertainty in the data. The distance also enabled us to identify

most/least influential points in the training data.

3. PCA analysis identified the most influential features in the inputs. Also, for each

output class, PCA identified the directions and magnitudes of change in each of the

features that can change the output.

4. Adding flip points as synthetic data boosted the accuracy of a neural network, but
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we demonstrated that it can also be used adversarially.

5. The distance and direction to the nearest flip point, coupled with a practitioner’s

knowledge of the measurement uncertainty in each of the features, can provide insight

into whether the classification is unique or ambiguous.

Flip points exist for any model, not just neural networks and can provide insight,

debugging, and interpretability.

In the next chapter, we will focus more specifically on the decision boundaries of

trained networks, question common simplifying assumptions about them in the literature,

compare our methods with approximation methods, and provide mathematical tools to

study the decision boundaries, systematically.
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Chapter 5: Shape of the Decision Boundaries of Neural Networks

5.1 Introduction

In this chapter, we study the decision boundaries of trained neural networks and

investigate some of the common simplifying assumptions about them in the literature.

Interpreting the behavior of trained neural networks, their generalization error, and

robustness to adversarial attacks are open research problems that all deal, directly or in-

directly with the decision boundaries of these models. The decision boundaries of neural

networks have typically been investigated through simplifying assumptions or approxima-

tion methods. As we will show in our numerical results, many of these simplifications may

lead to unreliable results. We also show that some of the speculations about the decision

boundaries are accurate and some of the computational methods can be improved. We

advocate for verification of simplifying assumptions and approximation methods, wherever

they are used. Finally, we demonstrate that the computational practices used for finding

adversarial examples can be improved, and computing the closest point on the decision

boundary reveals the weakest vulnerability of a model against adversarial attack.

Some previous work has highlighted the importance of boundary points. Studies

such as Lippmann [1987] investigate the decision boundaries of single-layer perceptrons,

while describing the difficulties that arise regarding the complexity of decision boundaries

for multi-layer networks.
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As mentioned in Chapter 4, some studies on interpretation of deep models have

made simplifying assumptions about the decision boundaries. For example, Ribeiro et al.

[2016] assumes that the decision boundaries are locally linear. Their approach tries to

sample points on two sides of a decision boundary, then perform a linear regression to

approximate the decision boundary and explain the behavior of the model. However, as

we show in our numerical results, decision boundaries of neural networks can be highly

nonlinear, even locally, and a linear regression can lead to unreliable explanations.

Regarding the generalization error of trained models, Elsayed et al. [2018] and Jiang

et al. [2019] have shown there is a relationship between the closeness of training points

to the decision boundaries and the generalization error of a model. However, they regard

computing the distance to the decision boundary as an intractable problem and instead,

use the derivatives of the output to derive an approximation to the closest distance. In our

numerical results, we compare their approximation to our results, and show the advan-

tages of computing the distance directly. Other studies such as Neyshabur et al. [2017],

approximate the closest distance to the decision boundary by the closest distance to an

input with another label, which is an overestimate. They use the modified margin between

softmax outputs as a measure of distance, which we see later can be misleading.

Regarding adversarial attacks, there are many studies that seek small perturbations

in an input that can change the classification of the model. For example, Fawzi et al. [2017],

Jetley et al. [2018], Moosavi-Dezfooli et al. [2016] apply small perturbations to the input

until its classification changes, but, since they do not attempt to find the closest point on

the decision boundaries of the model, they do not reveal its weakest vulnerabilities. Most

recent studies on adversarial examples, such as Tsipras et al. [2019] and Ilyas et al. [2019]

minimize the loss function of the neural network for the adversarial label, subject to a
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distance constraint. They impose the distance constraint in order to find an adversarial

example similar to the original image. Although this method is an important tool, this

form of seeking adversarial examples has certain limitations, regarding the ability to make

the models robust, and regarding the measurement of robustness of models, as we explain

through numerical examples. We show that finding the closest point on the decision

boundary accurately represents the least perturbation needed for adversarial classification,

and, therefore, studies on adversarial examples can benefit from direct investigation of

decision boundaries.

5.2 Numerical experiment setup

To illustrate our ideas, we use a 12-layer feed-forward neural network trained on 2

classes of the CIFAR-10 dataset, ships and planes. To train the network, we have used

Tensorflow, with Adam optimizer, learning rate of 0.001, and Dropout with rate 50%.

Further information about the model is provided in Appendix B.

Inputs to our network are not the pixels, but 200 of the 3D Daubechies-1 wavelet

coefficients. We choose the 200 coefficients according to the pivoted QR factorization of

the wavelet coefficients for the training set. Using the most significant wavelet coefficients

removes redundancies in the features of the image as we explain in Appendix A.

The accuracy we obtain on the testing set is 84.05%. This can be improved to

near 95% using the calculated flip points as new training points in order to move decision

boundaries, or by using more wavelet coefficients.

In our computations, we verify that each computed flip point is a legitimate image,

satisfying appropriate upper and lower bounds for each pixel. Also, we measure the

distance using the `2 norm.
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5.3 Investigating the neural network function and the closest flip points

Here, viewing the trained neural network as a function, we investigate the paths

between inputs and flip points.

5.3.1 Lipschitz continuity of the output of trained model

The output of our neural network is a smooth mathematical function. Because it

is the composition of a finite set of Lipschitz continuous functions, the output is also

Lipschitz continuous. The Lipschitz constant is bounded as we showed in Chapter 2.

Why does this matter? As we walk along a line connecting one data point to

another, the Lipschitz constant can tell us how fine we should discretize that path in

order to accurately depict the output of network and identify the locations of decision

boundaries. This means that we choose the distance between the discretization points

small enough such that the output of network can be considered to change linearly between

any consecutive points, with negligible error.

5.3.2 What flip points reveal about decision boundaries

Here, we draw lines between images, discretize those lines, and plot the output of the

network along them. Consider two images, x1 and x2, separated by distance d = ‖x1−x2‖2.

The points on the line connecting them may be defined by (1− α)x1 + αx2 where α is a

scalar between 0 and 1. This line can be extended beyond x1 and x2 on either side by

choosing α < 0 or α > 1, respectively.

In Figure 5.1, zero on the horizontal axis corresponds to image x1 and the right

boundary corresponds to x2, an image chosen from the same or other class. The lines

connecting most pairs of images in the data set resemble the top left plot in Figure 5.1 in
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their simplicity; both images are far from the decision boundary, and the line between them

crosses the decision boundary once. The other five plots in this figure are hand picked to

demonstrate atypical cases. Having multiple boundary crossings is more frequent among

the images in the testing set, compared to images in the training set.

Figure 5.1: Model output along the line connecting two images.

Figure 5.2 shows the output of the model for some lines connecting images to their

closest flip points. Notice that the two bottom plots have a much smaller distance scale,

and the behavior of the softmax score for correctly and incorrectly classified points is quite

similar. These plots clearly show that the decision boundaries in our model are far from

linear and a hyperplane would not be able to approximate such boundary surfaces. Fawzi

et al. [2018] also have the view that the decision boundaries of deep models are highly

curved, but they had not computed exact points on the decision boundaries. Our results

confirm their view.

Figure 5.3 considers lines connecting various pairs of flip points. If decision bound-

66



Figure 5.2: Model output along the line connecting an image with its closest flip point.

Images for the top row are correctly classified, while images for the bottom row are mis-

classified.

Figure 5.3: Model output along the line connecting two flip points.

aries were linear, we would expect the red and blue curves to have softmax scores of 0.5

all along these lines, and that is certainly not what the plots show. If decision boundaries

were convex/concave, then we would expect behavior such as that in the upper right plot,

but the other three plots show that the true behavior of the decision boundaries is much

more complicated.
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5.4 Comparing with approximation methods

Here, we compare our calculated minimum distance to the decision boundaries with

approximation methods in the literature. We also compare the direction to the closest

point on decision boundary with that predicted by first order derivatives. In both com-

parisons we observe that relying on approximation methods may be misleading.

Regarding the minimum distance to the decision boundaries, Elsayed et al. [2018]

suggested estimating the distance using a approximation method based on first order

Taylor expansion, building on other suggestions for linear approximation of the distance,

e.g., Matyasko and Chau [2017] and Hein and Andriushchenko [2017]. The approximation

method of Elsayed et al. [2018] has also been used by Jiang et al. [2019] to study the

generalization error of models. Figure 5.4 shows the distances computed using their ap-

proximation method versus the actual distances we have computed using flip points. For

distances less than 0.01, the Taylor approximation underestimates the distance by about a

factor of 2. For larger distances, the Taylor approximation underestimates by as much as

a factor of 20 or more, as shown in Figure 5.5. We note that their approximation method

estimates distance to decision boundaries without finding actual points on the decision

boundaries. We find that the estimated distances are generally underestimates of both

the true distance in that direction and the true distance to a flip point.

Figure 5.6 illustrates the distance to the decision boundary along the direction

defined by the Taylor series approximation, compared to the distance to the closest flip

point. Finding the Taylor direction and then finding the intersection with the decision

boundary (a one-dimensional optimization problem) are both very inexpensive operations,

and our results indicate that this approach usually gives a good approximation to the
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Figure 5.4: Using the first-order Taylor expansion for estimating the minimum distance

to decision boundaries siginificantly underestimates the distance, except when points are

very close to the decision boundaries (closer than 0.01).

Figure 5.5: β is the distance to the closest flip point divided by the distance predicted by

the Taylor approximation. Since these ratios are far from 1, the approximation is not a

reliable measure.

closest flip point distance (average of 1.06 times the true distance), but for 7% of the data,

a step in that direction goes outside the feasible set of images before passing through

a decision boundary. This indicates that it might not be wise to limit the search to the

direction of first-order derivatives. And if we limit the search to the direction of first-order

derivatives (or any other direction), it would be most reliable to search along that direction

for a flip point rather than just estimating the distance. Based on the results in Figures

5.5 and 5.6, we can conclude that the distance obtained by searching the direction of

first-order derivatives can be considered a much better approximation method compared
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Figure 5.6: Finding the flip point along the direction indicated by the first-order Taylor

expansion often gives an accurate estimate of distance to the decision boundary. The

horizontal axis is the ratio of the distance to the decision boundary along the Taylor

direction to the distance to the closest flip point.

to the distance obtained by the first-order Taylor series approximation method.

Unfortunately, the Taylor direction itself is not so reliable. We look at the angle

between the direction defined by the Taylor approximation and that defined by the calcu-

lated closest flip point. Large angle between the two directions means the derivative does

not point near the closest point on decision boundary. Figure 5.7 shows the distribution

of the angles (in degrees) vs the distance to the closest flip points. This clearly shows

that the farther an image is from the decision boundary, the larger the angle tends to be.

In Figure 5.7, we observe that the lower bound for the angles linearly increases with the

distance.

All these observations show that the simplifying assumptions used by Elsayed et al.

[2018] and Jiang et al. [2019] can be unreliable, and signify the importance of verification

for such simplifying assumptions, whenever used for models with nonlinear activation

functions.
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Figure 5.7: Angle between direction of first-order Taylor approximation and direction to

closest flip points. These angles are far from 0, indicating that Taylor approximation gives

misleading results.

5.5 Shape and connectedness of decision regions

We consider all images of correctly-classified ships in the testing set, and investigate

the lines (in image space) connecting each pair of images. 89% of those lines stay within

the “ship” class for the model, while 11% do not. The least-connected ship is connected

to 220 other ships by lines that do not exit the “ship” region, and there are paths (some

using multiple lines) that connect every pair of ships without exiting the “ship” region.

This indicates that the “ship” region is star-shaped, providing another reason why lin-

ear approximations to decision boundaries are inadequate. These observations also hold

for images in the training set. Therefore, the trained network has formed a connected

sub-region (in the domain) that defines the “ship” region. This result aligns with the

observations reported by Fawzi et al. [2018] that classification regions created by a deep

neural network can be connected and a single large region may contain all points of the

same label. Fawzi et al. [2018], however, did not investigate the output of network along

direct paths between images of the same class.

We performed our analysis by building the adjacency matrix of directly connected
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images. Performing spectral clustering [Von Luxburg, 2007] on the graph and the Lapla-

cian derived from the adjacency matrix that incorporates the distance between images,

may provide additional insights.

5.6 Adversarial examples and decision boundaries

In most recent studies about adversarial examples, the inputs with adversarial label

are obtained by minimizing the loss function of the neural network for that label, subject

to a distance constraint [Ilyas et al., 2019, Tsipras et al., 2019]. The distance constraint

keeps the adversarial image close to the original image. There are limitations to this

approach, as we explain via examples.

Consider the image on the left in Figure 5.8. Figure 5.8 (right) shows the value

of the softmax score on the line from this image to its closest flip point and beyond.

We compare this with the result of minimizing the loss function of the model for the

adversarial label “plane”, subject to `2 distance constraint of 0.5, as suggested by Ilyas

et al. [2019]. The adversarial image obtained by this method is much further away, a

distance of 0.494 instead of a distance of 0.178 for the closest flip point that we found. So

their calculation underestimates the vulnerability of the model. It is also interesting that

the line between the image and the adversarial image found by their method crosses a flip

point at a distance much less than 0.494, as shown in Figure 5.9, yielding a much better

assessment of the vulnerability of the model.

There is another difficulty associated with minimizing the loss for an adversarial

label subject to a distance constraint. As an example, consider the image in Figure 5.10,

which is at a distance of 2.14 from its closest flip point. Seeking an adversarial image for

this image with distance constraint 0.5 will be unsuccessful, as the optimization problem
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Figure 5.8: Finding the closest flip point reveals the least changes that would lead to an

adversarial label for the image.

Figure 5.9: Minimizing the loss function subject to a distance constraint may find adver-

sarial examples far from the original image.

has no feasible solution. Finding the closest flip point yields much better information

about robustness.

Figure 5.10: Minimizing the loss function subject to a tight distance constraint may not

have a feasible solution and would not reveal how robust the model actually is.

We also measure the angle between the direction to the closest flip point, and the

direction to the adversarial example found by minimizing the loss function. For the image

in Figure 5.9, the angle is 12.7 degrees.

73



The cost of finding a flip point is comparable to the cost of minimizing the loss

function, and it provides much better information.

The distance constraint used by Ilyas et al. [2019] can be viewed as a ball around

the input. We showed that choosing the size of that ball can be challenging. If the size

of ball is too small, their optimization problem becomes infeasible. If the size of ball is

large, they do not find the adversarial example closest to the input. Their problem is

non-convex, like ours. The examples above demonstrated that our approach finds a closer

adversarial example compared to their approach. The computation times for our method

and theirs are quite similar.

Moreover, Figure 5.11 shows that the closest distance to the decision boundary can

have a large variation among the images in a dataset. Therefore, tuning the distance

constraint for one image may not be insightful for most of the other images in a dataset.

Figure 5.11: Distance to the closest flip point has large variation among images in the

training set, which shows that a single distance constraint would not be able to reveal the

vulnerabilities of a model for all images. For example, a distance constraint of 0.5 cannot

yield an adversarial example for the large fraction of images that are farther than 0.5 from

the decision boundaries. It also would not reveal the weakest vulnerabilities for images

which are much closer than 0.5 to the decision boundaries.

These observations would still hold for networks trained on the pixels rather than

wavelet coefficients.

Regarding the reason for excessive vulnerability of trained neural networks towards
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adversarial examples [Goodfellow et al., 2014], there are studies that speculate about

the influence of decision boundaries. For example, Tanay and Griffin [2016] argue that

“adversarial examples exist when the classification boundary lies close to the submanifold

of sampled data”, but their analysis is limited to linear classifiers. Shamir et al. [2019] also

explain the adversarial examples via geometric structure of partitions defined by decision

boundaries; however, they do not consider the actual distance to the decision boundaries,

nor the feasibility of changes in the input space, and their analysis is focused on linear

decision boundaries.

The analysis provided in this work shows that studies focused on adversarial exam-

ples can benefit from using the closest flip points and from direct investigation of decision

boundaries, for measuring and understanding the vulnerabilities, and for making the mod-

els more robust.

5.7 Summary

We showed the complexities of decision regions of a model can make linear ap-

proximation methods quite unreliable, when nonlinear activation functions are used for

the neurons. Instead, we used flip points to provide improved estimates of distance and

direction of data points to decision boundaries. These estimates can provide measures

of confidence in classifications, explain the smallest change in features that change the

decision, and generate adversarial examples. Closest flip points are computed by solving

a non-convex optimization problem, but the cost of this is comparable to methods used

to compute an adversarial point that may be much further away. The closest flip point

along a particular direction can be easily computed by a bisection algorithm. Our example

involved only two classes and continuous input data, but we have also implemented our
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method for problems with multiple classes and discrete features.

In the next chapter, we provide methods to refine the structure of neural networks

using matrix conditioning.
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Chapter 6: Refining the Structure of Neural Networks Using Matrix Conditioning

6.1 Introduction

In this chapter, we provide computational tools to refine the structure of networks

during training, and also to refine networks that are already trained.

Deep learning models have proven to be exceptionally useful in performing many

machine learning tasks. However, for each new dataset, choosing an effective size and

structure of the model can be a time-consuming process of trial and error. While a small

network with few neurons might not be able to capture the intricacies of a given task,

having too many neurons can lead to overfitting and poor generalization. Here, we provide

a complete set of low-cost computational tools to design the layers of a feed-forward neural

network from scratch for any dataset, guided by matrix conditioning and partial training.

Results on sample image and non-image datasets demonstrate that our method results in

small networks with high accuracies. Finally, using pivoted QR factorization, we provide a

method to effectively squeeze models that are already trained. Our techniques reduce the

human and computational cost of designing deep learning models and therefore, reduce

the expense of using neural networks for applications.
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6.2 Literature review and problem statement

We first review the literature from different perspectives and relate our approach to

previous methods.

6.2.1 Model design and its difficulties

Among the most important decisions to be made in model design is determining an

appropriate size for the network.

The trade-off between the size and accuracy of networks has been studied extensively

for benchmark datasets in machine learning, for example by Nowlan and Hinton [1992],

Srivastava et al. [2014], Zhang et al. [2016], and Neyshabur et al. [2019]. Through trial

and error, standard models have been developed that can achieve the best accuracies on

some of those datasets. These achievements are impressive, but they do not give us much

guidance about how to approach an unfamiliar dataset.

Furthermore, the standard models are often massive and require specialized hard-

ware, which makes them unapproachable for modest real-world tasks. A few studies

focus on developing compact models that can achieve acceptable accuracies on standard

datasets, e.g., [Iandola et al., 2016, Zhou et al., 2016]. Still, there is a great need for

systematic and affordable procedures to decide an appropriate number of neurons on each

layer of a network for an unfamiliar dataset.

Obtaining a compact model might sometimes come at the cost of losing some ac-

curacy. Nevertheless, that compromise might be justifiable or even necessary in certain

applications. The huge computational cost or power consumption for some of the best

models is prohibitive for certain computers and applications [Canziani et al., 2016], and
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hence there has been a focus on developing more economical models that maintain accept-

able accuracies [Denton et al., 2014, Han et al., 2015, Howard et al., 2017]. With that in

mind, our focus is not to improve the benchmark accuracies, rather to achieve a modest

accuracy with a compact model.

One of the reported advantages of deep learning models is sometimes considered

to be the automatic detection of important features from the raw data, saving the time

required for preprocessing and feature selection. That view is not completely correct as we

showed in Section 4.4.3. However, even if these models save time on data preprocessing,

the structural design of deep models can be very time-consuming. This can become an

obstacle in deploying neural networks in mainstream applications, for example problems

related to education [Jiang et al., 2018].

Alvarez and Salzmann [2016] have given a review of earlier approaches to adjusting

the size of a neural network. Their method of reducing the size of a neural network is based

on adding a penalty term to the loss function in order to detect and remove redundant

neurons, while ours is based on partial matrix decompositions layer by layer which can be

used to expand or contract a network. Like their method, we do not need to fully train a

network before adjusting its size.

Starting with a large network and adding a regularization term to the loss function

of the neural network during training is another common approach to reducing its size. For

example, Zhou et al. [2016] imposed sparsity constraints on the dense layers of the standard

CNNs and demonstrated that most of the neurons in those models can be eliminated

without any degradation of the “top-1” classification accuracy. Regularization has also

been used in other studies, e.g., Murray and Chiang [2015] for language models.

Although adding regularization terms in the training process is effective in reducing
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the over-fitting for over-sized networks, and in identifying redundancies in the standard

models, this cannot be considered a direct method to design a neural network from scratch

for an unknown dataset. Unlike our method, these methods require an over-sized network

with high-accuracy to begin with, and their performance depends on specific optimization

methods for the training and careful tuning of additional hyperparameters for each dataset.

The method we provide for pruning over-sized networks does not need to retrain a network

from scratch; rather it relies on straightforward and relatively inexpensive row and column

elimination from the weight matrices and applying the original training method to retrain

the squeezed network.

6.2.2 Model architecture search methods

There are methods proposed specifically to design the structure of neural networks.

These methods mostly consider a pool of candidate models, and try to choose the best

model using different approaches, or they define the networks with a set of parameters,

then search the space of those parameters to find their optimal configuration. These

methods have been able to effectively automate the process of design, using a significant

amount of resources to explore large pools of candidates or exploring a large space of

design parameters. Some of the earlier methods use statistical methods such as hypothesis

testing to find the best models [Anders and Korn, 1999] or genetic algorithms to search

the parameter space [Stanley and Miikkulainen, 2002]. More recently, Zoph and Le [2016]

and Baker et al. [2016] used reinforcement learning to search the design space, Liu et al.

[2018] developed a sequential model-based optimization (SMBO) strategy and a surrogate

model to guide the search through structure space, Zoph et al. [2018] used a combination

of transfer learning and reinforcement learning, Pham et al. [2018] used a method that
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allowed parameter sharing between the candidate models in order to make the search more

efficient, Bender et al. [2018] analyzed a class of efficient architecture search methods based

on weight sharing, and Hu et al. [2019] used a linear regression feature selection algorithm

and was successful in finding competitive models using a few GPU days.

The methods that try to be more efficient risk the possibility of prematurely discard-

ing good candidates that might not appear good in the first stages of training. Cashman

et al. [2019] advocates for recycling the training information for the models that are dis-

carded at the initial steps of model search and provides a visual tool to verify assumptions

used in the search in order to make the process interactive.

These approaches can be highly effective in finding a good structure for a neural

network. However, they can be generally viewed as an automated version of training many

networks and finding the best one. Therefore, they are highly resource expensive, as some

of them are reported to take GPU months or years to find the best neural network archi-

tecture for a given task [Wistuba, 2017]. This prohibits their use for modest applications

with limited computational resources.

Our approach clearly does not fit into this category in terms of resource demand,

and in terms of the extent of search. For example, the time it takes to train our network

for the MNIST dataset on a 2017 Macbook is about two hours. Nevertheless, our goals

are similar in the sense that we aim to find the best architecture for a feed-forward neural

network. Hence, our methods can be viewed as a low-cost but efficient way to design the

structure of networks for mainstream applications in the real-world.

81



6.2.3 Our approach and its relation to other approaches based on decomposition

of weight matrices

Here, we consider feed-forward neural networks as a general-purpose machine learn-

ing model, and develop a training method that can achieve high accuracy by optimizing

the number of neurons on each layer of the network, systematically and efficiently.

To achieve our goal, we use the singular values or rank-revealing QR factorization

of the stacked weight/bias matrices to determine the redundancies in the network and

to identify layers that have an excessive number of neurons. The singular values are

non-negative real numbers that provide comprehensive and reliable information about the

independence of information in a matrix [Golub and Van Loan, 2012].

One of the early applications of Singular Value Decomposition (SVD) to prune the

structure of feed-forward neural networks is by Psichogios and Ungar [1994]. Their method

uses a two-stage process for training, in which the weights of a single layer network are

optimized in one stage, and the biases are optimized in the other stage, iteratively. In

the second stage, where the weights are fixed, optimizing the biases becomes a linear least

squares problem which they solve using SVD. Small singular values would then indicate

redundant neurons which can be eliminated. This method only applies to single layer

networks and does not take into account whether the redundancies in the weight matrix

are also present in the bias vector.

Teoh et al. [2006] studied single hidden layer neural networks and related the rank of

the weight matrix to the complexity of the decision boundaries of a trained network. They

study the singular values of the weight matrix. When the weight matrix is rank deficient,

they conclude that there are excessive neurons in the network, use the number of small
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singular values to determine how many neurons to remove, and train a new network from

scratch. When there is no distinct gap between the singular values of the weight matrix,

they conclude that number of neurons might not be sufficient, and they add one neuron

to the network and train the new network from scratch. This approach is insightful, but

has practical limitations as it is designed for single layer networks. Moreover, as we will

show later, when pruning a network, it is more efficient to identify and discard specific

columns of the weight matrix (i.e. neurons) that are redundant, instead of discarding the

entire weight matrix and training a new network from scratch. Adding neurons one by

one also will not be a practical approach for real-world applications; rather, a systematic

way for growing the network would be essential.

SVD is used by Xue et al. [2013] to restructure deep network acoustic models.

Their approach discards small singular components of the weight matrices and replaces

each layer in the network with two new layers, one purely linear, each with fewer nodes

than the original single layer. This results in a smaller number of parameters if there

are many redundant nodes in the network, but a larger number of parameters if there is

little redundancy. They then use additional training if necessary. Chung and Shin [2016]

took a similar approach using SVD of weight matrices and replacing each layer in the

network with two new layers, but instead of discarding small singular values they sparsify

the weight matrices. These approaches do not address the problem of setting the initial

structure of the network. As we will show in Section 6.5, pivoted QR factorization can

reveal candidates for neurons that can be removed from a trained model in a faster and

more effective manner that does not require adding new layers to the network.

Alvarez and Salzmann [2017] have proposed an SVD-based regularization term that

promotes weight matrices to become low-rank during the training, with the ultimate goal
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of compressing such low-rank weight matrices after the training. SVD has also been used

in methods that reconstruct a compact version of a trained neural network, for example,

Denton et al. [2014], Goetschalckx et al. [2018], and Xu et al. [2018]. These methods require

an oversized but accurate trained model to begin with. As their authors explain, these

are methods for reproducing a compact version of a trained network, and not methods for

designing the structure of networks.

SVD has also been used in convolutional neural networks with a fixed structure

to control the behavior of the Jacobian matrix of the function computed by the neural

network, enabling better behavior of the optimization algorithms used for training [Sedghi

et al., 2019].

6.2.4 A note on cost

Our goal in this work is to reduce the human and computational cost of designing

deep learning models which is sometimes prohibitive of their use in real-world applications.

Our work is summarized in three algorithms. The first two algorithms are for designing a

neural network from scratch. The first eliminates possibly redundant neurons in order to

determine a proper proportion of neurons layer by layer, using partial training of network.

The second scales a neural network up or down, again with partial training, preserving the

proportions determined by the first algorithm, and chooses a size with low validation and

generalization errors. The third is applied to a fully-trained network to remove redundant

neurons.

The main tool in our approach is matrix decomposition, in particular, pivoted QR

decomposition, rank-revealing QR decomposition, or SVD of the weight-bias matrices

for the neural network. It is important to note that the effort needed for any of these
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decompositions for dense matrices is negligible compared to the overall training process. At

each step of training for each mini-batch, the derivative of the loss function is computed for

individual training points, with respect to each and every element in the weight matrices,

which involves multiplication of weight matrices. The complexity of computing singular

values or QR decomposition is of the same order (if exact algorithms are used) or less (if

approximate or early-termination algorithms are used).

6.3 Framework

We explain our method for the neural network prototype N shown in Figure 2.1,

as an example. Our method can be easily generalized to neural networks with different

architectures, such as convolutional and residual networks.

As mentioned in Chapter 2, we specify a neural network N by weight matrices W (i)

and bias vectors b(i) for each layer i = 1, . . . ,m. Any of the typical activation functions

can be used: sigmoid, relu, erf, etc. Inputs are denoted by the vector x.

We use a training function T , specified by

[N̂ , εtr, εv] = T (N ,Dtr,Dv, η)

to train an existing neural network N using η epochs. Here, Dtr is the training set and

Dv is the validation set. T returns the trained network N̂ , and also the accuracies εtr on

Dtr and εv on Dv. Networks that are partially or fully trained are distinguished with N̂

while untrained networks are shown as N .

6.4 Designing the structure of a neural network by adaptive restructuring

We would like to design our network so that it learns a training set and generalizes

well, i.e., performs well on a validation or a testing set. Given the framework described
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above, the main goal is to find the number of neurons needed on each layer of the network,

in order for the network to generalize well. Training many possible network structures and

choosing the best model can be a very expensive approach as mentioned earlier. Here, we

take a more insightful approach based on matrix conditioning of trainable parameters.

Let Ŵ
(i)

denote the “stacked” matrix formed by

Ŵ
(i)

=

W (i)

b(i)

 .
We use κi to denote the 2-norm condition number of Ŵ

(i)
. We build our design method

based on two insights:

• If a parameter matrix Ŵ
(i)

has high condition number compared to other layers, or

it is close to rank deficient, this can indicate that the number of neurons on layer i is

over-proportioned, compared to other layers. In such cases, we make layer i smaller,

so that its share of the overall number of neurons becomes proportionate. We repeat

this process until all the matrices have roughly small and similar condition numbers,

implying that all layers have the right proportion of neurons.

• Once we have found the distribution of neurons among the layers of a network, the

network might still be over-sized or under-sized, so we scale the size of network up or

down, maintaining the same proportion of neurons for the layers. By partial training

of such networks, we find the network that performs best on a validation/testing set.

These two insights lead to Algorithm 3 and Algorithm 4, which we now present.
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6.4.1 Finding a distribution of neurons that leads to small condition numbers

among the layers of network

To make use of our first insight, we need to compute the numerical rank of Ŵ
(i)

,

i.e., the number of sufficiently large singular values. This can be computed using the

SVD or estimated using approximation algorithms, rank-revealing QR decomposition, or

pivoted QR decomposition. The two QR algorithms compute an orthogonal matrix Q, an

upper-triangular matrix R, and a permutation matrix P so that

ŴP = QR.

Multiplying Ŵ by P pulls the columns of Ŵ deemed most linearly independent (non-

redundant) to the left. The magnitudes of the main diagonal elements of R are non-

increasing, so we can stop the decomposition when a main diagonal element becomes too

small relative to the first.

In Algorithm 3, we reduce the number of neurons on each layer of the network until

all of the matrices have condition number less than τ . Although written in terms of the

SVD, a rank-revealing QR (explained in Appendix C) could be used instead. If we want

the network to have a round number of neurons, we can enforce this condition as we remove

neurons. After reducing the number of neurons, we train the new network with η epochs.

In our numerical experiments, η ≤ 3 epochs were sufficient to identify redundant neurons.

Note that at this stage, we are not concerned about the accuracy of models and our focus

is on the values and variations of condition numbers among the layers. Algorithm 3 works

based on partial training, does not compute the accuracies, and the steps it takes at each

iteration does not necessarily improve the accuracy, especially when it is working on an

undersized network. It merely adjusts the number of neurons among the layers of the
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network such that the number of neurons for each layer is well proportioned compared to

the others. In the next stage, we take the accuracies into account.

Algorithm 3 Algorithm for determining distribution of neurons among layers of a feed-

forward neural network
Inputs: Initial neural network N , η , τ , Dtr

Output: Neural network with well-conditioned parameter matrices

1: N̂ = T (N ,Dtr, [−], η)

2: while any weight matrix Ŵ
(i)

of N̂ has condition number > τ do

3: for all such weight matrices do

4: If Ŵ
(i)

of N̂ has p singular values less than 1/τ times the largest one, then remove

p neurons from layer i in N .

5: end for

6: N̂ = T (N ,Dtr, [−], η)

7: end while

8: return N

6.4.2 Scaling the size of a neural network

After we have the right proportion of neurons on each layer, we can expand or

contract the neural network, maintaining these proportions. The goal here is to find

the overall number of neurons needed to achieve the highest accuracy possible for the

model. We need to estimate the generalization error as we modify the number of neurons.

Therefore, we reserve part of the training set as a validation set, if a separate validation

set is not available.

In Algorithm 4, we begin with a base model N 0, possibly obtained from Algo-

rithm 3, with a good proportion of neurons on each layer. Given a set of positive scalars

{β1, . . . , βp}, we construct p new models, where N j , increases or decreases the number of

neurons in all layers of the base network N 0 by a factor βj . This way we obtain p + 1

models of different size, with the same distribution of neurons on their layers. Each model
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is trained q separate times, from scratch, using η epochs, and the errors on the training

and validation sets are averaged to obtain ε̂j,tr and ε̂j,v, where j ∈ {1, . . . , p}. We use

q = 5 in our computations, since no significant change was observed when using larger

values.

Algorithm 4 Algorithm for optimizing the overall number of neurons in a neural network,

while maintaining the proportion of neurons among the layers

Inputs: Base model N 0 (obtained from Algorithm 3), {β1, . . . , βp} , Dtr, Dv, η , q

Outputs: Refined trained N̂

1: for j = 1 to p do

2: Change the number of neurons in all hidden layers of N 0, by a factor of βj , to obtain

N j .

3: for l = 1 to q do

4: [N j , εj,trl , εj,vl ] = T (N j ,Dtr,Dv, η)

5: end for

6: ε̂j,tr = 1
q

∑q
l=1 ε

j,tr
l

7: ε̂j,v = 1
q

∑q
l=1 ε

j,v
l

8: end for

9: Choose the model that has the least 2ε̂j,v − ε̂j,tr as N̂ .

10: Fully train N̂ .

11: return N̂

Among these p+1 models, we want to choose the model that has the least validation

error, ε̂j,v, and the least generalization error, ε̂j,v − ε̂j,tr. Hence, we choose the one that

has the least sum of validation and generalization errors, 2ε̂j,v − ε̂j,tr. This procedure is

formalized as Algorithm 4.

By finding the model that minimizes 2ε̂j,v − ε̂j,tr, we avoid over-fitting and under-

fitting in the model. If the smallest or largest model happens to have the smallest 2ε̂j,v −

ε̂j,tr, we could extend our investigation beyond the p models, by adding more β’s in the

direction of smaller or larger models.
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6.5 Squeezing trained networks

The two algorithms in the previous section design and train a network from scratch,

given the desired number of layers. We now introduce a method to squeeze networks that

are already trained but have excess neurons. The method we propose does not necessarily

retain the accuracy of the trained model, but it preserves the main essence of it. In

our numerical results, we demonstrate that squeezed networks either closely retain the

accuracy, or they can be retrained to the best accuracy very quickly.

For squeezing trained networks, we use Algorithm 5. As in Algorithm 3, we reduce

the number of neurons whenever we encounter a weight matrix with large condition num-

ber, but now we need a way to identify the most useful neurons. To do this, we use the

rank-revealing QR decomposition.

Note that we do not need to compute the full QR decomposition; we can stop when

a diagonal element of R becomes too small.

The parameter τ defines the threshold for excessive neurons. If it is large, the output

of Algorithm 5 can be the same network as the input, and the user might then choose to

reduce τ .

Our squeezing method is straightforward and simple to use. Unlike methods that

rebuild a trained model using specialized training methods, we keep the trained network

intact except for redundancies. After squeezing, one can retrain the obtained network

with a few epochs, which sometimes leads to even better accuracy. For retraining in our

approach, one can use the original method of training, and there would be no necessity

for specific loss functions and optimization methods.

It is important to remember, as mentioned in section 6.2.4, that the effort needed
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Algorithm 5 Algorithm for squeezing a trained feed-forward neural network

Inputs: Trained neural network N̂ , τ , Dtr

Outputs: Squeezed neural network with same or smaller number of neurons

1: for i = 1 to m do

2: if τ < κi then

3: [Q,R,P ] = QR
(
Ŵ

(i))
4: Define p so that |rp+1,p+1| < τ |r11| and |rpp| ≥ τ |r11|

5: Remove columns p+ 1 : ni of P from Ŵ
(i)

6: Compute condition number of shrunk Ŵ
(i)

as κi

7: while τ < κi do

8: p = p− 1

9: Remove column p+ 1 of P from Ŵ
(i)

10: Compute condition number of shrunk Ŵ
(i)

as κi

11: end while

12: Remove neurons p + 1 : ni of P from the network, by removing corresponding

columns of W (i), rows of W (i+1), and elements of b(i)

13: end if

14: end for

15: Improve N̂ by retraining, if desired.

16: return squeezed N̂

for computation of pivoted QR decomposition of the weight matrices of a network is

negligible compared to the overall training process. We recommend our Algorithm 5 as a

computationally inexpensive and approachable method to squeeze trained networks and

to gain insight about their compressibility. Other sophisticated methods that rebuild the

networks from scratch may have certain advantages in particular applications, but their

computational cost may be much higher.

In Algorithm 5, use of pivoted QR or RR-QR is necessary because we need to know

which specific neurons are redundant, the information we obtain from the permutation

matrix of decomposition. The while loop in our algorithm makes sure the condition
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number of resulting matrices are below the τ , after elimination of redundant neurons.

This is because line 4 of our algorithm may possibly overestimate the rank of matrix

leading to elimination fewer than necessary neurons. This while loop usually takes zero

or very few iterations, and it is not an essential part of the algorithm. In cases where

a network is squeezed, retrained, and squeezed again, using the while loop may reduce

the overall cost, because it could cause line 2 of the algorithm not to be invoked in the

subsequent squeeze. In other cases, where squeezing is applied once, the while loop can

be dropped.

6.6 Numerical results

In our numerical results, we use TensorFlow to train the networks, with Adam

optimizer and learning rate of 0.001. We also use a tunable error function as the activation

function as explained in Chapter 2, but keep in mind that our training method does not

depend on the choice of activation function. We start with MNIST which can be considered

an unfamiliar dataset, because we use the wavelet coefficients of images, instead of the

pixel data.

6.6.1 MNIST

The MNIST dataset has 10 output classes, as explained in Section 4.4.1.1. We

represent each data point as a vector of length 200, using the Haar wavelet basis. The 200

most significant wavelets are chosen by rank-revealing QR decomposition of the matrix

formed from the wavelet coefficients of all images in the training set. Using this small

number of wavelet coefficients and a simple feed-forward network will lead to accuracy

of about 98.7%. Accuracy could be improved using more wavelet coefficients, and using
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regularization techniques in the literature, but this accuracy is adequate to demonstrate

the effectiveness of our method.

Using Algorithm 3. We consider a neural network of 12 hidden layers with 300

nodes on each layer as the input to Algorithm 3. After the initial training of this model,

the condition numbers of the stacked weight matrices vary between 2 and 2, 652, as shown

in the third column in Table 6.1. We use Algorithm 3 to adjust the proportions of neurons,

with τ = 25 and η = 1. The number of neurons and the condition numbers of the matrices

for the output of Algorithm 3 are presented in the last two columns in Table 6.1. At each

iteration, we have rounded down the number of neurons obtained at line 4 of the algorithm

to a multiple of 5.

Table 6.1: Condition numbers of the stacked matrices and the number of neurons on each

of the 12 layers of the network processed by Algorithm 3 to learn 200 wavelet coefficients

for MNIST.

Layer (i)
Initial network Algorithm 3

ni κi ni κi

1 300 10 300 9

2 300 649 205 10

3 300 301 255 15

4 300 2,652 210 20

5 300 275 250 22

6 300 583 210 23

7 300 946 180 24

8 300 268 150 24

9 300 433 120 17

10 300 1,269 95 14

11 300 398 65 11

12 300 673 25 4

13 10 2 10 4

We observe that the final condition numbers are relatively close to each other and

less than τ . Additionally, they monotonically increase towards the middle layer and then
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monotonically decrease towards the output layer. This monotonicity of condition numbers

is not a requirement and might not be achieved for all models.

Using Algorithm 4. The previous step found a promising set of proportions for

the sizes of the layers. Using the output of Algorithm 3, given in Table 6.1, as our base

model, we scale this network to try to improve the accuracy. We chose eight β’s ranging

from 1 to 2.4, with increments of 0.2.

For this step, we need a validation set. Hence, we remove 10,000 images from the

training set, randomly selecting 1,000 images from each class to use as a validation set

Dv. This leaves the training set Dtr with only 50,000 images.

We use a batch size of 50, and set q = 5, η = 1. Algorithm 4 partially trains all eight

models to achieve the errors shown in Table 6.2 and Figure 6.1. It then chooses the model

with β = 2 as the best model and trains it using all 60,000 images in the training set, to

achieve 100% and 98.68% accuracies on the training and testing sets, respectively. Achiev-

ing this accuracy with such a small neural network is remarkable, considering that we only

used 200 wavelet coefficients, and we did not use any regularization or any sophisticated

architecture for the network.

Figure 6.1: Errors of the eight models investigated by Algorithm 4 for MNIST. We have

chosen the model with β = 2.0, because it has the least sum of validation and generalization

errors, when models are partially trained with 1 epoch.
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Table 6.2: Errors of the eight networks obtained from Algorithm 4, defined by the β’s,

partially trained on the reduced training set (with 50,000 images) and validated using

10,000 images.

β ε̂tr ε̂v 2ε̂v − ε̂tr

1.0 9.29 9.81 10.34

1.2 7.69 8.22 8.76

1.4 6.36 7.02 7.68

1.6 5.55 6.23 6.90

1.8 4.49 5.29 6.10

2.0 3.96 4.73 5.51

2.2 3.74 4.70 5.66

2.4 3.24 4.51 5.73

For all of these models, the condition numbers of the stacked matrices are similar

to those presented in the 5th column of Table 6.1 and smaller than 25. This indicates

that partial training with η = 1 has adequately captured the conditioning of the matrices.

It also indicates that scaling the number of neurons, while maintaining their proportions

layer-by-layer, has little effect on the condition numbers for the stacked matrices.

Verifying the results. Here, we investigate whether the model we obtained with

β = 2.0 is in fact the best network we can choose from the pool of networks defined by

the eight β’s. For this, we fully trained all eight of the networks, obtaining the errors in

Table 6.3. Evidently, the best accuracy is achieved by the model chosen by Algorithm 4,

confirming the effectiveness of our method.

Table 6.3: Testing error when models are fully trained with all 60,000 images in the MNIST

training set

β 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4

ε̂te 1.97 1.76 1.65 1.56 1.43 1.32 1.56 1.61

Clearly, trying to squeeze this trained network using Algorithm 5 with τ ≥ 25
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will have no effect. Overall, we observed that choosing a value of τ between 20 and 50

in Algorithm 3, and then applying Algorithm 4, leads to similar networks with similar

best accuracies. However, choosing τ outside of this range leads to models with slightly

inferior accuracies. The key factor in choosing a good value for τ seems to be the variance

of condition numbers among the layers. The values of τ that deliver the best results also

yield condition numbers with small variance among the layers. In fact, one can choose the

initial value of τ as the mean of condition numbers and update it as the condition numbers

change, until the variance becomes small. This approach would yield similar results as

when we choose the value τ between 30 and 40 in the first place. This range can be viewed

as a practical choice for τ .

6.6.2 Adult Income dataset

Next, we consider the Adult Income dataset with the same preprocessing explained

in Section 4.4.2.

Using Algorithm 3. We consider a neural network of 12 hidden layers with 50

nodes on each layer as the input to Algorithm 3. Similar to the previous section, the

properties of the initial and final network are presented in Table 6.4. For this dataset,

we have not rounded the number of neurons, and we have used batch size of 20, η = 3,

and τ = 40. This time, we choose a larger η compared to previous example, because

our network is much smaller and training with the larger η still takes just a few seconds.

We also choose a larger τ because the condition numbers tend to remain large during

the process. We discuss the factors involved in choosing these parameters further in

Section 6.6.5.

Using Algorithm 4. Using the proportions found in the previous step, we consider
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Table 6.4: Condition numbers of the stacked matrices and the # of neurons on each of

the 12 layers of the network processed by Algorithm 3 to learn the Adult Income dataset.

Layer (i)
Initial network Algorithm 3

ni κi ni κi

1 50 9 44 7

2 50 654 39 37

3 50 658 32 31

4 50 583 22 13

5 50 230 20 30

6 50 224 15 13

7 50 159 12 20

8 50 912 8 20

9 50 136 5 14

10 50 377 4 7

11 50 74 8 16

12 50 110 6 18

13 2 1 2 3

eight β’s ranging from 0.6 to 2.0, with increments of 0.2. For the validation set Dv, we

randomly remove 10% of the data points from the training set, leaving the training set

Dtr with 90% of its data points.

Based on the results of Algorithm 4, shown in Figure 6.2, we choose the neural

network with β = 1.4. After fully training this model we achieve 86.05% accuracy on the

testing set, which is comparable to the best accuracies reported in the literature [Friedler

et al., 2019, Mothilal et al., 2019].

Verifying the results. To verify the results, we fully train all the models defined

by the eight β’s to achieve the testing errors in Table 6.5. We observe that the best

accuracy is indeed achieved by the model with β = 1.4.

6.6.3 Using Algorithm 5 to squeeze networks trained on MNIST

Squeezing the model obtained via Algorithms 3 and 4 may lead to even
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Figure 6.2: Errors of the eight models investigated by Algorithm 4 for the Adult Income

dataset. We have chosen the model with β = 1.4, because it has the least sum of validation

and generalization errors when trained partially.

Table 6.5: Testing error when models are fully trained with all data in the Adult Income

training set

β 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ε̂te 14.34 14.19 14.22 14.16 13.95 14.14 14.19 14.32

better accuracy. We first consider the refined network we trained with β = 2 that

achieved 98.68% accuracy on the testing set. For this model, all the condition numbers κi

happen to be less than 23. Hence, we squeeze the model with τ ranging between 22 and

18. Table 6.6 shows the results. After squeezing, we measure the accuracy of the model on

the testing set and then retrain it, stopping when we reach 100% accuracy on the training

set.

Table 6.6: Number of neurons and accuracies of the model with β = 2, trained in Section

6.6.1, squeezed by Algorithm 5 with different values of τ .

τ

Number of

neurons

removed

Accuracy of

squeezed model before

retraining

Accuracy of

squeezed model after

retraining

22 5 98.47 98.68

20 408 90.35 98.74

18 502 80.94 98.70
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It is notable that retraining the squeezed models may lead to accuracies better than

the original model. Table 6.7 shows the size and conditioning of the best model, with

accuracy of 98.74%.

Table 6.7: Condition number of the stacked matrices and the number of neurons on each

layer of the model with 98.74% accuracy on MNIST.

Layer (i) 1 2 3 4 5 6 7 8 9 10 11 12 13

ni 600 410 510 420 364 319 278 249 212 180 130 50 10

κi 4 10 17 18 20 20 20 20 19 19 10 4 2

Squeezing can accurately detect excess neurons. Here, we consider the model

in Table 6.7, add 20 neurons on its 4th and 8th hidden layers, and fully train it to achieve

98.47% accuracy. This decrease in the accuracy can be associated with overfitting, caused

by addition of those 40 neurons. Table 6.8 shows the condition numbers of the stacked

matrices for this model. We observe that condition numbers have increased not only for

layers 4 and 8, but also for the in-between layers 6 and 7.

Table 6.8: Condition number of the stacked matrices for the model that has 20 more

neurons on its 4th and 8th layers compared to the model in Table 6.7. The condition

numbers of layers 4,6,7 and 8 have noticeably increased above the τ = 20 we had used to

squeeze that model.

Layer (i) 1 2 3 4 5 6 7 8 9 10 11 12 13

ni 600 410 510 440 364 319 278 269 212 180 130 50 10

κi 4 10 16 26 19 30 30 75 16 21 12 4 2

Algorithm 5 enables us to extract some extra neurons from this model, but we have

to choose the τ wisely. By looking at the condition numbers in Table 6.8, we see that

only layer 8 has condition number > 30, hence, we squeeze the model with τ = 30. The

algorithm discards 20 neurons from the 8th layer, leaving a model with 98.45% accuracy.
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Retraining this model leads to 98.55% accuracy.

Similarly, if we squeeze the model with τ = 25, a total of 37 neurons will be discarded

from the network: 3 neurons from the 4th layer, 4 neurons from the 6th layer, 5 neurons

from the 7th layer, and 25 neurons from the 8th layer. The accuracy of the squeezed

model is 98.39% before retraining, and 98.66% after retraining.

So, Algorithm 5 enabled us to effectively extract extra neurons from the model and

obtain better accuracies.

Squeezing an oversized model reduces the overfitting and improves the

accuracy. As the last experiment on MNIST, we study an oversized network with 600

neurons on each layer. Training this oversized network leads to accuracy of 98.3% on the

testing set, clearly because of overfitting. This model has 3,438 more neurons compared to

the model with best accuracy in Table 6.7, leading to an increase of 199% in the number

of training parameters.

We squeeze this oversized model using Algorithm 5 with different values of τ . The

results of squeezing are presented in Table 6.9. The accuracies of models decrease after

squeezing, although after retraining the squeezed models we obtain accuracies as good,

or even better than the original oversized model. This improvement demonstrates the

effectiveness of Algorithm 5 in reducing the over-fitting and discarding the excess neurons.

After retraining the squeezed models in Table 6.9, the condition numbers of most

matrices go above the τ used for squeezing, indicating that models are still highly over-

sized and can be squeezed further to achieve better accuracy. However, this process of

squeeze/retrain iterations is less effective than using Algorithms 3 and 4. So, as a general

practice we do not recommend starting the training process with an oversized model.

In the next section, we will further investigate the squeezing process on the Adult
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Table 6.9: Number of neurons removed and the resulting accuracies, after squeezing an

oversized model with 600 neurons per hidden layer, using Algorithm 5 with different values

of τ .

τ

Number of

neurons

removed

Accuracy of

squeezed model before

retraining

Accuracy of

squeezed model after

retraining

500 27 98.16 98.30

200 87 97.93 98.30

100 178 96.90 98.30

50 371 90.64 98.32

40 499 90.44 98.35

35 573 90.24 98.39

30 660 88.88 98.53

25 787 86.38 98.41

20 998 63.37 98.39

Income dataset, and will also study a highly oversized model.

6.6.4 Using Algorithm 5 to squeeze networks trained on the Adult Income dataset

Squeezing the model obtained via Algorithms 3 and 4 may lead to even

better accuracy. Let’s consider the best model obtained in Section 6.6.2 with β = 1.4.

Using Algorithm 5, we squeeze that model with different values of τ . Clearly, squeezing

with τ > 40 will return the exact same model. Table 6.10 shows the number of neurons

removed from the model for three values of τ , along with the accuracy of the squeezed

models, before and after retraining.

We see that squeezing the model with τ = 35 has led to a model with even better

accuracy: 86.11% on the testing set. Properties of this model are presented in Table 6.11.

For retraining, we have only used 5 epochs.

Squeezing an oversized model reduces the overfitting and improves the

accuracy. Let’s consider a large model with 100 neurons on each layer, which has 110,581
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Table 6.10: Number of neurons and accuracies of the model with β = 1.4 trained in

Section 6.6.2, after being squeezed by Algorithm 5 with different values of τ . Accuracies of

squeezed models have not dropped drastically, and retraining has led to a better accuracy

for τ = 35 and 30.

τ

Number of

neurons

removed

Accuracy of

squeezed model before

retraining

Accuracy of

squeezed model after

retraining

35 20 84.76 86.11

30 46 78.23 86.09

25 77 76.38 86.03

Table 6.11: Condition number of the stacked matrices and the number of neurons for the

model with 86.11% accuracy on the Adult Income testing set.

Layer (i) 1 2 3 4 5 6 7 8 9 10 11 12 13

ni 53 48 40 30 26 21 16 11 7 5 11 8 2

κi 35 19 27 24 33 20 30 12 12 14 14 24 2

more trainable parameters, compared to the model in Table 6.11, an increase of more than

10 times in the number of training parameters. After training this network, we obtain

85.28% accuracy on the testing set. When using Dropout [Srivastava et al., 2014] during

the training, the common approach to avoid overfitting, we achieve 85.45% accuracy, which

is still far less than 86.11% obtained using our methods.

Let’s now use Algorithm 5 to squeeze the trained (oversized) model above with

85.28% accuracy, and then retrain it. We perform this squeezing and retraining, with

different values of τ , and the corresponding results are presented in Table 6.12. Each

squeezed model is retrained with 10 epochs. We observe that squeezing with τ between

30 and 40 has led to best improvements in the accuracy. This improved accuracy (as a

result of squeezing and retraining) is smaller than the best accuracy of 86.11%, but, it is

better than the accuracy of the model trained using Dropout. We also note that although
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squeezing makes the condition number of Ŵ matrices ≤ τ , the condition numbers can

increase above τ during retraining. This is to be expected, because the squeezed models

are still highly oversized.

Table 6.12: Number of removed neurons and accuracies of an oversized model with 100

neurons per hidden layer, after being squeezed by Algorithm 5 with different values of τ .

τ

Number of

neurons

removed

Accuracy of

squeezed model before

retraining

Accuracy of

squeezed model after

retraining

100 29 82.65 85.25

50 86 82.09 85.54

40 95 80.73 85.63

35 104 80.92 85.69

30 120 79.76 85.62

20 166 76.99 85.45

10 315 76.38 85.57

To provide the last insight, let’s look into the model squeezed with τ = 35. After

retraining, several of its Ŵ matrices have condition number greater than 35. We repeat

the process, squeezing it with the same τ , and then retraining it with 10 epochs. After 4

squeeze/retrain iterations, we obtain a model that can no longer be squeezed. Table 6.13

shows how the network has evolved through this process.

The squeezed model has 823 more neurons compared to the model that achieved

86.11% accuracy. It is also less accurate because of overfitting. However, we should note

that this squeezing process improved the accuracy of oversized model from 85.28% to

85.81%, which is significant for such a computationally inexpensive process. This demon-

strates the effectiveness of Algorithm 5 in squeezing networks with excessive neurons.
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Table 6.13: Number of neurons for a 12-layer network trained on the Adult Income dataset,

squeezed using Algorithm 5 with τ = 35 and retrained with 10 epochs, repeatedly, until it

cannot be squeezed further. Reported accuracy is on the testing set, after the retraining.

Squeezing is computationally inexpensive and significantly improves the accuracy.

Layer (i)
Squeeze iteration

0 1 2 3 4

1 100 75 72 68 67

2 100 100 100 100 100

3 100 89 86 86 86

4 100 84 80 80 78

5 100 100 100 100 100

6 100 93 92 92 92

7 100 87 84 84 84

8 100 100 100 100 100

9 100 91 91 90 90

10 100 85 85 85 85

11 100 100 100 100 100

12 100 92 92 92 92

Accuracy (%) 85.3 85.68 85.7 85.73 85.81

6.6.5 Evolution of networks during training and choosing the hyperparameters

Here, we provide more information about the evolution of network parameters during

the training and provide guidance to choose the hyperparameters in our algorithms.

Choosing η: This parameter is the number of training epochs before refining the

network. In Algorithm 3, if the condition numbers of stacked weight matrices remain

mostly similar after a certain number of epochs, then it would be inefficient to choose an

η larger than that number of epochs. In our experiments, even half of an epoch captures

the condition number closely. Of course, we cannot guarantee that one (or half) epoch

will be adequate for all datasets. Hence, the user of our algorithm should perform an

initial experiment to see how the condition numbers of weight matrices change relative to
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each other, as the number of training epochs increases, and then choose a good value for η

accordingly. If computational resources are abundant, choosing a larger η would be a safe

approach. Nevertheless, if an insufficient number is chosen for η, some of the condition

numbers might go up again and become disproportionate after the final training of the

network. This would prompt the user to either squeeze the obtained network or repeat

Algorithm 3 with a larger η.

Tables 6.14 and 6.15 show the evolution of condition numbers for two different

models trained on the MNIST example, along with the corresponding number of neurons

that should be removed using τ = 30. The model in Table 6.14 is an oversized network,

and the model in Table 6.15 is undersized, compared to the model we obtained, earlier,

with the best accuracy. We can see that condition numbers largely remain the same, as

we train the models with more epochs.

Choosing τ and consistency of results: In our experience, different choices of

τ within a reasonable range (25 - 40) do not affect the final outcome (See Table 6.6). As

mentioned earlier, for any network, the condition numbers of its stacked weight matrices

and their variance among the layers of the network can be the best indicator of redundan-

cies present in the network. When some of the layers have condition numbers much larger

than others, one could conclude that those layers have excessive neurons compared to

others. On the other hand, when condition numbers have small value and small variance,

it indicates that the neurons are well-distributed among the layers. Such a network might

still need to be scaled up or down, to achieve the best accuracy.

Looking at the mean and variance of the condition numbers guides us to choose

a good value for τ for various datasets. If unsure about choosing the τ , the mean of

condition numbers among the layers is a reasonable choice. As we progress through our
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Table 6.14: Evolution of condition number of stacked weight matrices of a 9-layer neural

network with 600 neurons per hidden layer, trained on our MNIST example. Network is

oversized and we expect hidden layers 2 through 9 to lose neurons. The high condition

number of layers compared to the first layer is aligned with our expectation. Notice that

this is noticeable even after training with small number of epochs and the number of

neurons removed from each layer, pi, does not vary much with respect to η.

Layer (i) ni

η

.5 1 2 5 10

κi pi κi pi κi pi κi pi κi pi

1 600 4 0 4 0 4 0 4 0 4 0

2 600 1,050 25 1,041 24 1,207 24 627 24 843 24

3 600 3,609 24 1,551 24 3,398 24 6,878 24 1,265 24

4 600 663 24 642 25 1,083 25 5,657 25 1,317 25

5 600 961 26 1,664 26 2,472 26 661 26 963 26

6 600 2,212 25 1,746 24 1,268 24 751 24 1,485 24

7 600 1,206 26 882 25 904 25 1,961 25 1,667 25

8 600 881 24 899 24 802 24 820 24 768 24

9 600 537 25 576 26 744 26 1,077 26 1,948 26

10 10 1 0 1 0 1 0 1 0 1 0

structure refinement, we can observe how the mean of condition numbers drops to a small

range and how the variance among them becomes small.

Table 6.16 shows the evolution of a 9-layer network, when processed by Algorithm

3 with τ = 30. It only takes 7 iterations until the network satisfies τ ≤ 30 for all of its

layers. Performing these 7 iterations take less than 3 minutes on a 2017 Macbook.

When we apply Algorithm 3 to the same network, choosing τ at each iteration to

be the mean of condition numbers, it takes 6 iterations to achieve a very similar network.

Our algorithms are also not very sensitive to the choice of network that we start

with. This is mainly because we have uncoupled the question of finding the right propor-

tion of neurons for the layers of the network (Algorithm 3), and the question of finding

the overall size of the network (Algorithm 4). Still, being smart in choosing the initial
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Table 6.15: Evolution of condition number of stacked weight matrices of a 9-layer neural

network with 100 neurons per hidden layer, trained on our MNIST example. Condition

numbers indicate that layers 2 through 9 have excessive neurons compared to the first

layer, as we expect.

Layer (i) ni

η

.5 1 2 5 10

κi pi κi pi κi pi κi pi κi pi

1 100 5 0 5 0 5 0 5 0 6 0

2 100 124 4 119 4 144 4 249 4 339 4

3 100 218 5 245 5 236 5 332 5 398 5

4 100 101 5 108 5 106 5 109 5 129 5

5 100 196 5 219 5 241 5 249 5 229 5

6 100 439 4 424 4 462 4 449 4 332 5

7 100 184 4 182 4 176 4 166 4 151 5

8 100 365 5 283 5 256 5 222 5 278 5

9 100 153 4 180 5 188 5 213 5 229 5

10 10 2 0 2 0 2 0 2 0 2 0

network structure can significantly reduce the time it takes for the algorithms to refine

the structure.

For example, consider the example in Table 6.16. Instead of starting from the

network shown for iteration 0 of Table 6.16, we start with a 9-layer network that has 600

neurons on all of its hidden layers. This time, it takes 47 iterations for Algorithm 3 to

adjust the distribution of neurons, way more than 7 iterations. However, the output is

very similar as shown in Table 6.17, considering the total number of neurons which are

3,214 and 3,298 for the two networks, and the number of trainable parameters which are

1,270,596 and 1,266,728, respectively.

Finally, we note that the final networks can be slightly different depending on the

starting network, since there are generally many networks that fit the training data. Over-

all, in our experience, Algorithm 4 chooses a similarly sized scaled-up network, if we start
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Table 6.16: Evolution of number of neurons ni for a 9-layer neural network, trained on

our MNIST example, as it is refined with Algorithm 3.

Layer (i)
ni for iterations of Algorithm 3

0 1 2 3 4 5 6 7

1 600 600 600 600 600 600 600 600

2 540 536 533 532 530 529 529 527

3 480 480 477 474 471 470 468 466

4 420 420 419 418 418 415 413 412

5 360 360 360 360 360 360 359 359

6 300 300 300 300 300 300 300 300

7 240 240 240 240 240 240 240 240

8 180 180 180 180 180 180 180 180

9 120 120 120 120 120 120 120 120

10 10 10 10 10 10 10 10 10

max(κi) 49.4 42.5 39.2 33.6 31.7 31.4 31.0 29.2

Σ(ni) 3,250 3,246 3,239 3,234 3,229 3,224 3,219 3,214

with a smaller network for Algorithm 3. The key point is obtaining networks of similar

accuracy and size, not obtaining a particular network. Clearly, using an oversized network

as the input to Algorithm 3 and then contacting it with Algorithm 4 will be computation-

ally more expensive than the alternative approach of starting with a modest network for

3 and then expanding it with Algorithm 4. This is because, in the latter case, the partial

training of networks by Algorithm 3 will be performed on a smaller network.

6.7 Summary

We have defined a complete set of tools that can be used to design a feed-forward neu-

ral network from scratch, given only the number of layers that should be used. Although

additional computations are used to refine the number of neurons, these computations

are overall much less expensive than the alternative method of training many models and
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Table 6.17: Different starting networks lead to similar networks in our experiments. The

output of Algorithm 3 for a network with 600 neurons on all its hidden layers, is very

similar to the output of Algorithm for a different network in Table 6.16.

Layer (i)
ni

Input to Algorithm 3 Output of Algorithm 3

1 600 600

2 600 518

3 600 448

4 600 389

5 600 344

6 600 300

7 600 267

8 600 238

9 600 184

10 10 10

Σ(ni) 5,410 3,298

choosing the one with best accuracy. Results on sample image and non-image datasets

demonstrate that our method results in small networks with high accuracies. By choosing

the number of neurons wisely, we avoid both over-fitting and under-fitting of the data and

therefore, achieve low generalization errors. This enables practitioners to effectively utilize

compact neural networks for real-world applications. We also provided a straightforward

method for squeezing networks that are already trained. Our method identifies and dis-

cards redundancies in the trained networks, leading to compact networks, sometimes with

better accuracies.

In the next chapter, we study an unsupervised learning method, Gaussian graphical

models, and provide mathematical tools for their interpretation.
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Chapter 7: Interpreting Gaussian Graphical Models

7.1 Introduction

In this chapter, we study the problem of interpretation in the context of unsupervised

machine learning, specifically for Gaussian graphical models.1

Gaussian graphical models (GGM) have been successful at discovering patterns

of dependencies among variables in data for application areas such as gene interaction

networks, information pathways of the brain, and climate models [Barabasi and Oltvai,

2004, Dobra et al., 2004, Huang et al., 2009, Smith et al., 2011, Zerenner et al., 2014]. Yet

in these practical applications of scientific discovery, often a subset of the samples in the

data would produce different results. In many cases, this variability is due to the fact that

some data samples are produced by a different underlying process than the other samples.

For example, in brain imaging data, some subjects may be on medication that affects

brain pathways, and in climate models, microclimate regions will exhibit different climate

patterns. To facilitate meaningful pattern discovery, the end-user or analyst who is trying

to understand the patterns in the data needs to explore how the data affects the learned

GGM and vice-versa, how the structure of the GGM relates to the data. We introduce

Interpretable Diverse Gaussian Graphical Model learning (iDGGM), which is a method

to find data subsets that produce the most variation in the learned GGM structure and

1This work has been published as “Learning Diverse Gaussian Graphical Models and Interpreting

Edges” [Yousefzadeh et al., 2019] at the SIAM International Conference on Data Mining (SDM19).
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interpret that structure with respect to the data.

When using GGM learning for scientific discovery, the end-user has expert knowledge

about the data, even before applying any learning algorithms. For machine learning to

be used in scientific discovery, transparency in the learning algorithms is critical [Amershi

et al., 2011, Kapoor et al., 2010]. iDGGM provides transparency through (1) exploring

various models that represent various subsets of data; and (2) explaining which data

samples contribute most to edges in the learned GGM.

Other work in learning GGMs from scientific data has focused on reducing the effect

of outlier samples [Liu et al., 2012], finding robust edges [Liu et al., 2010b], partitioning

data along meta-data features [Liu et al., 2010a], and finding changes in structure between

partitions of data [Mohan et al., 2012]. Our approach is novel in identifying data samples

that most affect the learned structure. We demonstrate that our approach identifies

outlier samples, separates groups of data samples that have been mixed together, evaluates

robustness of the learned structure, and provides interpretations of variable dependencies

in terms of data samples.

Two major contributions of this chapter are methods to (1) identify a subset of

data that if removed, produces the most different GGM; and (2) identify a subset of

data that if removed would eliminate a given edge from the GGM. For each method, an

optimization problem is defined that can be solved efficiently by gradient-based algorithms.

Formulations are then evaluated on data from ingredient networks in online recipes [Ahn

et al., 2011] to give insight about relationships among ingredients, as well as to demonstrate

the ability to evaluate the robustness of the GGM and individual edges within the GGM.

Then insights are demonstrated about the geochemical signatures observed by the Mars

rover [Wiens et al., 2012]. By bringing transparency and interpretability, practitioners are
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enabled to create and use models that they are confident and insightful about.

7.2 Problem Statement

7.2.1 Preliminaries: Notation

In our formulations, scalars and vectors are in lower case and matrices are in upper

case. Bold characters are used for vectors and matrices. Subscripts of vectors and matrices

denote their dimensions, and demonstrated when a vector or matrix is first introduced.

The index for a particular element of a matrix or vector is shown inside brackets.

7.2.2 Preliminaries: Gaussian graphical models

A Gaussian graphical model (GGM) [Friedman et al., 2008, Meinshausen and Bühlmann,

2006, Zhao et al., 2012] estimates a sparse set of conditional dependency relationships

(partial correlations) among a set of variables. A GGM is estimated from a data matrix

Xnx,nv , where columns represent the nv variables and rows represent the nx observations

or samples. Formally, the GGM represents the precision matrix, denoted by Θnv ,nv , which

is the inverse of the covariance matrix of data, denoted by Σnv ,nv . A partial correlation

of 0 indicates that the pair of variables are conditionally independent given all other vari-

ables in the system. A graphical model is a visual representation of the precision matrix

in which an edge is drawn connecting two vertices in the graph, if and only if the partial

correlation between the corresponding variables is not zero.

Sparsity of a GGM is of significant importance, because it reveals the most important

relationships among the variables in the dataset. Ideally the covariance matrix is invertible

and the precision matrix is sparse. Invertibility can usually be ensured by pre-processing

the data. However, several phenomena can cause the calculated precision matrix to be
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non-sparse [Lam and Fan, 2009, Yuan and Lin, 2007]. For example, the number of samples

in the dataset might be too few for the model to capture the underlying sparsity in the

GGM, or there might be latent variables that are not measured in the dataset, or there

might be outliers in the dataset.

One way to obtain a sparse precision matrix is to calculate a sparse approximation

to the inverse. These numerical methods are diverse and usually depend on the particular

cause of non-sparsity. One widely studied approach is to solve the optimization problem

Θ̂ = arg max
0�Θ

log det Θ− tr(ΣΘ)− λ‖Θ‖1, (7.1)

where ‖.‖1 is the `1 norm operator, and Θ is restricted to be positive semi-definite. The

sparsity of Θ̂ increases with the regularization parameter λ > 0, which can be any non-

negative real number. The first two terms in equation (7.1) are the maximum likelihood

estimation (MLE) formula, where its first-order optimality condition requires the Θ̂ to

become equal to the inverse of covariance matrix.

7.2.3 Related work about computation of precision matrix

The difference between the sparse precision matrix obtained via regularization and

the inverse of the covariance matrix has been studied as a function of the number of

observations, number of variables, and regularization parameter [Banerjee et al., 2008,

Raskutti et al., 2009].

Consistency in approximating the sparse precision matrix is also essential. Numer-

ous studies have investigated the GGMs from the sparsity point of view. This has led to

the term “sparsistency”, which refers to achieving consistent sparsity in GGMs [Lam and

Fan, 2009, Rothman et al., 2008].

The issue of latent variables have also been studied, notably in [Chandrasekaran
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et al., 2010], and the most common approach is to decompose the precision matrix as a

summation of a sparse matrix and a low-rank matrix. Chandrasekaran et al. [2010] have

also proved that both matrices are related to the direct inverse of the covariance matrix.

7.2.4 Objectives: Diverse GGMs and interpreting edges in the graph

Our main objective is to explore the diversity of GGMs that can be learned from

subsets of a given data set. Formally stated, we need to find a subset of data points such

that the GGM obtained from the subset is maximally different from the GGM obtained

from the entire dataset, Θ̂. We are also interested in finding the relationship between

each edge in the GGM and the individual data points. This will shed light on how robust

the learned GGM is with respect to the individual observations. For example if an edge

in the GGM exists because of just a few data points in the dataset, then it is desirable to

identify such data points and ensure their validity and incorruptness.

Therefore, we have two goals in this chapter:

1. Finding the subset of rows in X that yields a GGM maximally different from Θ̂

obtained from the entire dataset. (Section 7.3)

2. Finding the subset of rows inX that is related to each edge in the GGM. (Section 7.4)

7.2.5 Weighted-sample GGM

We first assign binary weights to each of the data points (rows of matrixX). Having

a zero weight will translate to exclusion of the corresponding observation from the data

matrix and vice versa.

The weighted mean and covariance are maximum likelihood estimators of normal

distributions with different reliabilities of estimates for each sample. Thus, the weights
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are equivalent to judgments of reliability of the measurement. This is appropriate for

estimating a graph with some high-variance samples down-weighted (or masked) and for

discounting the contribution of samples that are less important while increasing the weight

of the contribution for the most important samples.

Given nx samples, we define the weight vector wnx,1 with one element for each

observation in the data

wnx,1 ∈ {0, 1}nx . (7.2)

We ultimately want the weight vector to be binary as in (7.2), but sometimes we

relax the binary requirement and allow

0 ≤ w ≤ 1. (7.3)

The weight corresponding to a data point signifies importance of the data point when it

is close to 1, and signifies unimportance when it is close to zero.

We denote the weighted dataset by Xw and compute it via

Xw
nx,nv = diag(w) X, (7.4)

where diag() is the diagonal operator. The covariance matrix and the GGM associated

with Xw are denoted as Σw
nv ,nv and Θw

nv ,nv , respectively. We can obtain the covariance

of the weighted data by

Σw =
1

nwx − 1

[
XTdiag(w)2X − 1

nwx
XTwwTX

]
=

1

nwx − 1

[
XTŴX

]
, (7.5)

where nwx = ‖w‖1, and Ŵ nx,nx = diag(w)2 − 1
nwx
wwT .

In some instances, one might want a lower bound on the sum of elements in w. For

example, we might want to make sure the number of nonzero elements in w is not less

than a certain threshold. We impose this via a constraint

α nx ≤ 11,nx w, (7.6)
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where 0 < α < 1 and α = 1 corresponds to all elements of w being equal to 1, i.e.

Xw = X. Similarly, α = 0 corresponds to all elements of w being equal to zero, i.e.

Xw = 0 ∗X. We have examined different values for α in our numerical experiments, and

observed that this constraint is not always binding.

7.3 Finding the Maximally Different GGM

For our first goal, we take two different approaches. First we consider the case where

inverting the covariance matrix leads to a sparse precision matrix. Then we consider the

case where the precision matrix is obtained via numerical optimization and regularization.

In our numerical results, we use NLopt which is a free/open-source library for nonlinear

optimization [Johnson, 2014].

7.3.1 Precision matrix obtained from direct inverting

We define the objective function as

max
w
‖(Θ̂− Θ̂

w
)� F ‖1, (7.7)

where Θ̂ has been previously obtained from the entire dataset, Θ̂
w

is a function of w, � is

the Hadamard product and F nv ,nv is a stencil with ones in its strict upper triangular and

zeros elsewhere. The rationale behind the stencil is that the precision matrix is symmetric

by nature, hence, we can work with the upper triangular portion. The difference in

diagonal entries of precision matrices is not reflected in the GGM and is not of interest

for our objective.

We maximize (7.7) subject to constraints (7.3) and (7.6). If we want the weights

to be binary, constraint (7.2) shall replace constraint (7.3). We will later show how the

binary constraint can be satisfied by via regularization.
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Note that we need to calculate the inverse of Σw obtained by equation (7.5). We

assume full column rank for the observed data X which can be ensured via preprocessing

of the data. Ŵ , however, is rank deficient because the vector whose entries are the inverse

of entries of w is one of its eigenvectors, corresponding to an eigenvalue of zero.

Defining A = XT diag(wnx,1)
2 X, u = − 1

nwx
XTw and v = XTw, we obtain

Σw =
1

nwx − 1

[
A+ uvT

]
. (7.8)

Then, using the Sherman-Morrison-Woodbury formula [Golub and Van Loan, 2012, Hager,

1989], we can calculate the precision matrix as

Θ̂
w

= (Σw
nv ,nv)

−1 = (nwx − 1)
[
A−1 − A

−1u vTA−1

1 + vTA−1u

]
. (7.9)

A−1 exists, since we have assumed X has full column rank

A−1 = X−1 diag(w)−2 X−T , (7.10)

where X−1 = (XT X)−1 XT , which is the left inverse of X. (XT X)−1 is guaranteed to

exist when X has full column rank.

It is also important to notice the denominator in equation (7.9) which we need

nonzero. If we replace the A−1 in the denominator, we will obtain 1 + vT A−1 u =

1 − 1
nwx
wT X X−1 diag(w)−2 X−T XT w. It is easy to see that the denominator can

become zero only if X X−1 is diagonal, but, this is impossible for a non-square X that

has full column rank. However, for the cases where X is square and invertible, we can

deal with the problem much easier than the current approach. Therefore, assuming that

X is non-square and has full column rank, the denominator can never become zero, and

equation (7.9) can be used to obtain the precision matrix.

From the optimization point of view, equation (7.9) considerably facilitates our

computations by enabling us to analytically calculate the derivatives of the objective
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function with respect to w. The corresponding formulae are provided in Section 7.5.1.

Relying on the derivatives, we use a gradient-based nonlinear optimization algorithm to

find the weights that produce the most diverse GGM.

Equations (7.3) and (7.6) are linear, which is desirable. But, when the binary

constraint (7.2) is imposed on the weights, the optimization becomes a mixed-integer non-

linear problem, which requires a difficult class of optimization algorithms. An alternative

approach to impose the binary constraint is to add a regularization term to the objective

function as in

max
w
‖(Θ̂− Θ̂

w
)� F ‖1 − λ2‖w � (1−w)‖22, (7.11)

where λ2 is a positive penalty coefficient, penalizing the objective function when weights

are not binary. We find the regularization approach to be more effective in solving the

problem, because our optimization problem is nonlinear. At the start of optimization

process, we use a small positive value for λ2 and increase its value, tracing a homotopy

path until all the weights are binary. At each iteration as we increase the λ2, we use the

solution obtained from the previous λ2 as the starting point for the next optimization.

7.3.2 Precision matrix obtained from regularization

In this case, the most obvious approach is to use the optimization problem used to

obtain Θ̂ in the first place, and add a regularization term in the objective function to

promote maximal difference between Θ̂
w

and Θ̂. For example, if equation (7.1) is used to

obtain Θ̂, the objective function we solve to find the optimal weights is

Θ̂
w

= max
w,0�Θw

log det Θw − tr(ΣwΘw)

− λ‖Θw‖1 + λ1‖(Θ̂
w
− Θ̂)� F ‖1 − λ2‖w � (1−w)‖22, (7.12)
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subject to constraints (7.3) and (7.6), with λ1, λ2 ≥ 1.

When optimizing this problem, we can require the weights to be binary, or we

can relax that requirement and allow the weights to be continuous between 0 and 1, by

eliminating the last term in equation (7.12).

7.4 Interpreting Edges in the GGM

For our second goal, we want to know how each edge in the graph is related to the

rows of X. In other words, we would like to find a subset of rows such that eliminating

them from X causes a specific edge to disappear from the graph, while the rest of graph

remains fairly intact.

Here, we have three terms to minimize. The first term is the value of the edge we

want to eliminate, represented by element Θ̂w
[i,j] in the weighted precision matrix. The

second term is the difference between the weighted precision matrix and the original one,

excluding the element of interest Θ̂w
[i,j]. The last term is the penalty term to ensure weights

are binary. We obtain

min
w
‖Θ̂w

[i,j]‖1 +
1

λ1
‖(Θ̂− Θ̂

w
)� F̂ ‖1 + λ2‖w � (1−w)‖22, (7.13)

where λ1 and λ2 are positive penalty parameters that should be greater than or equal to

1. F̂ is equal to F , except that its [i, j] element is also zero. Θ̂
w

is obtained from equation

(7.9), and Θ̂ is obtained from inverting the covariance matrix, Σ, or from a numerical

optimization problem such as (7.1).

As discussed before, we start the optimization with small values of λ1 and λ2 and

increase them gradually, until we find the optimal binary weights. At each iteration, we

use the optimal solution as the starting point for the next iteration.
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7.5 Solving the optimization problems

Our optimization problems formulated in previous sections are mixed-integer nonlin-

ear and non-convex. Our integer variables are strictly binary, while the rest of the variables

are continuous. We can compute the derivatives of all components of the formulation with

respect to all variables including the binary ones.

7.5.1 Calculating the derivatives

In order to use a gradient-based optimization method, we need to calculate the

derivative of weighted precision matrix, equation (7.9) with respect to the weight vector.

First, we start with some preliminaries:

v̇nv ,nx =
d

dw
(vnv ,1) = XT , (7.14)

and similarly, u̇nv ,nx can be derived.

Since we have to deal with 3-dimensional matrices, we use tensor notation here. We

denote ×k as the k-mode tensor product, and derive the derivative of A−1

˙A−1
nv ,nv ,nx =

d

dw
(A−1nv ,nv) = A−1nv ,nv ×v Ȧnv ,nv ,nx ×v A−1nv ,nv , (7.15)

in terms of the derivative of A, which can be analytically derived and is left for the reader.

Then, using the chain rule and each of the items derived above, we can compute the

derivative of the weighted precision matrix in equation (7.9) with respect to the weight

vector, which will yield a rank 3 tensor.

7.5.2 An Alternative method for optimizing the binary variables

We explained before that binary variables can be optimized via regularization, as

in the last term added to equations (7.11) and (7.13). Here, we describe an alternative
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methods for optimizing these variables, using a binary algorithm.

The benefit of using the binary algorithm is that it can be faster than solving the

problem with regularization (nonlinear penalties on the binary variables). Moreover, the

running time and the quality of the minimizer found by the regularization approach is

sensitive to the choice of starting point, while the binary algorithm does not have that

sensitivity, and can find a minimizer within a reliable timeframe. However, the quality of

solutions found by the binary algorithm is usually inferior to the solution found by the

regularization approach.

We recommend using the solution found by the binary algorithm as a fast answer,

or as a good starting point for solving the regularization problem. In our experiments, the

regularization approach was usually able to improve the solution found by the binary al-

gorithm, but the improvement is sometimes marginal. Both approaches have no guarantee

to find the global minimizer.

The third alternative for solving the problem is to use a branch and bound algo-

rithm [Lawler and Wood, 1966]. Using a branch and bound approach may take longer

than the other two methods, however, it entails a thorough search of the binary space. In

our experiments, we did not observe any necessity for using a branch and bound algorithm.

But, it can be considered a viable approach when working with small number of variables.

7.5.2.1 Binary algorithm

Considering the objective function (7.7), subject to constraints (7.2) and (7.6), we

can start the optimization with w0 = 11,nx which makes the objective function equal to

zero, and satisfies the constraints. Then, we proceed by finding the weights that should

be set to zero. We would like this change in w to achieve the maximal change in the
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precision matrix, i.e. equation (7.7). We only change the weights from 1 to 0, or the

opposite; therefore constraint (7.2) will always be satisfied and the solution at hand will

always be feasible. Constraint (7.6) puts a limit on the total number of weights that can

be set to zero, so when it becomes binding, the binary algorithm stops.

At each iteration, we will only make a binary change for one of the optimization

variables, switching the value of one element in w from 0 to 1 or vice versa. That binary

change will be performed on the element inw that leads to maximal change in the objective

function. In order to find the element in w that has the highest potential to change the

(7.7), we define a new quantity named potential, for each element of w. This potential

is an estimate of how much the weighted GGM will change compared to the original one,

as the result of switching elements of w. This estimate is based on the derivatives of Θ̂
w

with respect to w, denoted by
˙̂
Θ
w

nv ,nv ,nx which is a tensor of rank 3. The potential vector,

p1,nx has the same size as w and can be computed by

p = 11,nv ×nv
(
| ˙̂Θ

w

nv ,nv ,nx | �
(
11,nx ×1

(
F nv ,nv ,1 � (Θ̂

w
== Θ̂)

)))
×nv 11,nv

+

(
11,nv ×nv

(
˙̂
Θ
w

nv ,nv ,nx �
(
11,nx ×1

(
F nv ,nv ,1 � sign(Θ̂− Θ̂

w
)
)))
×nv 11,nv

)
� (2�w − 11,nx), (7.16)

where == is a binary element-wise equality operator.

Equation (7.16) is a summation of two terms. The first term considers the edges

in the weighted GGM that have the same value in the original GGM. The second term

considers all other edges.

After calculating the p, we find its element with the highest value, p[i]. We then

switch the binary value of w[i]. We continue this process until constraint (7.6) becomes

binding, or until there is no switch that can increase the value of the objective function.
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It is possible for an element to have a high potential value, while switching its

binary value leads to decreasing the objective function. Therefore at each iteration, after

identifying the element with the highest potential, we make sure the binary step will

actually lead to an increase in (7.7), and if it does not, we do not change the weight for

that element but instead proceed to the element with the next highest potential.

The potential vector depends on the derivatives of Θ̂
w

, which changes each time

we make a change to w. Hence, we can update the derivatives and recalculate p at

each iteration. But, changing one element of w[i] usually does not significantly affect the

derivatives with regard to elements other than w[i], and consequently the p usually does

not change significantly in two consecutive iterations. Therefore, one can update the p

only every few iterations, in order to speed up the process. Each time a binary variable

is changed, it will be removed from the variable space. Therefore, the algorithm will take

at most nx iterations to stop.

7.5.2.2 Notes regarding the binary algorithm

The choice of w0 = 1 is recommended especially when α is relatively large, but

other choices for w0 are possible, too. For example, one can relax the binary variables to

be continuous between 0 and 1, find the optimal solution to the relaxed problem, and then

round them to the closest integer. If rounding violates the constraint (7.6), we set the

(1 − α) nx of smallest weights in the relaxed solution to zero, and set the rest of weights

to 1. This may speed up the process, when α is small.

The potential vector is calculated using the derivatives of the objective function in

the continuous space, but the binary algorithm searches for the optimal solution in the

binary space. Moreover, the objective function is non-convex, hence, the directions of
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derivatives do not necessarily point out to the location of optimal solution. Therefore, p,

used in the decisions of the binary algorithm, might not always be an accurate estimate

of how the objective function would change in the binary space.

Overall, we conclude that the binary algorithm is not as capable as the regularization

approach in dealing with the non-linearity and non-convexity aspects of the problem,

because it takes binary steps based on a proxy measure, p, derived from the continuous

space. Nevertheless, we expect it to be effective for at least a subset of variables, and we

recommend it as a useful tool to obtain a fast solution in a reliable timeframe.

7.6 Numerical Results

In order to demonstrate the effectiveness of our formulations, we first apply our

methods on a dataset about cooking recipes. Later, we will explore a real world application

about the Mars rover.

7.6.1 Cooking Recipes

Ahn et al. [2011] gathered 56,498 distinct recipes, categorized under 11 classes as

listed in Table 7.1. There are 380 distinct ingredients in the dataset. We organize the

data in a matrix with 56,498 rows and 380 columns. The matrix is binary, with ones for

each ingredient that is used for a recipe.

7.6.1.1 General trends

We first calculate the covariance and precision matrix for the entire dataset, and

also for the recipes in each class. Tables 7.1 and 7.2 show the most strongly positive and

negative edges in each of the resulting GGMs, respectively.
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Table 7.1: Strongest positive edges in the resulting GGM for each class of recipes

Class Ingredient 1 Ingredient 2

African Juniper berry Feta cheese

East Asian Pecan Clove

Eastern European Watercress Salmon

Latin American Roasted sesame seed Galanga

Middle Eastern Tamarind Squid

North American Lilac flower oil Gelatin

Northern European Blue cheese Tarragon

South Asian Chicory Okra

Southeast Asian Pecan Orange flower

Southern European Papaya Kidney bean

Western European Jamaican rum Oatmeal

All classes Lilac flower oil Gelatin

Table 7.2: Most strongly negative edges in the resulting GGM for each class of recipes

Class Ingredient 1 Ingredient 2

African Rum Bourbon whiskey

East Asian Cocoa Chamomile

Eastern European Champagne wine Wasabi

Latin American Kale Octopus

Middle Eastern Star anise Tequila

North American Condiment Mandarin

Northern European Blue cheese Cheddar cheese

South Asian Parsnip Roasted almond

Southeast Asian Tangerine Macaroni

Southern European Seaweed Sunflower oil

Western European Papaya Oatmeal

All classes Strawberry juice Strawberry

7.6.1.2 Robustness of the GGM

We consider the GGM obtained from the entire data, and find the subset of data

that yields a maximally different GGM. To perform this task, we explore different values

for α in constraint (7.6). The results are presented in Table 7.3. It can be observed that

decreasing α allows us to find a smaller subset and consequently obtain a GGM more
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different than the GGM obtained from the entire data. We should note that there is a

trade-off here, between choosing a small subset and finding a diverse GGM. Allowing the

subset to become too small may lead to a sample that is unrepresentative of the data;

therefore it is important to explore a range of values for α. We can conclude that the GGM

obtained from the entire dataset is robust, since it remains considerably intact, until we

allow exclusion of more than 40% of the data.

Table 7.3: Diversity of GGMs obtained from the entire recipe data

α ‖w‖1 Eq. (7.7) % change in ‖Θ̂� F ‖1

0.95 0.95 740 1

0.90 0.92 1, 910 2

0.80 0.88 2, 177 4

0.60 0.81 3, 340 8

0.50 0.55 6, 289 43

0.40 0.40 13, 319 180

0.20 0.21 65, 015 1, 109

0.10 0.13 91, 614 1, 537

0.05 0.05 149, 100 2, 320

7.6.1.3 Working on a mixture of two groups

Next, we mix the recipes from classes “East Asian (EA)” and “North American

(NA)”, and calculate the GGMEA+NA corresponding to the mixed data. The number of

recipes are 2,512 and 41,524 for the “EA” and “NA” class, respectively.

We then optimize the weights to obtain the weighted GGM maximally different from

the GGMEA+NA, with different values of α. We note that “EA” recipes make up 5.7%

of the mixture, and “NA” recipes make up 94.3% of it. Results obtained with different

values of α are presented in Table 7.4.

Interestingly, when α is set to 95% (the percentage of “NA” recipes in the mixture),
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Table 7.4: Separating the mixture of “East Asian” and “North American” recipes.

∆ΘNA = ‖(Θ̂
NA
− Θ̂

w
)� F ‖1

α ‖w‖1 Eq. (7.7) ∆ΘNA

0.98 0.98 404 1, 008

0.95 0.955 846 1, 492

0.90 0.92 1, 121 309

0.75 0.89 1, 171 742

0.50 0.53 3, 535 3, 662

0.25 0.25 7, 810 5, 274

0.10 0.10 8, 728 8, 727

0.05 0.05 251, 830 243, 650

we end up extracting most of the “EA” recipes out of the mixture, and obtain a GGM

very close to the GGMNA. But, when α is small, extracting the “NA” recipes from the

mixture does not seem possible, since the formulation can find GGMs more diverse than

the GGMEA. This indicates that small values of α allow the formulation to find subsets

that are not representative of any specific cluster within the data.

To explain this, we have to look back at our main goal, which is to explore the

diversity of GGMs. By defining the α, we allow a certain percentage of the data to be

removed in order to produce a maximally different GGM. When α is large, we tend to

extract outliers out of the mix and keep the more coherent portion of the data, because

removing one outlier from a large dataset changes the resulting GGM more than removing

a regular data point from it. However, when α is small, we tend to keep an incoherent

portion of the data that produces a very different GGM. This is to be expected, because

more incoherent subset of the data can lead to more different GGMs, and such incoherent

subsets are not representative of any specific cluster.
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7.6.1.4 Interpreting edges in the graph

Here, we solve the optimization problem (7.13) for all the edges in the GGMNA

which is the largest class in the dataset. We find that some edges in the graph are very

robust and rely on a considerable portion of the dataset, while some edges rely on very

few recipes in the dataset. Table 7.5 shows the most robust and least robust edges in the

graph.

Table 7.5: Robustness of edges in the GGMNA

Robustness of edge % of data related to edge Ingredient 1 Ingredient 2

Most robust 10.3 Mozzarella Cheese Fenugreek

Least robust 0.002 Bergamot Angelica

7.6.1.5 Identifying outliers and corrupt data

We now generate 50 randomly built 10-ingredient recipes and add them to the “NA”

class, as an example of corrupt data. The GGMNA changes drastically, with 853 new edges

appearing in the graph, corresponding to a 112% increase compared to the original graph.

This makes our GGM less informative and ambiguous, as the sparsity is fading away.

We then start finding the subsets of recipes corresponding to each of the edges whose

strength ranks in the lowest 2 percentile. We observe that all those edges are related to at

least 76% of the corrupt data. Using this edge interpretation enables us to identify most

of the corrupt data with relatively high confidence. We can also provide clear explanations

about the reason behind the removal of corrupt data.
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7.6.1.6 Comments on optimization

For this recipe dataset, we observed speed up of about 40 times using our analytic

derivative formulas compared to the central difference alternative, which is remarkable.

In many of our objective functions, we have regularization terms that are controlled

by coefficients denoted with λ. The optimization problem is much easier to solve when

those coefficients are small, and as we increase the regularization coefficients, the problem

gradually gets transformed to the state where the optimal solution is binary. In numerical

optimization, this technique can be categorized as a “homotopy” or “continuation” method

which is known to be effective in solving hard optimization problems [Dunlavy et al., 2005,

Mobahi and Fisher III, 2015, Nocedal and Wright, 2006]. We found this “continuation”

approach to be effective in the quality of solutions obtained.

7.7 Applications

In a novel application of GGM learning, we apply iDGGM to observations of chem-

ical spectra from the ChemCam instrument on the Mars rover Curiosity (ChemCam data

available at http://pds-geosciences.wustl.edu/missions/msl/chemcam.htm) [Wiens

et al., 2012]. The goal is to identify geological signatures indicating dust layers, surface

coatings and thin stratigraphic layers [Lanza et al., 2012]. The GGM gives a good visual

summary of the general chemical trends of each rock observed on Mars, while iDGGM

allows an analyst to interpret which elements contribute to the discovered patterns.

7.7.1 Geochemical trends in ChemCam observations

In preliminary work by Oyen and Lanza [2016], it has been shown that Gaussian

graphical models provide a good visual summary of geochemical trends indicative of sur-
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face features of rocks on Mars. The ChemCam instrument onboard the Curiosity rover

collects observations of the chemical composition of rocks using laser-induced breakdown

spectroscopy (LIBS) [Wiens et al., 2012]. The spectra represent the elements present in

sample targets. The laser is fired multiple times in a single location, so that a depth se-

quence of chemical observations is made for each target. Each laser shot ablates the rock

surface, and therefore ChemCam produces a sequence of samples at increasing depth,

revealing compositional trends such as coatings and weathering rinds (from interaction

with water or atmosphere); and thin stratigraphic layers (from sedimentation or volcanic

activity) that give clues about the past environmental conditions of Mars [Lanza et al.,

2012].

The spectral response is given as a table of intensity values for each wavelength band

for each shot. A typical sequence of shots includes 30 - 150 shots on a fixed location. We

model the correlations of rock chemistry among these shots, as measured by the sample

covariance matrix calculated from the observed spectra.

For each shot, we initially have 6,144 channels over the UV, VIS, and VNIR spec-

tral ranges. As pre-processing, we remove channels with wavelength above 840nm, set all

negative values to zero and normalize the values for each of ChemCam’s three compo-

nent spectrometers separately. After the pre-processing, we obtain a spectral observation

consisting of 5,810 wavelength bands between 224nm and 840nm for each LIBS shot. To

investigate shot-to-shot correlations, shots are the vertices in the graph while the 5,810

wavelength bands are treated as data samples.

The visual summary from a single GGM only provides a starting point for planetary

geologists to explore the observational data collected. The geologists also need to know

which elements contribute to the geochemical trends that are represented in the learned
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GGM. Therefore, our goal is to present to the user a collection of GGMs produced by

various subsets of the data that indicate trends produced by various combinations of

elements.

7.7.2 GGM diversity

We consider the spectral data obtained from the rock target Bell Island on Mars.

This data has 30 shots and 5,810 wavelength bands as discussed earlier. We examine the

diversity of GGMs that can be obtained by selecting subsets of the wavelengths.

We first learn a GGM from all the observed spectral data obtained on this target.

The obtained GGM, shown in Figure 7.1, has a relatively dense set of edges.

Figure 7.1: GGM obtained from all spectral data gathered by the Curiosity rover at rock
target Bell Island on Mars

We then allow 10% of wavelengths to be masked out, by setting α = 0.9, in order to

find the GGM maximally different from the original GGM in Figure 7.1. The most diverse

GGM after masking 10% of wavelengths is shown in Figure 7.2. We can clearly observe

that in the diverse GGM, nodes have clustered into groups, revealing the most prominent
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relationships among the shots.

Figure 7.2: GGM obtained from a subset of data, maximally different from the GGM in
Figure 7.1

Furthermore, one can identify and study the wavelengths that have been masked

out, and possibly increase or decrease the value of α.

This analysis enables the geoscientists to use the model insightfully, and to extract

additional information from their data and the model.

7.7.3 Interpreting edges

By solving the optimization problem (7.13) for all edges in the original GGM in

Figure 7.1, we find the subset of wavelength bands related to each edge. The most robust

edge is between shots 1 and 2, which is related to 26% of wavelengths, while the least

robust edge is the one between shots 15 and 20, related to only 0.5% of wavelengths.

Interpretation results allow us to provide explanation about each edge in the graph,

and it makes us insightful about details of the model. This can be the subject of more

detailed study from the geoscience point of view.
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7.8 Summary

1. We defined optimization problems that ultimately make a GGM transparent regard-

ing its underlying dataset. We provided methods to find how diverse a GGM can be

with respect to subsets of its dataset. We also showed how each edge in a GGM is

related to observations in the dataset.

2. In order to find the importance of each observation in the dataset, we assigned

weights to each of the observations which led to a weighted GGM. We treated the

weights as optimization variables, and optimized them to obtain certain patterns in

the weighted GGM.

3. By imposing binary restrictions on the weights, we were able to find subsets within

the data that would lead to a GGM maximally different, or subsets that would make

a particular edge appear/disappear in the graph. We have developed a computation-

ally fast and precise formulation to compute the derivatives of a weighted GGM with

respect to the weights. This enables us to efficiently solve these otherwise intractable

optimization problems.

4. We demonstrated the effectiveness of our formulations by examining a dataset of

cooking recipes. We were able to: reveal how the model is related to the dataset;

measure the robustness of the GGM as a whole; find the specific observations in the

data that cause an edge to appear in the GGM. Through these findings, we could ef-

fectively divide mixed data into its original clusters, and identify corrupt/adversarial

data mixed into the original dataset. These methods enabled us to provide expla-

nations about different aspects of the GGM and the data itself for the end user of

the model.

133



5. We presented the analysis of ChemCam data from the Mars rover as a real-world

application of machine learning. We explained how our methods can facilitate the

process in which the gathered data from the red planet is analyzed, and how they

enable the end user to interact with the model. Making the GGM transparent and

explainable to the end user makes the use of machine learning practical for this

application, and allows the user to be insightful and confident about the obtained

results.

In the last chapter, we summarize the thesis and our overall findings.
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Chapter 8: Conclusions

8.1 What we achieved

In this thesis, we studied a broad range of problems related to machine learning.

Our main focus was on deep learning models and their interpretation. We also stud-

ied structural design of feed-forward networks and interpretation of Gaussian graphical

models.

In Chapter 2, we formulated a neural network and explored some of its computa-

tional properties as a function. Since we use the trained networks as functions in our

optimization problems, we studied the derivatives of the outputs of the network with re-

spect to inputs, and computed an upper bound on the Lipschitz constant of the network.

To have control over the derivatives, we used a tunable error function for activation of

neurons. This laid the foundation for us to develop a homotopy algorithm for computing

the closest flip points.

In Chapter 3, we proposed the closest flip point as a tool to study the decision

boundaries of neural networks. We defined optimization problems to compute exact points

on the decision boundaries of trained networks. The flip point closest to a given input

is of particular importance, and this point is the solution to a well-posed optimization

problem. We developed a homotopy algorithm to compute the closest flip point more

effectively compared to off-the-shelf optimization algorithms.
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In Chapter 4, we showed how the flip points can be used to systematically interpret

and debug trained neural networks, with respect to individual inputs and entire datasets,

and to find vulnerability against adversarial attacks. The flip point indicates the least

changes in the input required to flip the decision of a trained model, which is a funda-

mental interpretation question. We demonstrate that flip points can help us to assess

the trustworthiness of classifications and identify mistakes made by a model. They can

also be used to identify the most and least influential points in the training data in order

to reduce training time, identify out-of-distribution points in the data, and investigate

overfitting. Using the flip points, we generated synthetic data and were able to improve

the accuracy, reshape the decision boundaries and alter certain behaviors adopted by the

trained models. PCA analysis of the directions to flip points helped us gain insight about

entire datasets or subsets of it. PCA and pivoted QR factorization identified the most and

least influential features for classifications. Flip points also help us understand adversarial

influence. We demonstrated numerical results for all of these applications.

In Chapter 5, we investigated the decision boundaries of networks in more detail.

We developed mathematical tools to systematically investigate the surfaces that define

the decision boundaries. We demonstrated these techniques and showed them more useful

than previous methods that rely on simplifying assumptions such as local linearity of de-

cision boundaries for models with nonlinear activation functions. We questioned common

simplifying assumptions about the decision boundaries and demonstrated that many of

them can be misleading. We also showed that flip points reveal the weakest vulnerability

of trained models with respect to adversarial attacks.

In Chapter 6, we developed methods to refine the structure of feed-forward net-

works using matrix conditioning and showed how refining the structure makes the models
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compact and reduces the generalization error. Common model selection methods require

significant computations amounting to GPU months and years. The methods we devel-

oped are straightforward as they use pivoted QR factorization, they are computationally

inexpensive compared to the training process, and hence, they are practical for modest

applications in the real-world.

Finally in Chapter 7, we studied Gaussian graphical models (GGM), an unsupervised

machine learning method. We defined and solved optimization problems that ultimately

make a GGM transparent regarding its underlying dataset. We provided methods to find

how diverse a GGM can be with respect to subsets of its dataset. We also showed how each

edge in a GGM is related to observations in the dataset. In order to find the importance of

each observation in the dataset, we assigned weights to each of the observations which led

to a weighted GGM. We treated the weights as optimization variables, and optimized them

to obtain certain patterns in the weighted GGM. Again, this was not an easy optimization

problem. We developed a computationally fast and precise formulation to compute the

derivatives of a weighted GGM with respect to the weights. This enables us to efficiently

solve these otherwise intractable optimization problems. Making the GGM transparent

and explainable to the end user makes the use of machine learning practical for many

applications.

Overall in this thesis, we showed that by tailoring proper mathematical tools and

optimization methods, we can facilitate solving hard problems that are commonly en-

countered in machine learning. Whether the problem is interpretation of neural networks

and their debugging, structure design of networks, or interpretation of Gaussian graph-

ical models, they all can be viewed as optimization problems. Studying the underlying

mathematical problem in each case enabled us to solve the problem more effectively.

137



In particular, we demonstrated that homotopy algorithms have great potential when

they are designed and tailored for specific hard-to-solve optimization problems.

8.2 Future work

There are many directions of research that can be pursued based on this thesis.

Here, we provided several numerical examples in different contexts, using standard

datasets on image classification, financial risk, medical decisions, and income prediction.

However, it would be very natural to use our methods for models in the real world. Clearly,

real datasets come with special complexities and difficulties, which makes the ability to

interpret much more essential.

Concerning flip points, we performed PCA and pivoted QR factorization on the di-

rections. It would be interesting to perform more sophisticated analysis, such as nonlinear

PCA, auto-encoders, clustering, or other methods, on the flip points and on the directions

to them.

We showed that models could learn images from their wavelet coefficients instead

of pixels. We believe this is an interesting direction of research to pursue, comparing the

convolution with the wavelets with the computations performed via convolutional neural

networks.

One of our results in Chapter 4 is that certain points in the training set are more

influential in shaping the model. We also showed that not all features are helpful in

generalization of a neural network. For image classifications, we have initial indications

that wavelet coefficients of images can be used to identify the influential images of training

sets via clustering. This would be a significant improvement compared to the method

proposed by Birodkar et al. [2019].
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We believe that the error function, erf, has great, yet unexplored potential as an

activation function for deep neural networks because of its ability to mimic the behavior of

functions such as ReLU, sigmoid, and sign. It would be a promising direction of research

to study the universal approximability of deep neural network functions that use erf as

activation function.

There are several directions to expand our work on decision boundaries. We can

study the curvature of decision boundaries via quadratic regression or other methods

available for the study of manifolds and multidimensional surfaces. We can also use

spectral clustering to study patterns in the flip points in relation to the data.

As demonstrated in the thesis, the study of decision boundaries is directly related

with the study of adversarial robustness/attacks. The possibilities of research in this

area are numerous including both the practical and theoretical aspects. For example, the

weakest vulnerabilities of the models revealed by the flip points can be used to improve

the models and make them robust against adversarial attacks. Reduction of the input

dimensionality of image classification models from large pixel space to wavelet coefficient

space may also make the models less vulnerable.

About our methods for structural design of networks, one could expand the use of

matrix conditioning to convolutional networks. By investigating the singular values of the

convolutional layers, Sedghi et al. [2019] have shown that there are significant redundancies

in those networks. Reducing the structure by discarding such redundancies is a promising

direction to refine the networks and to design the networks from scratch, the same way

we did for feed-forward networks. Another direction of research is to expand our methods

to refine the number of layers in the networks, as well.
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Appendix A: Learning Images by wavelet coefficients

We propose learning images by their wavelet coefficients instead of their pixels. The

wavelet transformation applies convolutions of various widths to the input data, and the

reduction applied by using rank-revealing or pivoted QR decomposition leads to significant

compression of the input data. For example, for the MNIST example in Chapter 4, we

reduced the input dimension from 784 features to 100, which allowed us to use a much

smaller network while achieving near 99% accuracy on the testing set.

Figure A.1 shows the first ship image in the CIFAR-10 training set along with its

reconstructions from subsets of wavelet coefficients. With fewer coefficients, the recon-

structed image looks less similar to the original image. Nevertheless, the model is able to

correctly classify most of the images by learning from those representations. This result

may be in agreement with the arguments of Ilyas et al. [2019] that neural networks learn

Gaussian representations of images.

Figure A.1: Reconstruction of an image from a subset of wavelet coefficients leads to

different representations. The original image (left), with 4096 wavelet coefficients, is re-

constructed using the most significant 2200, 1000, 500, and 200 wavelet coefficients (re-

spectively, from left to right), chosen according to pivoted QR factorization.

This idea of learning from wavelet coefficients is valuable whenever working with
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image data and it has implications not only for the training accuracy and generalization

error, but for adversarial robustness. The overwhelming weakness of deep learning models

against adversarial attacks has often been attributed to the use of all the unnecessary

pixels in the training process. As we showed for the FICO Explainable ML Challenge

in Chapter 4, when models learn only the important and non-redundant features, their

vulnerability against adversarial attacks can be significantly reduced, and their accuracy

may increase, as well. A similar argument can be made for learning images with wavelet

coefficients. When images are learned with a smaller number of features, it means the

adversary has a smaller number of variables to produce adversarial examples. And if all

those features have specific meaning to the model, producing adversarial examples may

become even harder. Investigating these arguments for image datasets remains for future

work.
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Appendix B: Information about neural networks used in the numerical results

Here, we provide more information about the models we have trained and used in

our numerical results in Section 4.4 and Chapter 5.

For all the models, we have used a tunable error function (defined in Chapter 2)

as the activation function of neurons. The tuning parameter σ is constant among the

neurons on each layer and is optimized during the training. We have used softmax on the

output layer, and cross entropy for the loss function.

B.1 Trained models in Section 4.4

We have used fully connected feed-forward neural networks with 12 hidden layers.

The number of neurons for the models used for each dataset is shown in Table B.1.

For the FICO and Credit datasets, we have used networks with 5 hidden layers and

number of neurons as described in Table B.2.

B.2 Trained models in Chapter 5

The model used in this Chapter is a fully connected feed-forward neural network

with 12 hidden layers. The inputs to the model are 200 wavelet coefficients. The number

of neurons for each layer are shown in Table B.3.
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Table B.1: Number of nodes in 12-layer neural networks used for interpretation in Section

4.4.

Dataset MNIST CIFAR-10 Adult Cancer (WBCD)

Input layer 100 2304 107 30

Layer 1 500 400 44 40

Layer 2 500 400 39 20

Layer 3 500 400 32 15

Layer 4 400 350 22 10

Layer 5 300 300 20 5

Layer 6 250 250 15 5

Layer 7 250 250 12 5

Layer 8 250 250 8 5

Layer 9 200 200 5 5

Layer 10 150 150 4 5

Layer 11 150 150 8 5

Layer 12 100 100 6 5

Output layer 10 2 2 2

Table B.2: Number of nodes in neural networks trained on financial data sets used in

Section 4.4.

Dataset FICO Credit default

Input layer 20 28

Layer 1 13 14

Layer 2 9 9

Layer 3 6 8

Layer 4 5 8

Layer 5 4 7

Output layer 2 2
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Table B.3: Number of nodes in neural network used for the restricted CIFAR-10 dataset

used in Chapter 5.

Data set Restricted CIFAR-10

Input layer 200

Layer 1 700

Layer 2 600

Layer 3 510

Layer 4 440

Layer 5 375

Layer 6 325

Layer 7 285

Layer 8 250

Layer 9 215

Layer 10 160

Layer 11 100

Layer 12 40

Output layer 2
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Appendix C: Pivoted/Rank-revealing QR factorization

Rank-revealing QR factorization (RR-QR), developed by Chan [1987], and also piv-

oted QR factorization [Golub and Van Loan, 2012] are algorithms that decompose the

m by n matrix A, by computing a column permutation and a QR factorization. Pivoted

QR, first presented by Businger and Golub [1965], is conceptually similar to RR-QR, but

it uses a lower-cost strategy in ordering the permutation matrix. We use this method

of matrix factorization frequently in this thesis, so here, we formally explain the RR-QR

(which has more details) using two references: Chan [1987] and O’Leary [2009].

The RR-QR decomposition is specified by

[Q,R,P ] = RR-QR(A),

which computes an orthogonal matrix Qm,n, an upper-triangular matrix Rn,n, and a

permutation matrix P n,n so that

ÂP = QR.

The RR-QR algorithm computes the R matrix, partitioned as

R =


R11 R12

0 R22

0 0

 ,

where R11 is p×p and upper triangular and R22 is (n−p)× (n−p) and upper triangular.

It computes the factorization such that ‖R22‖ is small, relative to the main diagonal
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elements of R11.

We can verify that σp+1, the (p + 1)th singular value of A, is less than ‖R22‖. It

follows that if ‖R22‖ is small, then A has at least (n− p) small singular values, indicating

its numerical rank deficiency. Hence, the numerical rank of A can be considered p, when

‖R22‖ is small. It also follows that A is quite close to QR̂, where R̂ is obtained by

replacing R22 by 0.

Rank-revealing QR factorization is guaranteed to reveal the rank of A for matrices

with low rank deficiency. It also never underestimates the numerical rank, but it may

overestimate it.

The cost of computing RR-QR is only slightly more than the cost of regular QR

factorization. However, it is significantly less expensive than computing SVD. Using a

modified version of Gram-Schmidt algorithm, computing the RR-QR takes mn2 opera-

tions, whereas the cost of computing SVD is O(mn2) with constant factor of usually order

10.

In summary, we can leverage properties of rank-revealing QR factorization in several

ways. First, the permutation matrix P sorts the columns of the matrix A based on

their importance, valuable information when studying a matrix. Second, the permutation

matrix enables us to choose subsets of the columns of A that are most significant. It

also allows us to discard insignificant columns of A; in contrast, SVD also tells us how

many columns to discard in order to obtain a well-conditioned matrix, but gives no insight

into which columns are redundant. Third, its computation is faster than SVD, so we can

remove the rank deficiencies from matrices, fast. Finally, we can use it to perform a low-

cost Principal Component Analysis on matrices by dropping the least significant columns

of R. This approach is sometimes referred to as the “poor man’s” PCA.
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