
Your Homework Assigment
Monte Carlo Minimization and Counting:

One, Two, . . . , Too Many
Isabel Beichl, Dianne P. O’Leary, and Francis Sullivan

Problem 1. Consider the function myf.m (on the website), with domain 0 ≤ x ≤

7.
(a) Generate 500 uniformly distributed points on the interval [0, 7] in Algorithm
1, using fmincon for the local minimizer. Make a graph illustrating the minimizer
corresponding to each starting point.
(b) L = 90.3 is a Lipschitz constant for the function myf.m. Use Algorithm 2 on
the interval [0, 7]. Compare the performance of the two methods.
(c) (Extra) Try Monte Carlo minimization on your favorite function of n variables
for n > 1.

Answer: The programs myfmin.m and myfminL.m on the website solve this
problem but do not make the graph. (If you find any bugs in myfminL.m, please
let me know; it needs more testing.)

Problem 2. Use the simulated annealing algorithm to minimize myf.m. Exper-
iment with various choices of T , α, and ε. Describe your experiment and the
conclusions you can draw about how to choose parameters to make the method
as economical and reliable as possible.

Partial Answer: The program sim anneal.m on the website is one implemen-
tation of simulated annealing, and it can be run using problem1 and 2.m. To
finish the problem, experiment with the program. Be sure to measure reliability
as well as cost, and run multiple experiments to account for the fact that the
method is randomized. Also comment on the number of runs that converge to
x = 1.7922, which is a local minimizer with a function value not much worse
than the global minimizer.

Problem 3.

(a) Matlab provides a näıve Monte Carlo solution algorithm for the TSP. Given
an ordering of the cities, it randomly generates a pair of cities and interchanges
them if the interchange lowers the total distance. Experiment with the demon-
stration program travel.m and display the program using type travel to see
how this works.
(b) Write a program to solve a TSP using simulated annealing, and compare your
algorithm with that used in part (a).

Answer:

TBD

1



1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

3500

k

C
(k

)

KRS
Explicit count

Figure 1: Counts obtained by the KRS algorithm and by explicit counting for
a 4 × 4 lattice. For KRS we set the probabilities to 0.5, the number of steps
between records to ` = 4, and the total number of steps to 105. Because ` was
so small, the samples were highly correlated, but the estimates are still quite
good.

Problem 4.

(a) Compute the partition function coefficients for a 2 × 2 lattice by explicit
counting. Repeat for a 3× 2 lattice. Consider the 4× 4 case and see why it is no
longer reasonable to explicitly count the number of arrangements.
(b) Implement the KRS algorithm and use it to estimate the partition function
for a 4 × 4 lattice. Try various choices of probabilities and updating intervals.
Repeat for a lattice as large as possible (perhaps 10× 10).

Partial Answer:

(a) Here are some explicit counts, some done by hand and some by latticecount.m
by Thomas DuBois:

C(0) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8)
2× 2 1 4 2
2× 3 1 7 11 3
3× 3 1 12 44 56 18
4× 4 1 24 224 1044 2593 3388 2150 552 36
6× 6 1 60 1622 26172 281514 2135356 11785382 48145820 146702793

(b) One of the more interesting programming issues in this problem is the
data structure.

2



• If we keep track of each edge of the lattice, then we need to enumerate
rules for deciding whether two edges can be covered at the same time. For
example, in our 2 × 2 lattice, we cannot simultaneously have a dimer on
the top edge and one on the left edge.

• If we keep track of each node of the lattice, then we need to know whether
it is occupied by a dimer, so our first idea might be to represent a monomer
by a zero and a dimer by a 1. But we need more information – whether
its dimer partner is above, below, left, or right. Without this additional
information, the array

[

1 1
1 1

]

tells us that the 2×2 lattice has two dimers on it, but we can’t tell whether
they are horizontal or vertical.

• A third alternative is to keep track of both edges and nodes. Think of it
as a matching problem: each node can be matched with any of its four
neighbors in a dimer, or it can be a monomer. We maintain an array of
nodes, where the jth value is 0 if the node is a monomer, and equal to k,
if (k, j) is a dimer. We store the edges in an n2 × 4 array, where the row
index indicates the node at the beginning of the edge, and the entry in
the array records the node at the end. Thus, each physical edge has two
entries in the array (in rows corresponding to its two nodes), and a few of
the entries at the edges are 0, since some nodes have fewer than 4 edges.
We can generate a KRS change by picking an edge from this array, and
we update the node array after we decide whether an addition, deletion,
or swap should be considered.

The program KRS.m, by Sungwoo Park, on the website, is an efficient im-
plementation of the second alternative. Sample results are shown in Figure
1.

Please refer to the original paper [1] for information on how to set the pa-
rameters to KRS. Kenyon, Randall, and Sinclair showed that the algorithm
samples well if both the number of steps and the interval between records are
very large, but in practice the algorithm is considerably less sensitive than the
analysis predicts.

[1] C. Kenyon, D. Randall, and A. Sinclair, Approximating the number of
monomer-dimer coverings of a lattice J. Stat. Phys. 83, 637 (1996)

3


