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Solving Sparse Linear Systems: Iterative methods
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The plan:

• Iterative methods:

– Basic (slow) iterations: Jacobi, Gauss-Seidel, sor.

– Krylov subspace methods

– Preconditioning (where direct meets iterative)

• A special purpose method: Multigrid

Reference: Chapter 28.
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Basic iterations

The idea: Given an initial guess x(0) for the solution to Ax∗ = b, construct
a sequence of guesses {x(0), x(1), x(2), . . .} converging to x∗.

The amount of work to construct each new guess from the previous one
should be a small multiple of the number of nonzeros in A.
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Stationary Iterative Methods (sims)

These methods grew up in the engineering and mathematical literature.
They were very popular in the 1960s and are still sometimes used.

Today, they are almost never the best algorithms to use (because they take
too many iterations), but they are useful preconditioners for Krylov
subspace methods.

We will define three of them:

• Jacobi (Simultaneous displacement)

• Gauss-Seidel (Successive displacement)

• sor

Theme: All of these methods split A as M − N for some nonsingular
matrix M. Other splittings of this form are also useful.
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The Jacobi iteration

Idea: The ith component of the residual vector r is defined by

ri = bi−ai1x1 − ai2x2 − . . . − ai,i−1xi−1−aiixi−ai,i+1xi+1 − . . . − ainxn.

Let’s modify xi to make ri = 0.

Given x(k), construct x(k+1) by

x
(k+1)
i = (bi−

i−1∑

j=1

aijx
(k)
j −

n∑

j=i+1

aijx
(k)
j )/aii, i = 1, . . . , n.
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Observations:

• We must require A to have nonzeros on its main diagonal.

• The algorithm is easy to program! We only need to store two x vectors,
x(k) and x(k+1).

• The iteration may or may not converge, depending on the properties of
A.

• We should only touch the nonzeros in A – otherwise the work per
iteration would be O(n2) instead of O(nz).

• If we partition A as L + D + U, where D contains the diagonal entries,
U contains the entries above the diagonal, and L contains the entries
below the diagonal, then we can express the iteration as

Dx(k+1) = b − (L + U)x(k)

and this is useful for analyzing convergence. (M = D, N = −(L + U))
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The Gauss-Seidel iteration

Idea: If we really believe that we have improved the ith component of the
solution by our Jacobi iteration, then it makes sense to use its latest value
in the iteration:

Given x(k), construct x(k+1) by

x
(k+1)
i = (bi−

i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j )/aii, i = 1, . . . , n.
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Observations:

• We still require A to have nonzeros on its main diagonal.

• The algorithm is easier to program, since we only need to keep one x

vector around!

• The iteration may or may not converge, depending on the properties of
A.

• We should only touch the nonzeros in A – otherwise the work per
iteration would be O(n2) instead of O(nz).

• If we partition A as L + D + U, where D contains the diagonal entries,
U contains the entries above the diagonal, and L contains the entries
below the diagonal, then we can express the iteration as

(D + L)x(k+1) = b − Ux(k)

and this is useful for analyzing convergence. (M = D + L, N = −U)
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The sor (Successive Over-Relaxation) iteration

Idea: People who used these iterations on finite difference matrices
discovered that Gauss-Seidel (gs) converged faster than Jacobi (J), and
they could improve its convergence rate by going a little further in the gs

direction:

Given x(k), construct x(k+1) by

x(k+1) = (1 − ω)x(k) + ωx
(k+1)
GS

where ω is a number between 1 and 2.

Unquiz: Suppose n = 2 and our linear system can be graphed as in the
figure. Draw the first 3 Jacobi iterates and the first 3 Gauss-Seidel iterates
using the point marked with a star as x(0). Does either iteration depend on
the ordering of the equations or unknowns? []
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Convergence of Stationary iterative methods

• All of these iterations can be expressed as

x(k+1) = Gx(k) + c

where G = M−1N is a matrix that depends on A and c is a vector that
depends on A and b.

• For all of these iterations, x∗ = Gx∗ + c.

• Subtracting, we see that the error e(k) = x(k) − x∗ satisfies

e(k+1) = Ge(k),

and it can be shown that the error converges to zero for any initial x(0)

if and only if all of the eigenvalues of G lie inside the unit circle.

• Many conditions on A have been found that guarantee convergence of
these methods; see the sim notes.

This is enough about slow methods.
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From sim to Krylov subspace methods

So far: Stationary iterative methods.

• Ax = b is replaced by x = Gx + c.

• x(k+1) = Gx(k) + c

• If x(0) = 0, then

x(1) = c

x(2) ∈ span{c,Gc}

x(3) ∈ span{c,Gc,G2c}

x(k) ∈ span{c,Gc,G2c, . . . ,Gk−1c}

≡ Kk(G, c)

and we call Kk(G, c) a Krylov subspace.

• The work per iteration is O(nz) plus a small multiple of n.

• Note that Kk(G, c) = Kk(Ĝ, c) if Ĝ = I − G.
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The idea behind Krylov subspace methods: Instead of making the gs

choice (for example) from the Krylov subspace, let’s try to pick the best
vector without doing a lot of extra work.
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What is “best”?

• The variational approach: Choose x(k) ∈ Kk(G, c) to minimize

‖x − x∗‖z

where ‖y‖2
z = yTZy and Z is a symmetric positive definite matrix.

• The Galerkin approach: Choose x(k) ∈ Kk(G, c) to make the residual
r(k) = b − Ax(k) orthogonal to every vector in Kk(G, c) for some choice
of inner product.
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Practicalities

• Note that we expand the subspace K at each iteration. This gives us a
very important property: After at most n iterations, Krylov subspace
iterations terminate with the true solution.

• This finite termination property is less useful than it might seem, since
we think of applying these methods when n is so large (thousands,
millions, billions, etc.) that we can’t afford more than a few hundred
iterations.

• The only way to make the iteration practical is to make a very clever
choice of basis for K. If we use the obvious choice of c,Gc,G2c, . . .,
then after just a few iterations, our algorithm will lose accuracy.

• We need to choose between (variational) minimization and (Galerkin)
projection.
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Krylov Ingredient 1: A practical basis

An orthonormal basis for K makes the iteration practical. We say that a
vector v is B-orthogonal to a vector u if

uTBv = 0.

where B is a symmetric positive definite matrix. Similarly, we define
‖u‖2

B
= uTBu.

Let’s construct our basis for Kk(Ĝ, c).

Our first basis vector is
v1 = c/‖c‖B

Now suppose that we have j basis vectors v1, . . . , vj for Kj(Ĝ, c), and that

we have some vector z ∈ Kj+1(Ĝ, c) but z /∈ Kj(Ĝ, c). Often, we take z

to be Ĝvj.
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We define the next basis vector by the process of Gram-Schmidt
orthogonalization (see Section 5.3.2):

vj+1 = (z − h1,jv1 − . . . − hj,jvj)/hj+1,j

where hi,j = vT
i Bz (i = 1, . . . , j) and hj+1,j is chosen so that

vT
j+1Bvj+1 = 1.

In matrix form, we can express this relation as

Ĝvj =
[
v1 v2 . . . vj+1

]




h1,j

h2,j
...

hj+1,j


 ,

so after k steps we have

ĜVk = Vk+1Hk (∗)

where Hk is a (k + 1) × k matrix with entries hij (zero if i > j + 1) and
Vk is n × k and contains the first k basis vectors as its columns.
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Equation (*) is very important: Since the algorithm terminates after n
vectors have been formed, we have actually factored our matrix

Ĝ = VnHnVn
−1

(and note that Vn
−1 = VT

n if B = I)

Therefore, the matrix Hn is closely related to Ĝ – it has the same
eigenvalues. In fact, the leading k × k piece of Hn (available after k steps)

is in some sense a good approximation to Ĝ. This is the basis of algorithms
for

• solving linear systems of equations involving Ĝ.

• finding approximations to eigenvalues and eigenvectors of Ĝ.

We have just constructed the Arnoldi algorithm.
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The Arnoldi algorithm
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[V,H] = Arnoldi(m, Ĝ,B, v1)
Given a positive integer m, a symmetric pos-
itive definite matrix B, a matrix Ĝ, and a
vector v1 with ‖v1‖B = 1.
for j = 1, . . . , m,

vj+1 = Ĝvj.

for i = 1, . . . , j,

hij = vT
i Bvj+1

vj+1 = vj+1 − hijvi

end (for i)

hj+1,j = (vT
j+1Bvj+1)

1/2

vj+1 = vj+1/hj+1,j.

end (for j)
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Notes:

• In practice, B is either the identity matrix or a matrix closely related to
Ĝ.

• Note that we need only 1 matrix-vector product by Ĝ per iteration.

• After m iterations, we have done O(m2) inner products of length n
each, and this work becomes significant as m increases.

• If BĜ is symmetric, then by (*), so is Hm, so all but 2 of the inner
products at step j are zero. In this case, we can let the loop index
i = j − 1 : j and the number of inner products drops to O(m). Then
the Arnoldi algorithm is called Lanczos tridiagonalization.

• In writing this algorithm, we took advantage of the fact that vT
i Bvj+1 is

mathematically the same, whether we use the original vector vj+1 or the
updated one. Numerically, using the updated one works a bit better,
but both eventually lose orthogonality, and the algorithm sometimes
needs to be restarted to overcome this.
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Krylov Ingredient 2: A definition of “best”

Two good choices:

• (variational) minimization

• (Galerkin) projection.
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Using Krylov minimization

Problem: Find x(k) ∈ Kk so that x(k) minimizes

‖x − x∗‖z

over all choices of x ∈ Kk.

Solution: Let x(k) = Vky
(k), where y(k) is a vector with k components.

Then
‖x(k) − x∗‖2

z = (Vky
(k) − x∗)TZ(Vky

(k) − x∗).

Differentiating with respect to the components of y(k), and setting the
derivative to zero yields

VT
k ZVky

(k) = VT
k Zx∗.

Since y(k) and x∗ are both unknown, we usually can’t solve this. But we
can if we are clever about our choice of Z.
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1st special choice of Z

Recall:

• We need to solve VT
k ZVky

(k) = VT
k Zx∗, and Ĝx∗ = c.

• ĜVk = Vk+1Hk (∗)

• VT
k+1BVk+1 = Ik+1

Let Z = Ĝ
T
BĜ. (This is symmetric, and positive definite if Ĝ is

nonsingular.) Then

VT
k Zx∗ = VT

k Ĝ
T
BĜx∗ = VT

k Ĝ
T
Bc = HT

k VT
k+1Bc

is computable! The left-hand side also simplifies:

VT
k ZVk = VT

k Ĝ
T
BĜVk = HT

k VT
k+1BVk+1Hk = HT

k Hk.

So we need to solve
HT

k Hky
(k) = HT

k VT
k+1Bc.
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This algorithm is called gmres (generalized minimum residual), due to
Saad and Schultz in 1986, and is probably the most often used Krylov
method.
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2nd special choice of Z

Recall:

• We need to solve VT
k ZVky

(k) = VT
k Zx∗ and Ĝx∗ = c.

• ĜVk = Vk+1Hk (∗)

• VT
k+1BVk+1 = Ik+1

Added assumption: Assume Z = BĜ is symmetric and positive definite.
(Note that we need that Z be symmetric and positive definite in order to

be minimizing a norm of the error. Our assumption here is that BĜ is
symmetric and positive definite.)

VT
k Zx∗ = VT

k BĜx∗ = VT
k Bc

is computable. The left-hand side also simplifies:

VT
k ZVk = VT

k BĜVk = VT
k BVk+1Hk = H̄k

where H̄k contains the first k rows of Hk. So we need to solve

H̄ky
(k) = VT

k Bc.
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This algorithm is called conjugate gradients (cg), due to Hestenes and
Stiefel in 1952. It is the most often used Krylov method for symmetric
problems.
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Using Krylov projection

• Ĝx∗ = c.

• ĜVk = Vk+1Hk (∗)

• VT
k+1BVk+1 = Ik+1

Problem: Find x(k) ∈ Kk so that r(k) = c − Ĝx(k) is B-orthogonal to the
columns of Vk.

Solution:
0 = VT

k B(c − Ĝx(k)) = VT
k B(c − ĜVky

(k))

so we need to solve
VT

k BĜVky
(k) = VT

k Bc.

or
H̄ky

(k) = VT
k Bc.

This algorithm is called the Arnoldi iteration. (Note: Same equation as cg,
but no assumption of symmetry or positive definiteness.)
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An important alternative

The algorithms we have discussed (gmres, cg, and Arnoldi) all use the
Arnoldi basis.

There is another convenient basis, derived using the nonsymmetric Lanczos
algorithm. This basis gives rise to several useful algorithms:

• cg (alternate derivation)

• bi-conjugate gradients (Bi-cg) (Fletcher 1976)

• Bi-CGStab (van der Vorst 1992)

• quasi-minimum residual (qmr) (Freund and Nachtigal 1991)

• transpose-free qmr (Freund and Nachtigal 1993)

• (the most useful) CGStab (cg-squared stabilized) (van der Vorst 1989)
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Advantages: Only a fixed number of vectors are saved, not k.
Disadvantages: The basic algorithms can break down – terminate without
obtaining the solution to the linear system. Fixing this up is messy.

We won’t take the time to discuss these methods in detail, but they can be
useful.
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The conjugate gradient method

• In general, we need to save all of the old vectors in order to accomplish
the projection of the residual.

• For some special classes of matrices, we only need a few old vectors.

• The most important of these classes is symmetric positive definite
matrices, just as we need for self-adjoint elliptic PDEs. The resulting
algorithm is called conjugate gradients (cg).

• It is both a minimization algorithm (in the energy norm) and a
projection algorithm (B = I).

• There is a very compact and practical form for the algorithm.
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The conjugate gradient algorithm
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[x, r] = cg(A,M, b, tol)
Given symmetric positive definite matrices A

and M, a vector b, and a tolerance tol, com-
pute an approximate solution to Ax = b.
Let r = b, x = 0, solve Mz = r for z, and
let γ = rTz, p = z.
for k = 0, 1, . . . ,, until ‖r‖ < tol,

α = γ/(pTAp)

x = x + αp

r = r − αAp

Solve Mz = r for z.

γ̂ = rTz

β = γ̂/γ, γ = γ̂

p = z + βp

end (for k)
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The matrix M is called the preconditioner, and we will need to understand
what it does and why we might need it.
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The practical form of gmres

We’ll write the form of the algorithm used to solve Ĝx∗ = c, given a
positive integer m (the restart parameter) and with B = I.

36



Initially, x(m) = 0 and k = m.
Until termination,

• Set k = k + 1. If k = m + 1, then set
k = 1 and x(0) = x(m).

• Increase the dimension of the Krylov sub-
space to dimension k using the starting
vector c − Ĝx(0) and the matrix Ĝ, giv-
ing a matrix Vk of directions and Hk of
coefficients.

• Solve HT
k Hky

(k) = HT
k VT

k+1c, and set
x(k) = x(0) + Vky

(k).

• If ‖Ĝx(k)−c‖ is small enough, set xfinal =
x(k) and terminate.

Note: Ideally, m = n, but since the storage is O(mn), and the time to
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solve the systems involving H1, . . .Hm is O(m3) (using matrix updating
techniques and Cholesky decomposition), in practice we keep m to 20 or
100 at most.
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The plan:

So far:

• Iterative methods:

– Basic (slow) iterations: Jacobi, Gauss-Seidel, sor.

– Krylov subspace methods: the algorithms

Next:

• Krylov subspace methods: convergence theory

• Preconditioning (where direct meets iterative)

• A special purpose method: Multigrid

Reference: Chapter 28
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Convergence results for gmres(m)

• Convergence on positive definite matrices. (Saad p.205, Thm 6.30) If

(Ĝ + Ĝ
T
)/2 is positive definite, then gmres(m) converges for any

m ≥ 1.
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• Convergence on diagonalizable matrices. (Saad p.206, Prop 6.32) If

Ĝ = XΛX−1 where Λ is the matrix of eigenvalues, then for
k = 1, . . . ,m,

‖r(k)‖2 ≤ κ(X)ǫk‖r
(0)‖2,

where
r(i) = c − Ĝx(i) is the residual,
κ(X) is the square-root of the ratio of the largest eigenvalue of XTX to
the smallest,
and

ǫk = min
ρ∈Pk

max
j=1,...,n

|ρ(λj)|.

where Pk is the set of all polynomials of degree at most k satisfying
ρ(0) = 1.
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• For normal matrices: If ĜĜ
T

= Ĝ
T
Ĝ, then Ĝ is normal and κ(X) = 1.

Otherwise the bound is not very useful.

• (Saad p.206, Cor 6.33) If all of the eigenvalues of Ĝ are in an ellipse
that doesn’t contain the origin, and the ellipse is centered at (c, 0) in
the complex plane, with focal distance d (pure real or pure imaginary)
and semimajor axis a, then

ǫk ≤

(
a/d +

√
(a/d)2 − 1

)k

+
(
a/d +

√
(a/d)2 − 1

)−k

(
c/d +

√
(c/d)2 − 1

)k

+
(
c/d +

√
(c/d)2 − 1

)−k
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Convergence result for cg

(Saad, p.205, eqn (6.128)) In the energy norm,

‖x(k) − x∗‖
Ĝ

≤ 2




√
κ(Ĝ) − 1

√
κ(Ĝ) + 1




k

‖x(0) − x∗‖
Ĝ

where κ(Ĝ) is the ratio of the largest and smallest eigenvalues of Ĝ.
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Preconditioning gmres and cg

• For fast iterations, we need to be able to solve linear systems involving
M very quickly, since this must be done once per iteration.

• To make the number of iterations small, we want M to be a good
approximation to A so that the eigenvalues are in a small ellipse
(gmres) or a small interval (cg).

• For cg, we need to require that M be symmetric and positive definite.

• Note that the linear system
Mz = r

is typically solved using a direct method, so the better M is, the closer
we are to solving Ax = b using a direct method.
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Some common choices of preconditioning matrices M

• M = the diagonal of A.

• M = a banded piece of A.

• M = an incomplete factorization of A, leaving out inconvenient
elements (the ILU preconditioner).

• M−1 = a sparse approximation to A−1. (the sparse approximate inverse
preconditioner (SAIP))

• M = a related matrix; e.g., if A is a discretization of a differential
operator, M might be a discretization of a related operator that is easier
to solve. Or M might be the block diagonal piece of the matrix after
ordering for nested dissection.

• M might be the matrix from any stationary iterative method (sim ) or
from multigrid (to be discussed).
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• In some situations, it is a good idea to let M change at each iteration.
The resulting algorithm is called flexible-gmres. It is sometimes useful,
but we won’t discuss it here.
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How to form M
−1

r for an sim preconditioner

Consider your favorite stationary iterative method (Jacobi, Gauss-Seidel,
sor, etc.),

Mx(k+1) = Nx(k) + b

or
x(k+1) = M−1Nx(k) + M−1b.

Manipulating this a bit, we get

x(k+1) = x(k) + (M−1N − I)x(k) + M−1b

= x(k) + M−1(N − M)x(k) + M−1b

= x(k) + M−1(b − Ax(k))

= x(k) + M−1r(k) .

Therefore, we compute the “preconditioned residual” by taking one step of
the sim starting from the latest cg or gmres iterate, and returning ∆x

for M−1r(k). It is this matrix M−1, that represents the multiple of the
residual that we add on to x, that preconditions cg or gmres.
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Multigrid methods

Reference: Chapter 32
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The idea behind multigrid methods

(Idea: Fedorenko 1964, Brandt 1977, Nicolaides, Hackbusch, ...)
Consider our simplest problem

−u′′ = f(x)

on the interval x ∈ (0, 1), with u(0) = u(1) = 0.

There are three ingredients to the idea.

• If we use a very coarse grid for finite elements, with h = .25, for
example, then

– The linear system of equations is very small (n = 3) so we can solve
it fast using either a direct or an iterative method.

– We expect our computed solution uh to have the same overall shape
as the true solution u but to lose a lot of local detail.
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• If we use a very fine grid, then

– The linear system of equations is much more expensive to solve.

– We expect our computed solution uh to be very close to u.

• If an iterative method is started with an initial guess that is close to the
true solution, we hope to need a very small number of iterations.

– In particular, if we consider Jacobi, Gauss-Seidel, or sor, we adjust
the solution based on very local information, so these methods are
good at filling in the fine details once the overall shape of the
solution is known.
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Making use of multiple grids

An idea: Nested iteration

Set k = 0, h = 1, and uh = 0.
While the approximation is not good enough,

Set k = k + 1, n = 2k − 1, and h =
1/(n + 1).

Form the matrix Ah and the right-hand
side bh, and solve the matrix problem
for the finite element approximation uh

using gs , with the initial guess formed
from u2h evaluated at the mesh points.

The termination tolerance for the residual on grid h should be proportional
to h2, since that is the size of the local error. This algorithm runs from
coarse grid to finest and is useful (although rather silly for 1D PDEs).
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The V-Cycle

We can do better if we run from finest grid to coarsest grid and then back
to finest.

This algorithm has 3 ingredients:

• An iterative method that converges quickly if most of the error is high
frequency – oscillating rapidly – which happens when the overall shape
of the solution is already identified.

• A way to transfer values from a fine grid to a coarse one – restriction.
We let Rh be the operator that goes from grid h to grid 2h.

• A way to transfer values from a coarse grid to a fine one – interpolation
or prolongation.
We let Ih be the operator that goes from grid 2h to grid h.
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Gauss-Seidel gives us the first ingredient, while our finite element formula
for the solution as a sum of basis function components gives us the last
two. (For technical reasons, though, restriction should be the adjoint of
interpolation, rather than using the finite element choices for both.)

For finite differences, interpolation and restriction can also be defined.

We’ll define the V-Cycle idea recursively.
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vh = V-Cycle(vh,bh, η1,η2)

1. Perform η1 gs iterations on Ahuh = bh

using vh as the initial guess, obtaining an
approximate solution that we still call vh.

2. If h is not the coarsest grid parameter,

Let v2h = V-Cycle(0,Rh(bh−Ahvh),
η1,η2).

Set vh = vh + Ihv2h.

3. Perform η2 gs iterations on Ahuh = bh

using vh as the initial guess, obtaining an
approximate solution that we still call vh.

The standard multigrid algorithm is to solve Ahuh = bh by repeating the
V-Cycle until convergence.
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Cost per V-Cycle

A gs iteration on a grid of size h costs about nz(h) multiplications, where
nz(h) is the number of nonzeros in Ah. Note that nz(h) ≈ 2nz(2h) since
A2h has about half as many rows as Ah.

So performing 1 gs iteration on each grid h, h/2, . . . , 1 costs less than
nz(h)(1 + 1/2 + 1/4 + . . .) ≈ 2nz(h) multiplications ≡ 2 work-units.

So the cost of a V-Cycle is at most 2 times the cost of η1 + η2 gs

iterations on the finest mesh.

Unquiz: Convince yourself that the storage necessary for all of the matrices
and vectors is also a modest multiple of the storage necessary for the finest
grid. []
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Convergence rate for multigrid

We know that standard iterative methods like gs are very slow (take many
iterations), but on our simple problem, we need only a few iterations on
each grid, and the total amount of work to solve the full problem to a
residual of size O(h2) is a small number of work-units.
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Multigrid for 2-d problems

Develop a sequence of nested grids.

If the PDE is elliptic, it is not to hard to achieve convergence in a small
number of work-units.

Multigridders would say that if you don’t achieve it, then you have chosen
either your iteration or your interpolation/restriction pair “incorrectly”.

For the domain (0, 1) × (0, 1), we might use the three grids shown here.
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