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Figure 1 depicts a lumped parameter system that may be used to model the response of a 

seated human body in a seat suspension system [1,2,3].  In this model, the seat, denoted by mass 

M1, is fixed to the floor through a damper (or energy absorber) that provides a force, FMR, and 

through a spring, K1.  In addition, an end-stop buffer is implemented, which produces a nonlinear 

spring reaction force, Fst, when the suspension stroke exceeds its free-suspension travel.  The soft 

seat cushion is simply represented as a stiffness and damping (K2c and C2c, respectively).  This 

lumped parameter model assumes the human is seated and that 29% of the body weight is 

supported by the feet [1, 2].  The body is divided into four parts: pelvis, upper torso, viscera, and 

head, represented by mass Mi, stiffness Ki, and damping Ci, where i = 2, 3, 4, and 5, respectively.  

The displacement of the floor is given by z0, and z1 through z5 are the absolute displacements of 

masses 1-5, respectively.   

 

FMR 

 

Figure 1 – Mechanical Model of Seat Suspension System Coupled 
with a Human Body in Seated Posture 



The equations of motion for this system are obtained by summing the inertial, stiffness, and 

damping related vertical forces on each mass.  The inertial force acting on a given mass is given by 

the mass times absolute acceleration ( ii zM &&  - the dot denoting derivative with respect to time).  

The stiffness/spring force is given by the stiffness times the relative displacement between the two 

masses between which the springs are connected ( )( 1 iii zzK −+ ).  Similarly, the damping force is 

given by the damping coefficient times the relative velocity between the two masses between 

which the springs are connected ( )( 1 iii zzC && −+ ).  Lastly, gravitational force on each mass must be 

included, Mig, where g is the gravitational acceleration (9.81 m/s2).  The motion of these masses is 

then given by the following system of differential equations [1]: 
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where,    

    K2t =
K2K2c

K2 + K2c

, and C2t =
C2C2c

C2 + C2c

           (6, 7).   

 

Problem 1: 
Arrange this set of ODEs into standard form.  In doing so, simplify to matrix form and 
identify all matrices used. 



 

Now, to complicate matters, the cushion and biodynamic stiffnesses tend to be nonlinear.  The 

cushion stiffness is given by: 
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The stiffness of the pelvis, K2, is modeled by the nonlinear function [3]: 
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The stiffness of the upper torso is also nonlinear [3]: 
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The damping coefficient Ci is given by   

 Ci = 2ζ i MiKi if i = 2, 3, 4, 5                                                       (11) 

where ζi is the damping ratio of each part of the human body.  Because K2 and K3 are nonlinear 

functions, C2 and C3 are also nonlinear.  Lastly, the nonlinear spring reaction force, Fst, due to the 

end-stop buffer is given by [1]: 
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 Finally, the damper should be modeled using a Bingham-Plastic force model, which 

includes a viscous component and a friction component: 

   ( ) ( )10101 sgn zzFzzCF fMR &&&& −⋅+−=  ,       (13) 



where C1 is the post-yield viscous damping coefficient,  Ff  is the friction force, and “sgn” 

represents the Signum function.   

 

  

Problem 2: 
a) Using the parameters listed in Table 1 [1, 2, 3], write a Matlab function 

xdot=seat_system_ode(t,x) representing this system of nonlinear ODEs.  Pass 
other necessary parameters through as global variables. 

b) Solve this system using ode45 for 20 cycles of a 0.2g amplitude sinusoid floor 
acceleration.  Record the time to complete this solution and plot the relative 
displacement & velocity between the seat and the floor and the absolute pelvis 
& head accelerations vs. time.   

Note:  The initial velocities are all zero.  The initial displacements are the  
static 1g displacements ( i.e., x1(0) = (M1+ M2+ M3+ M4+ M5)·g / K1 ).    
Assume only the initial cushion stiffness (K2c = 37.7e3) for K2t  
( i.e. x2(0) = (M2+ M3+ M4+ M5)·g / K 2c  ).  Also, for simplicity assume 
x3(0)=x4(0)=x5(0)=x2(0).   

c) Repeat part b using ode23, ode113, ode15s, ode23s, ode23t, &ode23tb.  Use 
default options for each case.  Explain why some solution methods fail and/or 
have longer solution times than others.   

 
Table 1 - Seat Suspension Model Parameters 

Quantity Symbol Value Units 
Mass of seat M1 11.5 kg 

Mass of pelvis M 2 29 kg 
Mass of upper torso M 3 21.8 kg 

Mass of viscera M 4 6.8 kg 
Mass of head M5 5.5 kg 

Stiffness of coil spring K1 50.0 kN/m 
Stiffness of viscera K4 2.84 kN/m 
Stiffness of head K5 202.3 kN/m 

Post-Yield Damping Coefficient 1C 750 N·s/m 
Cushion Damping C2c 159 N·s/m 
Pelvis Damping ζ2 0.25 - 
Torso Damping ζ 3 0.11 - 

Viscera Damping ζ4 0.5 - 
Head Damping ζ 5 0.1 - 

Damper Friction Force Ff 75  N 



The Bingham-plastic force model (Eq. 13) for the damper may be approximated using a 

hypertangent function below as depicted in Figure 2: 
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Figure 2 - Approximating the Bingham-Plastic Force Model 
 
 

 
 

Problem 3: 
a) Repeat Problem 2b & 2c using this hypertangent model for the damper with 

ε=0.005.  How have the results changed?  Why?  Do you recommend this 
approximation? 

b) Repeat with a 20g amplitude floor acceleration.  How have the time results 
changed?  Why? 

Yield Region 
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Problem 4: 
a) Write a Matlab function [t,x]=rk(f,T,X0) to perform a fixed step integration 

using 4th order Runge-Kutta algorithm.  Here, f is the ode function, T is a time 
vector, and X0 are the initial conditions.   

b) Rerun problem 3a using rk instead of ode45.  How do the resulting plots and 
solution time compare with Matlab’s ODE solvers?  Give a benefit and a 
pitfall to using this routine over Matlab’s ODE solvers.   


