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An Example of a Homotopy

This is a supplement to Chapter 24 of Scientific Computing with Case Studies by
Dianne P. O’Leary, SIAM Press, Philadelphia, 2009

Let’s define a homotopy for a convex optimization problem. Suppose we want
to find xopt to solve the problem

min
x

f(x)

where f : Rn → R1 is a convex function that is bounded below and has two con-
tinuous derivatives. (The boundedness assumption assures that a bounded solution
xopt exists.) Also assume that xopt is unique. As in Chapter 9, we denote the
gradient of f by g(x), and we seek a point for which g(x) = 0. Now consider the
mapping

ρa(λ,x) = λg(x) + (1− λ)(x− a) .

Will this homotopy generate a solution path that terminates in (1,xopt)? We verify
some properties of f and the homotopy using the definitions in the previous section.

• Let U = Rn×[0, 1)×Rn and define the function ρ : U → Rn to be ρ(a, λ,x) =
ρa(λ,x). Let’s look at the Jacobian matrix for the mapping. The Jacobian
with respect to the x variables is

Jx = λH(x) + (1− λ)I ,

where H is the Hessian matrix of f . The matrix H is positive semidefinite
since f is convex, and adding (1−λ)I shifts each of the eigenvalues by (1−λ),
so Jx has rank n for λ ∈ [0, 1). Therefore, the complete Jacobian of ρ has
full-rank. Therefore, ρ is transversal to 0 on U .

• The equation ρa(0,x) = 0 should have a unique solution x0. Since ρa(0,x) =
x− a, this is clearly satisfied, with x0 = a.

Because of these first two properties, we know that the path of zeros of ρa
exists for λ ∈ [0, 1]. The only bad thing that could happen, then, is that the path
wander off to infinity rather than terminating at a finite solution to our original
problem. The next few properties show that this cannot happen.

• For this homotopy,
(x− xopt)Tg(x) ≥ 0. (1)

To see this, recall that by definition, f is a convex function if and only if, for
all x,y in the domain of f and all 0 ≤ α ≤ 1,

f(αy + (1− α)x) ≤ αf(y) + (1− α)f(x)
= α(f(y)− f(x)) + f(x) ,
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Figure 1. The geometry of the argument for boundedness of the iterates in
the homotopy method for convex optimization. The radius of the outer ball is three
times the radius of the inner one. If xopt and a are any points contained in the
inner ball, then for any point x on the surface of the outer ball, the inner product
between the vectors x− xopt and x− a is positive.

Let z = y − x. Then f(αz + x) = f(αy + (1 − α)x) so the inequality above
says that

f(x + αz)−f(x) ≤ α(f(y)− f(x)).

Therefore, for 0 < α ≤ 1,

f(x + αz)− f(x)−αzTg(x)
α

≤ α(f(y)− f(x))−αzTg(x)
α

.

Taking the limit as α → 0, the left-hand side is zero, so

0 ≤ (f(y)− f(x))− zTg(x) .

Set y = xopt. Then f(y) − f(x) ≤ 0, so −zTg(x) = (x − xopt)Tg(x) ≥ 0 as
claimed.

• The solution path is bounded. To show this, choose a number M such that
‖xopt‖ < M and ‖a‖ < M . Consider the ball defined by ‖x‖ = 3M . For x on
this ball, we see from Figure 1 that

(x− xopt)T (x− a) > 0,

and, because of (1) and the fact that g(xopt) = 0, we have

(x− xopt)Tg(x) = (x− xopt)T (g(x)− g(xopt)) ≥ 0 .
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Put these two inequalities together to get

(x− xopt)T ρa(λ,x) = (x− xopt)T (λg(x) + (1− λ)(x− a)) > 0

for λ ∈ [0, 1). So ρa(λ,x) 6= 0 on the ball defined by ‖x‖ = 3M . Therefore,
the homotopy path, defined by the set of points satisfying ρa(λ,x) = 0, cannot
intersect the boundary of the 3M ball and is therefore forced to remain inside
this ball. Therefore the path cannot diverge to infinity.

Putting all of this together, we see that this homotopy generates a solution path
that terminates in (1,xopt) for almost every a.

Note that this example illustrates the theory of homotopy algorithms, and
the result means that the homotopy method is one approach to solving convex
optimization problems, but such problems are generally too easy to require such
heavy machinery. We generally use one of the Newton-type algorithms of Chapter
9 to solve convex optimization problems.


