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My high school physics teacher told us that we didn’t have the ‘capacicity’ to
understand the subject, since we hadn’t had calculus. In this case study, we’ll see
if we have the capacity to estimate capacitance.

The capacitance of an object determines its capacity to store electrical
charge. For example, the undersides of clouds can accumulate extra electrons,
causing a negative charge. This induces a positive charge on the ground below.
When the build-up becomes too great, the capacitor discharges, forming lightning.
Capacitance has many practical uses; for example, computer memory (RAM) relies
on capacitance to store data. Knowing the capacity of an object for charge build-up
is essential in using that object to design useful devices.

The capacitance of an object depends on its shape, its size, and its material
properties. For example, the capacitance of a sphere is proportional to its radius,
and the closed-form formula is well known. Formulas are also known for a cylinders
and for a pair of parallel plates. The cube, though, is a shape for which no formula
is known.

In this case study we will develop and use an algorithm to estimate the ca-
pacitance of a cube using a random walk on the surface of the cube. The algorithm
works for any convex object.1

Random Walks on Surfaces
In order to take a random walk on the surface of an object, we will need to generate
points that are uniformly distributed on the surface of a sphere. We evaluate two
methods for doing this in the next two challenges.

1An object is convex if the line segment connecting any two points in the object stays within
the object.
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POINTER 0.1. Random Points on a Sphere
In this case study we consider two interesting algorithms for generating points that
are uniformly distributed on the surface of a sphere:

• One method can be found in the paper: Muller, M. E. “A Note on a Method
for Generating Points Uniformly on N-Dimensional Spheres,” Comm. Assoc.
Comput. Mach. 2, pp. 19-20, Apr. 1959.

• The rejection method generates points uniformly distributed in a cube con-
taining the sphere, rejects any that are outside the sphere, and scales the
others to lie on the sphere’s surface.

Both of these methods work for 2-d, 3-d, 4-d, etc. Another method, the trig
method, works only in 3-d.

What we are calling uniformly distributed points on the surface of the
sphere, or uniformly distributed directions, are sometimes called uniformly
(isotropically) distributed points within the solid angle with vertex equal
to the previous point.

CHALLENGE 0.1. Explain why the rejection method, defined in Pointer 0.1,
works.

CHALLENGE 0.2. Use Muller’s method to generate 1000 points uniformly
distributed on the surface of a sphere, using randn. Then use the rejection method
to do the same thing, using rand. Make both methods run as fast as you can. If
the random number generators are good enough (and I believe that they are), then
the two sequences should both have good “randomness” properties, so the methods
can be judged solely on speed. Write a short description of the methods, your
experiment, the results, and your recommendation of which method to use.

The capacitance of a sphere is well understood, so why do we need to generate
random points on a sphere? It turns out that this will enable us to do a random
walk on the surface of any convex object, including a cube. The reason is that a
point on a sphere centered at the origin corresponds to a direction from the origin,
and if we have a uniformly distributed set of points, we have a uniformly distributed
set of walking directions.
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POINTER 0.2. Pitfalls for Challenge 1

• Don’t try to argue about the “number” of real numbers in a line segment or a
wedge, since you are then arguing about infinity and get into paradoxes. For
example, the “number” of points in a line segment is the same as that in a line
segment of twice the length, since we can put them in a 1-to-1 correspondence.

• Don’t try to argue about the number of floating-point numbers on a radius,
either. Because the floating-point numbers form a grid, you can’t argue that
every radius of the sphere contains the same number of floating-point numbers.

Every (sufficiently large) wedge will contain approximately the same number of
floating-point numbers as other wedges of the same size, though, so it is ok to base
the argument on what happens in floating-point on a wedge.

POINTER 0.3. Pitfalls for Challenge 2

• Your documentation should give the reference to the Muller paper and also a
reference for the rejection algorithm.

• It is a good idea to replicate your trials and compute a mean and standard
deviation for your timings.

Let G be our convex object. Algorithm 0.1 is a way to generate p points on
the surface of G, drawn from a particular distribution that will help us compute
capacitance.

There is one important change that needs to be made to the algorithm when-
ever any part of the surface of the convex object is flat: we need to discard the
iterates for j = 2, 4, 6, . . .. To understand the reason, consider the cube. If we are
on a particular face, the probability that our next point will be on that face is 0,
because it is very unlikely that our direction will lie in the plane defined by the face.
If we only look at the odd iterates, though, then a step from a particular point to
any other small surface region has nonzero probability, and we need this property.

If the object is very symmetric, violating this property really wouldn’t hurt
the randomness of a long sequence of points, but we’ll observe the discarding rule
anyway.

Let’s see how these points are distributed on the surface of a cube.
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Algorithm 0.1 Isotropic Random Walk on a Convex Surface
Initialization: Let G be a convex object. Starting at a point x ∈ G, generate
a direction d0 from the uniform distribution of directions, and walk in direction
d0 until you hit the surface of G. Call the resulting point y0.

for j = 1, . . . , p− 1

Generate a direction dj from the uniform distribution of directions, and walk
from yj−1 in direction ±dj until you hit another point on the surface of G.
Call the resulting point yj .

end

POINTER 0.4. Pitfalls for Challenge 3

• You need to use Muller’s method (not uniform random numbers) and to walk
from point-to-point, not from the center to the surface.

• Finding the intersection with the surface of the cube is a “simple” mathemat-
ical exercise, but a very complicated task in floating point. Is [1.00000000001,
.5, .5] on the surface of the cube or outside of it? This is a very delicate issue
that has to be carefully programmed.

• Mascagni and Simonov, and the monograph they cite by Sabelfeld and Si-
monov, claim that for a general convex body, there is always an intersection
of the step with the surface of the body, but this does not seem to be true; we
could, for example, generate a step tangent to the body and never intersect
it.

CHALLENGE 0.3. Let G be the cube centered at x = [0, 0, 0]T with a vertex
at [1, 1, 1]T . (Note that the length of each side of the cube is 2.)

Use Algorithm 0.1 for p = 2× 106. (Don’t try to store all of these points and
directions. Process them one at a time.)

Evaluate how uniform the resulting 106 points are by dividing each face of the
cube into 100 squares and counting how many points fall within each square. Display
your results graphically; use, for example, imagesc to display the 600 counts, and
describe the results in a sentence.
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POINTER 0.5. Choices
There are many ways to find the intersection of a line with the surface of the cube.

• You could solve a minimization problem: minimize the distance between the
point y + αd and the surface, over all choices of the parameter α.

• You could solve a nonlinear equation: distance = 0.

• You could express it as a linear programming problem.

• You could compute the intersection of the line with each of the planes defined
by the faces of the cube, and pick the intersection point that lies on (rather
than outside) the face.

The last way in this list will be fastest.
To get comfortable with this task, you might want to draw the picture for 2-d first.

Charge Density and Capacitance
In order to compute capacitance, we need the following principle from physics, which
you can take on faith: ∫

∂G

1
‖x− y‖

µ(y) dσ(y) = 1.

In this equation,

• ∂G denotes the surface of the object G.

• x is a fixed point inside G. The equality holds for any choice of this point.

• y denotes a point on the surface of G.

• µ(y) is the (unknown) charge density at y.

• dσ(y) denotes the infinitesimal surface area of G at y.

• ‖z‖2 = zT z.

Let v(y) = 1/‖x − y‖. Then the Integral Mean Value Theorem from calculus tells
us that

1 =
∫

∂G

1
‖x− y‖

µ(y) dσ(y) =
∫

∂G

v(y) µ(y) dσ(y)

= v̄

∫
∂G

µ(y) dσ(y)

= v̄ C(G),
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POINTER 0.6. Pitfalls for Challenge 4

• Note that the average value of (1 / distance) is not the same as 1 / (average
value of distance).

• Because of the important role played by edges and corners and their neighbor-
hoods, I worry that the estimate of capacitance will not necessarily converge
to the correct value as the number of sample points goes to infinity. I am
particularly concerned about bad effects from round-off near the corners. The
estimate depends on the number of digits carried in the floating-point num-
bers, and I am not sure that double precision is enough to guarantee more
than a couple of correct digits. It would be interesting to run the random
walk in quadruple precision and see what happens.

• Bottom line: Monte Carlo methods really are methods of last resort. They
depend on having a very high quality pseudo-random number generator and,
for random walks, guaranteeing that artifacts of floating-point arithmetic do
not destroy the results. These are indeed very difficult issues!

where v̄ is the average value of v on the surface and C(G) is (by definition) the
capacitance of G.2

We can estimate v̄ by sampling points on the surface of the cube using the
probability density function defined by µ(y), which is exactly what Algorithm 0.1
does. An estimate of v̄ then gives us an estimate for C(G).

CHALLENGE 0.4. Estimate the capacitance of the cube centered at the origin
with a vertex at [1, 1, 1]T using 107 points.

(a) Estimate the uncertainty in your estimate of the capacitance. To do this, com-
pute the variance in the 10 estimates obtained from each group of 106 points.

(b) Re-estimate the capacitance using 108 points. By what factor did your estimate
of variance decrease? Is this consistent with Monte Carlo theory? (Note: if you
can’t run 108 points quickly enough, repeat using 106 points instead.)

2Capacitance has units of farads in the SI system, but we’ll be a bit vague about how we have
scaled the equation.
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POINTER 0.7. Looking Ahead
Use this case study to push yourself toward computational independence. In the
“real world” of research or development, you will need to find and evaluate relevant
literature, derive useful mathematical properties of your problem, test algorithms,
convince your coworkers and supervisors that your ideas are sound, implement your
ideas in a well-documented computer program, and present your results in a way
that other people can understand, all within assigned deadlines. The challenges in
this case study are designed to give you practice in these tasks.

POINTER 0.8. Further Reading.
See Chapter 18 of the SCCS textbook for more applications of Monte Carlo inte-
gration.
The algorithm in this case study is taken from “The Random Walk on the Boundary
Method for Calculating Capacitance,” Michael Mascagni and Nikolai A. Simonov,
J. of Computational Physics 195 (2004) 465–473. You do not need to read that
article to solve the challenges.
For more information on capacitance (again, not necessary to solve this
case study), see, for example http://micro.magnet.fsu.edu/electromag/
electricity/capacitance.html


