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Algorithms that use the Arnoldi Basis

Reference: Chapter 6 of Saad

So far: Arnoldi for general matrices.

Now: Arnoldi for symmetric matrices.

• Generating the Arnoldi Basis: The Lanczos algorithm

• CGNR, CGNE, and SYMMLQ

• FOM when A is symmetric positive definite = CG

• GMRES when A is symmetric = CR

• The Lanczos - CG relation

• Practicalities

• Convergence Results for CG

And: A few notes

• Applications to Linear Operators

• The Faber-Manteuffel Theorem

• Block Iterative Methods

• Arnoldi methods use the “wrong” subspace

Generating the Arnoldi Basis: The Lanczos algorithm

When A is symmetric, we have seen that the relation

AV = VH

with H upper Hessenberg and VT V = I implies that H is tridiagonal.

In this case, the Arnoldi iteration is usually called the (symmetric) Lanczos
iteration.

The complexity of the iteration is greatly reduced, since we only need to
orthogonalize against 1 old vector at iteration k, instead of k − 1 vectors.

The storage is also reduced.
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Orthogonal polynomials

Sec 6.6.2

If AV = TV where T is tridiagonal, then

Avj = tj−1,jvj−1 + tjjvj + tj+1,jvj+1,

or
tj+1,jvj+1 = Avj − tjjvj − tj−1,jvj−1.

We have seen a recurrence like this before, the Chebyshev semi-iterative method:

x̄j+1 = wj+1(Ax̄j + b − x̄j−1) + x̄j−1

where wj+1 involved values of Chebyshev polynomials.

The Lanczos sequence also defines a sequence of polynomials, and, like the
Chebyshev polynomials, they are orthogonal in a particular inner product.

The (rather bizarre) inner product is

(f, g) =

∫ b

a

f(x)g(x) dw(x)

where

• 0 < a < λ1, λn < b.

• The distribution function w is constant except at λi.

• The jump in w at λi is proportional to bT ui, where ui is the eigenvector
corresponding to the eigenvalue λi.

• This is a Lebesgue integral rather than the more usual Riemann integral.

This has allowed researchers to apply the formidable machinery of orthogonal
polynomials and Gaussian quadrature, with very fruitful results, most of which
are beyond the scope of the course.

CGNR and CGNE

We can convert any problem Ax = b with a nonsingular nonsymmetric matrix to
a symmetric positive definite one in either of two ways:

• AT Ax = AT b. This is called the normal equations, and the Arnoldi
method that minimizes the norm of the residual b − Ax is called CGNR
(Sec 8.3.1).

• AAT u = b, where x = AT u, and the Arnoldi method that minimizes the
norm of the error xk − xtrue is called CGNE or Craig’s method (Sec 8.3.2).
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Advantage:

• We now have a short recurrence for the v vectors because the matrix is
symmetric.

Disadvantages:

• Convergence depends on the eigenvalues of AT A, which are equal to those
of AAT , and these can be much more spread out than those of A.

• Each iteration involves multiplication by both A and AT , twice the work
of the Arnoldi iteration.

SYMMLQ for symmetric indefinite problems

If we use the Arnoldi iteration on a symmetric matrix, we obtain

AVm = Vm+1T̄m,

where T̄m is (m + 1) × m.

Case 1: (GMRES-like) If we decide to minimize the residual, we need to compute
xm = Vmym using

‖rm‖2 = ‖b − Axm‖2

= ‖b − Vm+1T̄mym‖2

= ‖βe1 − T̄mym‖2.

Case 2: (FOM-like) If we decide to make the residual orthogonal to the Krylov
subspace then we use

VT
mrm = βe1 − Tmym = 0.

We need to factor Tm.

One stable way to solve either of these two problems, regardless of whether A is
positive definite or not, is to use an LQ factorization, where L is lower triangular
and Q is orthogonal.

For Case 2, this leads to the very useful algorithm SYMMLQ (Paige and
Saunders).

For Case 1, this leads to the MINRES algorithm of Paige and Saunders, based on
solving the normal equations.

T̄T
mT̄mym = βT̄T

me1

Whenever you have a symmetric matrix and don’t know whether or not it is
positive definite, I advise using one of these two algorithms, available from a
website at Stanford University.
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FOM when A is symmetric positive definite = CG

If A is not positive definite, then for stability we need to factor Tm using LQ,
QR, or LU with pivoting,

If A is positive definite, then so is Tm, so we can use the more inexpensive
Cholesky decomposition.

More commonly, though, instead of the three-term recurrence, we use the
algorithm given in the KMP notes (p. 8), one involving a recurrence for pm and
rm. The residuals are still mutually orthogonal, but the p-vectors are
A-conjugate, so that if they form the columns of a matrix P, then

PAP = I.

This is what enables us to express xm as

xm = Pα,

where αm = (rT
mrm)/(pT

mApm).

GMRES when A is symmetric = CR

Sec 6.8

The GMRES algorithm, specialized to A symmetric, gives an algorithm called
conjugate residual, in which it can be shown that

rT
i Arj = 0

for i 6= j.

The Lanczos - CG relation

The parameters α and β computed by the p, r form of cg can be used to
compute Tm. See p. 194 for the formulas.

The residual rk, normalized to length 1, is the vector vk.

Practicalities

There are many mathematically equivalent but computationally different forms of
these algorithms.

I recommend:
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• A symmetric, positive definite: CG in its p, r form or MINRES.

• A symmetric indefinite: SYMMLQ or MINRES.

Convergence Results for CG

See pp. 9-10 of the KMP notes, or Sec 6.11.3.

A Few Notes about Arnoldi Methods

Applications to Linear Operators

We have stated all of these algorithms for matrix problems:

A is an n × n matrix.

We could have stated them for linear operators A which map some domain space
into itself.

This can be an important conceptual tool:

• Given an infinite dimensional problem (e.g., an integral equation), we can
apply an Arnoldi method to it.

• If we actually want to compute with it, we can use a discretization in order
to approximate Avk.

• Alternatively, given an infinite dimensional problem, we can discretize it to
a finite dimensional one and then apply an Arnoldi method to it,

The Faber-Manteuffel Theorem

We see that:

• For general matrices, vk in the Arnoldi iteration depends on all k − 1
previous vectors v1, . . . ,vk−1.

• For symmetric matrices, vk depends on only two previous vectors.

So (Section 6.10), the question arose, for what class of matrices is the recurrence
“short”?

The answer was given by Faber and Manteuffel in 1984: There is an s-term
recurrence for every choice of b iff
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• The Arnoldi iteration always breaks down at or before iteration s, so that
Ks(A,b) = Ks+1(A,b); or

• The matrix A is normal and there is a polynomial p of degree s − 1 for
which AH = p(A).

(A matrix A is normal if AHA = AAH .
Examples: symmetric matrices, Hermitian matrices, orthogonal matrices.)

Saad doesn’t give the proof, since the Faber-Manteuffel one is messy, but there is
a clean version in a 2006 preprint by Faber, Liesen, and Tichy.

Block Iterative Methods

Suppose we want to solve
AX = B

where X and B are n × p, p > 1.

For definiteness, suppose we want to use GMRES.

• We could run GMRES on the first rhs, then repeat p − 1 times. But this
wastes a lot of effort.

• We could make better use of our Krylov subspaces this way:

– We could run GMRES on the first rhs, and update the p − 1 other
problems by making their residuals orthogonal to the resulting
subspace.

– If the solution to the 2nd system is not good enough, we could apply
GMRES to it, updating the p − 2 other problems.

– etc.

• We could look for an Arnoldi method that treats all of the rhs vectors
equally.

The result of the 3rd option is the Block Arnoldi methods: block-GMRES,
block-CG, etc. (Sec 6.12)

At the kth step, they work with the subspace spanned by the columns
B,AB, . . . ,Ak−1B, abbreviated as Kk(A,B). This subspace has dimension at
most kp.

Mechanics

The algebra is derived from AV = VH, but now we specify the first p columns
of V to be an orthonormal basis for the space spanned by the columns of B.

We move forward p columns at a time:
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• Compute A times the p previous columns,

• Then use modified Gram-Schmidt to make these new vectors orthogonal to
all of the old ones, The resulting coefficients are placed in H in the blocks
on and above the main diagonal.

• Then make the resulting vectors orthogonal to each other, usually by using
the Householder QR factorization. The Q-matrix becomes the next block
of V, and the R-matrix becomes the block of H below the main diagonal
(j + 1, j).

The resulting matrix H has p diagonals below the main diagonal.

Breakdown

For the Arnoldi method, breakdown (hj+1,j = 0) means that we have solved the
problem.

For the block-Arnoldi method, breakdown (Hj+1,j rank-deficient) means that our
Krylov subspace has dimension less than kp.

Diagnosing and handling this condition, by reducing the size of the block used
from now on, is messy.

Two advantages of the block iterations

Advantage 1:

Arnoldi: To get a subspace of dimension k requires k matrix vector products,
which means k accesses of the matrix A.

block Arnoldi: To get a subspace of dimension k requires k matrix vector
products, which means k/p accesses of the matrix A.

Thus block Arnoldi has a big advantage when the main cost of matrix-vector
product is due to accessing the matrix (e.g., A is on secondary storage, or spread
across multiple processors, etc.) In fact, current machines do arithmetic much
faster than accessing memory, so this is a widespread advantage.

Advantage 2:

Arnoldi: Convergence depends on how well a polynomial of degree k behaves at
the n eigenvalues of A.

block Arnoldi: Convergence depends on how well a polynomial of degree kp
behaves at the n eigenvalues of A.

7



We can derive error bounds that ignore p − 1 of the eigenvalues, so this is a
powerful property.

Therefore, sometimes it is advantageous to use block iterations by making up
additional right-hand sides, even if you only want to solve one problem!

Arnoldi methods use the “wrong” subspace.

Recall what you know about systems of equations:

If A : C → D, and we want to solve Ax = b, then

• b ∈ D,

• x ∈ C.

Example 1: If A is m × n with m 6= n, then the linear system may still have a
solution, but we can’t approximate it in a subspace built upon b.

Example 2: If A is n × n but rank deficient, then the solution obtained from a
Krylov subspace approximation will never have a component in the nullspace of
A (assuming exact arithmetic). This may be good or bad, depending on the
application.

The bottom line is that Arnoldi methods search in a Krylov subspace that is a
subset of the range space of A, when the solution really lives in the domain.

This leads us to a different set of Krylov methods, based on Lanczos
bi-diagonalization.
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