
AMSC 600 /CMSC 760 Advanced Linear Numerical Analysis
Fall 2007

Direct Solution of Sparse Linear Systems and Eigenproblems
Dianne P. O’Leary

c©2007

Solving Sparse Linear Systems

Assumed background:

• Gauss elimination and the LU decomposition

• (Partial) Pivoting for stability

• Cholesky decomposition of a symmetric positive definite matrix

• Forward and backward substitution for solving lower or upper triangular
systems

If you need review of this material, try a standard textbook such as van Loan or
Moler.

The plan:

• How to store a sparse matrix

• Sparse direct methods

– The difficulty with fill-in

– Some strategies to reduce fill-in

• Iterative methods for solving linear systems:

– Basic (slow) iterations: Jacobi, Gauss-Seidel, SOR.

– Krylov subspace methods

– Preconditioning (where direct meets iterative)

• A special purpose method: Multigrid

Contrasting direct and iterative methods

• Direct: Usually the method of choice for small problems

• Iterative: Usually the method of choice for huge problems.

• Direct: Except for round-off errors, we produce an exact solution to our
problem.
Iterative: We produce an approximate solution with a given tolerance.

1



• Direct: We usually require more storage (sometimes much more) than the
original
Iterative: We only require a few extra vectors of storage.

• Direct: The elements of the matrix A are modified by the algorithm.
Iterative: We don’t need to store the elements explicitly; we only need a
function that can form Ax for any given vector x.

• Direct: If a new b is given to us later, solving the new system is fast.
Iterative: It is not as easy to solve the new system.

• Direct: The technology is well developed and good software is standard.
Iterative: Some software exists, but it is incomplete and rapidly evolving.

Storing a sparse matrix

There are many possible schemes. Matlab chooses a typical one: store the
indices and values of the nonzero elements in column order, so









2 0 0 0
0 5 7 0
1 0 6 0
0 0 0 8









is stored as

(1, 1) 2
(3, 1) 1
(2, 2) 5
(2, 3) 7
(3, 3) 6
(4, 4) 8

Therefore, storing a sparse matrix takes about 3nz storage locations, where nz is
the number of nonzeros.

Other options:

• For band matrices.

• For matrices with small numbers of nonzeros in every row.

Sparse direct methods

Recommended references:

• In Matlab, type ”demo”, and then choose ”Matrices”, ”Sparse Matrices”.

• Also In Matlab, type ”demo”, and then choose ”Matrices”, ”Orderings and
Separators for a Finite Element Matrix” (but don’t worry about the trees
that it produces).

2



The problem:

We want to solve
Ax = b.

For simplicity, we’ll assume for now that

• A symmetric.

• A positive definite.

This is ok if A is self-adjoint and coercive.

The difficulty with fill-in: A motivating example

Suppose we want to solve a system involving an n × n arrowhead matrix:

A =

















× × × × × ×

× × 0 0 0 0
× 0 × 0 0 0
× 0 0 × 0 0
× 0 0 0 × 0
× 0 0 0 0 ×

































x1

x2

x3

x4

x5

x6

















=

















b1

b2

b3

b4

b5

b6

















where × denotes a nonzero value (we don’t care what it is) and 0 denotes a zero.
The number of nonzeros is 3n − 2.

Suppose we use Gauss-elimination (or the LU factorization, or the Cholesky
factorization – all of them have the same trouble).

Then in the first step, we add some multiple of the first row to every other row.
Disaster! The matrix is now fully dense with n2 nonzeros!

A fix

Let’s rewrite our problem by moving the first column and the first row to the end:

A =

















× 0 0 0 0 ×

0 × 0 0 0 ×

0 0 × 0 0 ×

0 0 0 × 0 ×

0 0 0 0 × ×

× × × × × ×

































x2

x3

x4

x5

x6

x1

















=

















b2

b3

b4

b5

b6

b1

















Now when we use Gauss-elimination (or the LU factorization, or the Cholesky
factorization) no new nonzeros are produced in A.

Reordering the variables and equations is a powerful tool for maintaining sparsity
during factorization.

3



Strategies for overcoming fill-in

We reorder the rows and columns with a permutation matrix P and solve

PAPT (Px) = Pb

instead of Ax = b.

Note that Ã = PAP T is still symmetric and positive definite, so we can use the
Cholesky factorization Ã = LDLT where L is lower triangular with ones on its
diagonal and D is diagonal.

How to reorder

• Finding the optimal reordering is generally too expensive: it is in general an
NP hard problem.

• Therefore, we rely on heuristics that give us an inexpensive algorithm to
find a reordering.

• As a consequence, usually the heuristics do well, but sometimes they
produce a very bad reordering.

Important insights

Insight 1: If A is a band matrix, i.e.,

• tridiagonal,

• pentadiagonal,

• . . .,

then there is never any fill outside the band.

Insight 2: Also, there is never any fill outside the profile of a matrix, where the
profile stretches from the first nonzero in each column to the main diagonal
element in the column, and from the first nonzero in each row to the main
diagonal element.

Example: Zeros within the profile marked with ⊗

A =

















× 0 × 0 0 0
0 × 0 0 × 0
0 0 × 0 × 0
× 0 0 × 0 0
0 0 × 0 × 0
0 × 0 0 0 ×

















, profile(A) =

















× 0 × 0 0 0
0 × ⊗ 0 × 0
0 0 × 0 × 0
× ⊗ ⊗ × ⊗ 0
0 0 × ⊗ × 0
0 × ⊗ ⊗ ⊗ ×

















,

4



So some methods try to produce a reordered matrix with a small band or a small
profile.

Insight 3: The sparsity of a matrix can be encoded in a graph. For example, a
symmetric matrix

A =

















× 0 × 0 0 0
0 × 0 0 × ×

× 0 × 0 × 0
0 0 0 × 0 0
0 × × 0 × 0
0 × 0 0 0 ×

















has upper-triangular nonzero off-diagonal elements a13, a25, a26, a35 and
corresponds to a graph with 6 nodes, one per row/column, and edges connecting
nodes (1, 3), (2, 5), (2, 6), and (3, 5).

Unquiz: Draw the graph corresponding to the finite difference matrix for
Laplace’s equation on a 5 x 5 grid. []

Some reordering strategies

Strategy 1: Cuthill-McKee

One of the oldest is Cuthill-McKee, which uses the graph to order the rows and
columns:

Find a starting node with minimum degree (degree = number of
neighbors). Until all nodes are ordered,

For each node that was ordered in the previous step, order
all of the unordered nodes that are connected to it, in
order of their degree.

Reverse Cuthill-McKee (doing a final reordering from last to first) often works
even better.

Strategy 2: Minimum Degree

Until all nodes are ordered,

5



0 5 10 15 20 25

0

5

10

15

20

25

nz = 105

spy(S)

0 5 10 15 20 25

0

5

10

15

20

25

nz = 129

Cholesky decomposition of S

0 5 10 15 20 25

0

5

10

15

20

25

nz = 105

S(p,p) after Cuthill−McKee ordering

0 5 10 15 20 25

0

5

10

15

20

25

nz = 115

chol(S(p,p)) after Cuthill−McKee ordering

6



0 5 10 15 20 25

0

5

10

15

20

25

nz = 105

S(r,r) after minimum degree ordering

0 5 10 15 20 25

0

5

10

15

20

25

nz = 116

chol(S(r,r)) after minimum degree ordering

Choose a node that has the smallest degree, and order that node
next, removing it from the graph. (If there is a tie, choose any of the
candidates.)

Strategy 3: Nested Dissection

Try to break the graph into 2 pieces plus a separator, with

• approximately the same number of nodes in the two pieces,

• no edges between the two pieces,

• a small number of nodes in the separator.

Do this recursively until all pieces have a small number of nodes.

Then order the nodes piece by piece. Finally, order the nodes in the separators.

A comparison of the orderings

Demo: spar50.m

Summary of sparse direct methods

7



0 5 10 15 20 25

0

5

10

15

20

25

nz = 105

S(r,r) after nested dissection ordering

0 5 10 15 20 25

0

5

10

15

20

25

nz = 115

chol(S(r,r)) after nested dissection ordering

• The idea is to reorder rows and columns of the matrix in order to reduce
fill-in during the factorization.

• We have given examples of strategies useful for symmetric positive definite
matrices.

• For nonsymmetric matrices, and for symmetric indefinite matrices, there is
an additional critical complication: we need to reorder for stability as well
as sparsity preservation.

• For nonsymmetric matrices, strategies are similar, but the row permutation
is allowed to be different from the column permutation, since there is no
symmetry to preserve.

• The most recent reordering strategies are based on partitioning the matrix
by spectral partitioning, using the elements of an eigenvector of a matrix
related to the graph. These methods are becoming more popular.

Sparse direct methods for eigenproblems

The standard algorithm for finding eigenvalues and eigenvectors: the QR
algorithm.

In Matlab, [V,D] = eig(A) puts the eigenvectors of A in the columns of V and
the eigenvalues along the main diagonal of D.

Strategy for sparse matrices:

8



• Use a reordering strategy to reduce the bandwidth of the matrix. We
replace A by PAP T , which has the same eigenvalues but eigenvectors
equal to P times the eigenvectors of A.

• Use the QR algorithm to find the eigenvalues of the resulting banded
matrix.

Actually, Matlab’s eig will not even attempt to find the eigenvectors of a matrix
stored in sparse format, because the matrix V is generally full, but it will
compute the eigenvalues.

If we want (a few) eigenvalues and eigenvectors of a sparse matrix, we use
Matlab’s eigs function, which uses a Krylov subspace method based on the
Arnoldi basis, to be discussed later.

For more information

I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices,
Oxford Press, 1986.

Alan George and Joseph W. Liu, Computer Solution of Large Sparse Positive
Definite Systems, Prentice Hall, 1981.

A. Pothen, H. Simon, and K.-P. Liou, “Partitioning sparse matrices with
eigenvectors of graphs”, SIAM J. Matrix Anal. Appl., 11 (1990) 430–452.

Lecture notes on spectral partitioning by James Demmel,
http://www.cs.berkeley.edu/∼demmel/cs267/lecture20/lecture20.html

9


